Change search
Refine search result
1234567 51 - 100 of 3710
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Ahmed, Hesham
    et al.
    Royal Institute of Technology (KTH), Stockholm.
    Nurni, Viswanathan
    Indian Institute of Technology, Bombay.
    Seetharaman, Seshadri
    Division of Materials Process Science, Department of Materials Science and Engineering, Royal Institute of Technology, Kungliga tekniska högskolan, KTH, Department of Metallurgy, Royal Institute of Technology, Stockholm, Division of Metallurgy, Department of Materials Science and Technology, Royal Institute of Technology.
    Dynamic thermal diffusivity measurements: A tool for studying gas-solid reactions2011In: Diffusion in Solids and Liquids VI: selected, peer reviewed papers from the 6th International Conference on Diffusion in Solids and Liquids : mass transfer, heat transfer, microstructure & properties, nanodiffusion and nanostructured materials : DSL-2010, 5-7 July 2010, Paris, France / [ed] Andreas Öchsner; Graeme E. Murch ; João M.P.Q. Delgado, Durnten-Zurich: Trans Tech Publications Inc., 2011, Vol. 312-315, p. 217-222Conference paper (Refereed)
    Abstract [en]

    In the present work, the thermal diffusivity measurements of uniaxially cold pressed NiWO4 has been carried out. The measurements were performed isothermally at temperatures between 973 and 1273 K under H 2 gas using the laser flash technique. The experimental thermal diffusivity values were found to increase with the reduction progress as well as with increasing temperature. The calculated activation energy was found to be higher than that for chemically controlled reaction. The difference has been attributed to factors like agglomeration of the product as well as sintering of the precursor along with the chemical reaction. In order to sort out the sintering effect on the thermal diffusivity values, complementary experiments have been done on pressed NiWO 4 and Ni-W, produced by the reduction of NiWO 4 at 1123K, under Argon gas. The porosity change and its effect on thermal diffusivity values have been studied.

  • 52.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Persson, Amanda
    Swerea MEFOS AB.
    Sundqvist, Lena
    Swerea MEFOS AB.
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Energy Efficient Recycling of in-Plant Fines2014In: Proceedings of World Academy of Science, Engineering and Technology, ISSN 2010-376X, E-ISSN 2070-3740, Vol. 8, no 6, p. 485-491Article in journal (Refereed)
    Abstract [en]

    —Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steel making processes is practiced successfully at several plants but for limited extent. In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

  • 53.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Persson, Amanda
    Swerea MEFOS AB.
    Sundqvist, Lena
    Swerea MEFOS AB.
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Utilization of Steelmaking Industry Waste Materials in Producing Direct Reduced Iron2014Conference paper (Refereed)
    Abstract [en]

    The depletion of coke reserves and the raised environmental concerns motivated researchers to work on alternative iron-making processes. Large amount of metallurgical dusts and sludge containing iron and C are produced in the steelmaking industry. These alternative iron ore resources (fines) with poor hydrophilicity are difficult to recycle. The idea of briquetting such wastes containing iron to be used as a feed stock for steelmaking industry is practiced successfully at several plants.In the present study, agglomerates of integrated steelmaking industry waste materials were used as feed stock to produce direct reduced iron (DRI). The reduction behavior of blends of different waste materials (namely, BF dust and sludge, BOF dust and sludge) were investigated thoroughly utilizing TGA/DTA/QMS in combination with XRD.

  • 54.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Persson, Amanda
    Swerea MEFOS AB.
    Sundqvist-Ökvist, Lena
    Swerea MEFOS AB, Luleå tekniska universitet, SSAB Tunnplåt AB, LKAB.
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Reduction Behaviour of Self-reducing Blends of In-plant Fines in Inert Atmosphere2015In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 55, no 10, p. 2082-2089Article in journal (Refereed)
    Abstract [en]

    Large amount of dust and sludge recovered during cleaning of iron and steel making process gases are annually put on landfill or intermediate storage. These by-products have high contents of iron (Fe) and carbon (C) that potentially could be utilized in the steel industry. However, due to the presence of impuritycompounds as well as the unsuitable physical properties, these by-products cannot be recycled directly. The main objective of the present study is to investigate the possibilities to recover the valuable components Fe and C in these by-products and thereby decrease the need of landfills at the steel plants as well as reduce the consumption of virgin materials, including fossil coal, and reduce CO2 emissions. A recycling route has been investigated by means of laboratory trials and FactSage thermodynamic modeling. Four different blends of BF and BOF dusts and sludges are prepared in predetermined ratios. Reduction behavior of each blend is studied using TG/DTA/QMS and in-situ high temperature X-ray diffraction. High temperature physical properties like softening, swelling and melting are also investigated by means of heatingmicroscope. The obtained results indicate the feasibility of both minimizing the impurity elements as well as recovering of valuable components.

  • 55.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Seetharaman, Seshadri
    Kungliga tekniska högskolan, KTH.
    Isothermal dynamic thermal diffusivity studies of the reduction of NiO and NiWO4 precursors by hydrogen2011In: International Journal of Materials Research - Zeitschrift für Metallkunde, ISSN 1862-5282, E-ISSN 2195-8556, Vol. 102, no 11, p. 1336-1344Article in journal (Refereed)
    Abstract [en]

    Thermal diffusivity measurements of uniaxially cold pressed NiO and NiWO4 were carried out in a dynamic mode in order to monitor the kinetics of hydrogen reduction of the above-mentioned materials using a laser flash unit. The calculated activation energy was found to be higher than that for chemically-controlled reaction obtained earlier by thermogravimetry. The difference has been attributed to physical changes occurring along with the chemical reaction. The activation energy of sintering of the products was evaluated to be 33 and 36 kJ mol-1 for NiO and NiWO4, respectively. Thermal conductivities were calculated taking into consideration the change in heat capacity considering the compositional and the structural changes with the progress of the reaction. The potentiality of the laser-flash method as a complementary technique to thermogravimetry in understanding the mechanism of gas-solid reactions is discussed.

  • 56.
    Ahmed, Hesham
    et al.
    Department of Materials Science and Engineering, Royal Institute of Technology.
    Seetharaman, Seshadri
    Kungliga tekniska högskolan, KTH.
    Reduction-Carburization of NiO-WO3 Under Isothermal Conditions Using H2-CH4 Gas Mixture2010In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 41, no 1, p. 173-181Article in journal (Refereed)
    Abstract [en]

    Ni-W-C ternary carbides were synthesized by simultaneous reduction–carburization of NiO-WO3 oxide precursors using H2-CH4 gas mixtures in the temperature range of 973 to 1273 K. The kinetics of the gas–solid reaction were followed closely by monitoring the mass changes using the thermogravimetric method (TGA). As a thin bed of the precursors were used, each particle was in direct contact with the gas mixture. The results showed that the hydrogen reduction of the oxide mixture was complete before the carburization took place. The nascent particles of the metals formed by reduction could react with the gas mixture with well-defined carbon potential to form a uniform product of Ni-W-C. Consequently, the reaction rate could be conceived as being controlled by the chemical reaction. From the reaction rate, Arrhenius activation energies for reduction and carburization were evaluated. Characterization of the carbides produced was carried out using X-ray diffraction and a scanning electron microscope (SEM) combined with electron dispersion spectroscopy (SEM-EDS) analyses. The grain sizes also were determined. The process parameters, such as the temperature of the reduction–carburization reaction and the composition of the gas mixture, had a strong impact on the carbide composition as well as on the grain size. The results are discussed in light of the reduction kinetics of the oxides and the thermodynamic constraints.

  • 57.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering. Central Metallurgical Research and Development Institute (CMRDI).
    Semberg, Pär
    Luossavaara-Kiirunavara Aktiebolag (LKAB), Luleå.
    Andersson, Charlotte
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Effect of added olivine on iron ore agglomerate during induration2018In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 58, no 3, p. 446-452Article in journal (Refereed)
    Abstract [en]

    Olivine is used extensively in iron-pellet production as an additive in LKAB blast furnace pellets, in order to improve the high temperature properties of the finished product during reduction. As the contribution of olivine into the process depends on the available surface area, the present study was designed to find out the effect of olivine and its fineness on the oxidation-sintering and subsequent dissociation of olivine in iron ore agglomerates. Agglomerates were exposed to different experimental conditions to study the effect of olivine on the behavior of magnetite and hematite at high temperatures. Olivine particles were found to react significantly only above 1 000°C. Porosity of the final product was found to depend largely on olivine fineness. The finer the olivine the lower the porosity of the final product. It is found also that irrespective of the starting iron oxide the ratio between hematite and spinel phase was the same after heating in air. Olivine fineness affects significantly the rate of hematite dissociation, the finer the olivine the higher the dissociation rate. Upon cooling the weight lost due to the dissociation was again regained

  • 58.
    Ahmed, Hesham
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Viswanathan, Nurni
    Department of Metallurgical Engineering and Materials Science, Centre of Excellence in Steel Technology (CoEST), IIT Bombay.
    Seetharaman, Seshadri
    Division of Materials Process Science, KTH-Royal Institute of Technology .
    Gas-Condensed Phase Reactions: A Novel Route to Synthesize Alloys and Intermetallics Involving Refractory Metals2016In: Materials Today: Proceedings, E-ISSN 2214-7853, Vol. 3, no 9 Part B, p. 2951-2961Article in journal (Refereed)
    Abstract [en]

    Reduction and simultaneous reduction-carburization of oxide mixtures to get intermetallics and composite materials may open up shorter process routes towards the end-user needs. The use of natural gas or hydrogen would be environment-friendly. With these aims, the corresponding kinetics were studied by thermogravimetry, gas chromatography as well as laser-flash method. It was found that, under identical conditions, the Arrhenius activation energy for the reduction is proportional to the thermodynamic stability of the compound reduced. Intermetallics could be synthesized successfully and the product was found to have nanograins. Also, Metallic coating on copper surfaces was successfully developed.

  • 59.
    Ajayi, John Ade
    et al.
    Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B 704, Akure.
    Awe, Samuel Ayowole
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Recovery efficiency study on ilesha placer gold ore by flotation using locallysourced frothers and collectors2010In: XXV International Mineral Processing Congress: IMPC 2010, "Smarter processing for the future" : Brisbane, Australia 6-10 September 2010 : congress proceedings, Carlton, Vic: The Australasian Institute of Mining and Metallurgy, 2010, Vol. 2, p. 1695-1702Conference paper (Refereed)
    Abstract [en]

    The research conducted by the defunct Nigerian Mining Corporation revealed that minable quantities of gold deposit are present over an expanse of Ilesha-Ife area. This optimism prompted several researchers to study the response of Ilesha gold ore to amalgamation and cyanidation. Unfortunately, these methods (amalgamation and cyanidation) are environmentally hazardous and the reagents are rather expensive when available. This is the thrust for this research which is aimed at studying the amenability of Ilesha placer gold ore to froth flotation which is environmentally friendly using locally-sourced reagents. The mineralogical study of the deposit was carried out and the result showed that the Ilesha placer deposit is non-refractory with fine-grained gold particles. Potassium salts of groundnut and palm kernel oils (as collectors) and their fatty acids (as frothers) were prepared and used to float gold concentrate from Ilesha placer gold ore. The following flotation parameters: pulp density, impeller speed, pulp pH, collector concentration and particle size analysis were optimised. The results obtained shows that optimum recovery of 91.8 per cent and 89.56 per cent of gold concentrates were obtained at pulp pH of 9, pulp density of 100 g/cm3, impeller velocity of 1350 rpm and mineral particle size range of -75 μm when potassium salts of groundnut and palmkernel oils were used respectively as collectors. Thus Ilesha placer gold ore is amenable to froth flotation using locally-sourced frothers and collectors.

  • 60.
    Akbarnejad, Shahin
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Experimental and Mathematical Study of Incompressible Fluid Flow through Ceramic Foam Filters2016Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Ceramic Foam Filters (CFFs) are widely used to filter solid particles and inclusions from molten metal in metal production, particularly in the aluminum industry. In general, the molten metal is poured on the top of a ceramic foam filter until it reaches a certain height, also known as metal head or gravity head. This is done to build the required pressure to prime the filter media and to initiate filtration. To predict the required metal head, it is necessary to obtain the Darcy and non-Darcy permeability coefficients of the filter. The coefficients vary upon filter type. Here, it is common to classify CFFs based on grades or pore per inches (PPI). These CFFs range from10 to100 PPI and their properties vary in everything from cell and window size to strut size. The 80-100 PPI CFFs are generally not practical for use by industry, since the priming of the filters by a gravitational force requires an excessive metal head. However, recently a new method has been developed to prime such filters by using electromagnetic Lorentz forces. This allows the filters to be primed at a low metal head.

    To continue the research work, it was deemed necessary to measure the pressure gradients of single and stack of commercial alumina ceramic foam filters and to obtain the permeability characteristics. Therefore, efforts have been made to validate the previously obtained results, to improve the permeametry experimental setup, and to obtain Darcy and non-Darcy permeability coefficients of single 30, 50, and 80 PPI filters and stacks of filters. Furthermore, the experimentally obtained pressure gradients were analyzed and compered to the mathematically and analytically estimated pressure gradients.

    The studies showed that, in permeametry experiments, the sample sealing procedure plays an important role for an accurate estimation of the permeability constants. An inadequate sealing or an un-sealed sample results in an underestimation of the pressure drop, which causes a considerable error in the obtained Darcy and non-Darcy permeability coefficients. Meanwhile, the results from the single filter experiments showed that the permeability values of the similar PPI filters are not identical. However, the stacks of three identical filters gave substantially the same measured pressure drop values and roughly the same Darcy and non-Darcy coefficients as for the single filters.

    The permeability coefficients of the filters are believed to be best defined and calculated by using the Forchheimer equation. The well-known and widely used Ergun and Dietrich equations cannot correctly predict the pressure drop unless a correction factor is introduced. The accuracy of the mathematically estimated pressure drop, using COMSOL Multiphysics® 5.1, found to be dependent on the drag term used in the Brinkman-Forchheimer equation.  Unacceptable error, as high as 84 to 89 percent for the 30, 50 and 80 PPI single filters, compared to the experimentally obtained pressure gradient values were observed when the literature defined Brinkman-Forchheimer drag term was used. However, when the same second order drag term (containing the non-Darcy coefficient) as defined in the Forchheimer equation was used, the predicted pressure gradient profiles satisfactorily agreed with the experiment data with as little as 0.3 to 5.5 percent deviations for the 30, 50 and 80 PPI single filters.

  • 61.
    Akbarnejad, Shahin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jonsson, Lage Tord Ingemar
    Kennedy, Mark William
    Aune, Ragnhild Elizabeth
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters2016In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 47, no 4, p. 2229-2243Article in journal (Refereed)
    Abstract [en]

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  • 62.
    Akbarnejad, Shahin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jonsson, Lage Tord Ingemar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jönsson, Pӓr Göran
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters2017In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 48, no 1, p. 197-207Article in journal (Refereed)
    Abstract [en]

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  • 63.
    Al Choueyri, Yousef
    et al.
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
    Fayazi, Mojtaba
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
    Digital models of manufacturing: with emphasis on titanium welding for early product development2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis work is part of the BTH research lab, focusing on developing the early product development, by analyzing how to integrate the manufacturing process with the early design process. A known problem in the manufacturing industry is the knowledge gap between the designers and the manufacturing process. Where in the early stages of the product development a knowledge regarding the manufacture process is needed. This is in many cases ignored by the designers because it is commonly thought that the responsibility of selecting the manufacturing processes for a product falls upon the manufacturers, despite the fact that the manufacturing processes in reality is highly dependent upon the design choses such as materials, size, shape, finishing and tolerances of the product. To mitigate this problem a variations of product ‘team’ approaches have been used where the idea is to involve a multitude of people with the necessary experience to produce a ‘production friendly product’. Those approaches have a few drawbacks mainly the problem of finding people with the relevant experiences or that the expertise only covers the manufacturing processes already used in the organization, losing the opportunity to benefit from any alternative manufacturing process.

    This thesis focuses on how the welding manufacturing technic, analysis can be integrated into the design process with the help of a digital model?

    To improve the communications between the manufacturers and designers, two excel files were developed. The first excel file aimed at the manufacturers where they can present the specific machines used in the workshop. Focusing on specific machine and workshops instead of on the general welding method will give the designers a better understanding of the feasibility of producing their design in a specific workshop instead of focusing on a specific manufacturing method.

    The second excel file is aimed at calculating and comparing the weld methods where the cost and requirements are derived for general welding methods and compared with the machine specifications gathered from the manufacturers using the first excel file. To assess the excel files, a parametrized CAD model of the rear engine turbine structure was developed, and three different cases were used to evaluate the developed excel files.

    The values used are presented in Appendix A: Table 11–15, and were gathered from public sources. Values were also approximated using regression analysis.

  • 64.
    Alakangas, Lena
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Sandström, Åke
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Rosenkranz, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Martinsson, Olof
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Hällström, Lina
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Project: Improve Resource Efficiency and Minimize Environmental Footprint2016Other (Other (popular science, discussion, etc.))
    Abstract [en]

    The REMinE project is organized in five work packages that comprise: detailedcharacterization and risk assessment of the mine wastes selected (WP2), identification of new processing methods for mine waste (WP3), characterization and risk assessment of the remaining residuals (WP4), outlining business opportunities and environmental impact in a conceptual model for sustainable mining (WP5). The project comprises case studies of historical mine wastes from three different European countries, namely Portugal, Romania and Sweden. The interdisciplinary research collaboration in this project is innovative in the sense that separation of minerals and extraction of metals not only are basedon technical and economic gain but also considers the environmental perspective.

  • 65. Alam, Minhaj M
    et al.
    Barsoum, Zuheir
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Häggblad, Hans Åke
    Jonsén, Pär
    Kaplan, Alexander
    The Effects of Surface Topography and Lack of Fusion on The Fatigue Strength of Laser Hybrid Welds2009In: Congress proceedings: ICALEO, 28th International Congress on Applications of Lasers & Electro-Optics, 2009, p. 38-46Conference paper (Refereed)
    Abstract [en]

    The geometrical aspects of laser hybrid welds (before, during and after the process) differ from autonomous laser welding and from arc welding. When studying the fatigue behaviour of laser hybrid welded fillet joints we identified that the micro-topography (i.e. the surface ripples) can be more important than the macrogeometry of the weld surface or lack of fusion (LOF), which frequently was detected. The plastic replica method was applied to measure the toe radii at the weld edges while the micro-topography was identified by interferometric profilometry. From metallurgical analysis of the joint interface, the tendency to LOF can be explained. Stress analysis was carried out by Finite element analysis (FEA) for the complex joint geometry and a bending load situation, showing maximum stress on the weld toes, even when including LOF. It was shown that the position and value of the maximum stress depends on a non-trivial combination of the weld geometry, including possible LOF, and the surface micro-topography. Thus it can be explained that at compressive stress conditions LOF does not contribute significantly to the fatigue strength of laser hybrid welds while the surface topography does. Recommendations for defining and in turn avoiding critical geometrical aspects during the welding process are discussed.

  • 66.
    Alatalo, Johanna
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Charge dynamics in tumbling mills: simulation and measurements with an in-mill sensor2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Grinding is a process of reducing the particle size distribution of an extracted ore commonly performed in tumbling mills. The process is complex with many factors affecting the result, predominately the ores physical and chemical properties. The ore feed to a concentrator varies and optimisation is important, since grinding has high energy consumption and therefore is an expensive process. In an attempt to increase the knowledge of pebble mill grinding, experiments were performed with a pilot-scale mill at the LKAB R&D facilities at Malmberget. The purposes of the experiments were to investigate how the mill reacts to changes in the system and to find out how the grinding ability is affected by the changes. The first set of experiments concentrated on different operational settings, varying the filling degree, the volume-% solids and the percentage of critical speed of the mill. In the second set of experiments, different pebbles mixtures with varying magnetite content and different size fractions were tested. An interesting response variable (result) is the product size for the different operational conditions, since higher amount of fine material < 45 μm can be seen as a probable increase of production rate. The environment inside a mill is too harsh for direct measurements and there is a lack of knowledge of the events occurring inside the mill. Information on the events in the charge can be achieved by the use of different sensors. In the experiments, a Continuous Charge Measurement (CCM) system by Metso Minerals has been used to learn more about the charge dynamics. This system consists of a strain gauge detector embedded in one rubber lifter and measures the deflection as the lifter passes through the charge in the mill. The information received from the deflection curve is used in the evaluation of the experiments. The data from the experiments have been analysed with the aid of a statistical program. The analyses show that there will be an increased production of fines at low critical speed especially when the mill has high filling degree. This setting will also increase the power consumption but it improves the grindability of the ore even more. A higher degree of filling also give a smaller toe angle and a higher shoulder angle as expected. In addition, there is an advantage to keep the magnetite pebbles fraction as high as possible. This will increase the power consumption and maximum deflection of lifters, but at the same time increase the amount < 45 μm, the grindability and the pebbles consumption. A pebble size fraction of 10-35 mm will improve the grindability and amount < 45 μm. To further increase the understanding of charge dynamics, simulations are used to possibly illustrate the events inside the mill. However, for simulations to be reliable it demands that they are verified against process data. Previously, a series of experiments with a steel media charge were performed with the CCM system installed and this provides an opportunity to validate simulation results. The measured lifter deflection signal is used to compare with signals from two- and three-dimensional DEM simulations of the pilot-scale mill. The resulting deflection signals from simulation show that the three-dimensional case displays a better profile and the difference of toe and shoulder angles are less than in the twodimensional case. This means that the simulations are more reliable when they are run in three dimensions and they may be used to increase the understanding of the mill and its charge.

  • 67.
    Alatalo, Johanna
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Conference in Minerals Engineering: Luleå, 2 -3 februari 20102010Collection (editor) (Other academic)
  • 68.
    Alatalo, Johanna
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Conference in minerals engineering: Luleå, 3-4 februari 20092009Collection (editor) (Other academic)
  • 69.
    Alatalo, Johanna
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Conference in Minerals Engineering: Luleå, 8-9 February 20112011Collection (editor) (Other academic)
  • 70. Alatalo, Johanna
    et al.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Qualitative statistical analysis of simulated data from a pilot scale mill2011In: Particle-based Methods - Fundamentals and Applications / [ed] Eugenio Oñate; D.R.J. Owen, Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 2011, p. 43-51Conference paper (Refereed)
    Abstract [en]

    Grinding is the process of reducing a particle size distribution of an extracted ore and is commonly performed in a tumbling mill. It is a complex procedure and there is a lack of knowledge of what really happens inside the mill. A number of pilot-scale experiments were done at LKAB's pilot plant at Malmberget, Sweden [1]. In this particular pilot mill, a continuous charge measurement system is installed in one of the lifters and it gives a deflection signal produced by the mill charge. From this signal it is possible to detect features correlated to the settings of the mill. Large, real experiments are very difficult to control and are of course, very costly and time consuming. A 10 cm slice of the mill was simulated with discrete element method (DEM) for different mill operating conditions. From the simulations a deflection signal was extracted and validated against real data. There is a difference in the signal, mainly due to the lack of slurry in the simulations, but the behaviour when the mills operating conditions changes seems to be the same in both the simulated and the measured signals. To analyse the data from the simulation a statistical analysis on a full factorial design was done. Two levels of degree of filling of the mill, two different rotational speeds, two levels of friction and different types of particles were selected as factors. The response data are two angles: toe and shoulder angle. The toe angle is when the lifter hits the charge and the shoulder angle is when the lifter leaves the charge. The analysis show that the toe angle increases when the degree of filling is low and the rotational speed is high. It is also clear that the particle shape influences the charge behaviour. The simulated changes correspond to changes detected in pilot mill runs. This is important since it validates the DEM model. In essence, mill simulations are easily done and the changes of factor levels cause the simulated mill to react in similar manner as in real cases. One advantage is that in simulations one factor can be isolated and changed while the others are kept at constant values, which in turn creates the possibility to investigate one factor at a time. In real experiments, the factors are more dependent on each other and there is a very high disturbance from noise.

  • 71.
    Alatalo, Johanna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Tano, Kent
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering.
    Comparing experimental measurements of mill lifter deflections with 2D and 3D DEM predictions2010In: Discrete element methods: simulations of discontinua : theory and applications / [ed] Antonio Munjiza, London: School of Advanced Study, University of London, 2010Conference paper (Refereed)
  • 72.
    Alatalo, Johanna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Tano, Kent
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering.
    Evaluation of data from a pilot scale pebble mill2011In: Conference in minerals engineering: Luleå, 8-9 February 2011 / [ed] Johanna Alatalo, Luleå: Luleå tekniska universitet, 2011Conference paper (Other academic)
  • 73.
    Alatalo, Johanna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Tano, Kent
    LKAB, Research & Development, 983 81 Malmberget.
    Influence of charge type on measurements with an in-mill sensor2012In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 39, p. 262-267Article in journal (Refereed)
    Abstract [en]

    The process of grinding is complex with many factors affecting the result. As the composition of the ore fed to the concentrator varies, implying changes in grindability, the optimal operation conditions for a pebble mill will also vary. In an attempt to increase the understanding of charge dynamics, a series of statistically planned experiments were done in a pilot-scale pebble mill with differing charge types. This pebble mill is equipped with an in-mill sensor, which measures the deflection of a single lifter as it passes through the mill charge. The experimental setup was a factorial design with two factors; two levels of magnetite pebbles content and three different size distributions. The experiments show that there is an advantage to keep the magnetite pebbles proportion as high as possible. This will increase the power consumption and maximum deflection of the lifters, but at the same time increase the production of <45 μm material, the grindability and the pebbles consumption. A pebble size fraction 10–35 mm improves the grindability the most and the amount of <45 μm material. It is strongly suggested that the 10–35 mm and 100% magnetite pebbles fraction should be tested in a larger scale pebble mill to confirm these findings.

  • 74.
    Alatalo, Johanna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Tano, Kent
    LKAB.
    Influence of pebble mill operating conditions on measurements with an in-mill sensor2011In: Minerals & metallurgical processing, ISSN 0747-9182, Vol. 28, no 4, p. 193-197Article in journal (Refereed)
    Abstract [en]

    Autogenous grinding is a process of reducing the particle size distribution of an extracted ore by using the ore itself as the grinding media. It is a process that is difficult to control and there is a lack of knowledge of the events occurring inside the mill. To find out more about how the mill behaves under different processing conditions, a full factorial test was performed with iron ore in a pilot-scale pebble mill at the LKAB R&D facility in Malmberget. To complement this work, a strain gauge detector was embedded in one of the mill’s rubber lifters, the Metso Minerals continuous charge measurement (CCM) system, and was used to get more information about the charge dynamics. The data from the experiments has been analyzed. For production purposes, an increase in the number of particles smaller than 45 μm can be regarded as a probable increase in the production rate. The analysis shows that there will be an increase in fines at 65% of critical speed, especially when the mill is 45% full. This setting will also increase the power consumption, but improves the grindability of the ore even more. The deflection of the lifters is smaller for lower critical speeds. A higher degree of filling also gives a smaller toe angle and a higher shoulder angle as expected.

  • 75. Alatalo, Johanna
    et al.
    Öberg, Eva
    LKAB.
    Pålsson, Bertil
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Verifierig av datorsimulerad kapacitetsökning vid anrikningsverket i Malmberget2006In: Konferens i mineralteknik / [ed] Marianne Thomaeus; Eric Forssberg, Föreningen Mineralteknisk Forskning / Swedish Mineral Processing Research Association , 2006Conference paper (Other academic)
  • 76.
    Albertsson, Galina
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Abatement of Chromium Emissions from Steelmaking Slags - Cr Stabilization by Phase Separation2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Chromium is an important alloying element in stainless steel but also environmentally harmful element. A number of mineralogical phases present in the slag matrix can contain chromium and lead to chromium leaching. Chromium in slag if not stabilized, could oxidize to the cancerogenic hexavalent state, and leach out if exposed to acidic and oxygen rich environment. Other environmental concerns are slag dusting and chromium escape to the atmosphere. Despite the fact that there is a certain risk of Cr-emission from slags at operating conditions, still very little is known regarding the emission of the oxides of chromium during the slag tapping. Spinel phase is known to be important for controlling the leaching properties of chromium from the slag. The objective of the present study was to get an understanding of the phase relationships and chromium partition in the chromium-containing industrial slags and synthetic slags with a view to control the chromium stabilization in spinel phase. The impact of slag basicity, heat treatment, oxygen partial pressure and Al2O3 addition, on the phase relationships and chromium partition has been determined. The experimental results were compared with the phase equilibrium calculations. It was found that the oxygen partial pressure in the gas phase had a strong impact on chromium partition. The experimental results show that the impact of the slag basicity on chromium partition at lower oxygen partial pressures was negligible in contrast to that in air. The amount of spinel phase was found to increase with increased Al2O3 content. Slow cooling of slag and soaking at low oxygen partial pressure would improve the spinel phase precipitation. This treatment will also lead to less Cr dissolved in the unstable matrix phases. Chromium oxide was found to be emitted when chromium containing slags were exposed to oxidizing atmosphere. The results indicate that chromium oxide evaporation increases with increase in temperature and oxygen partial pressure, but decreases with slag basicity and sample thickness.

  • 77.
    Albertsson, Galina
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Effect of the presence of a dispersed phase (solid particles, gas bubbles) on the viscosity of slag2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The viscosities of a set of silicone oils containing different size ranges of charcoal or paraffin particles as well as the viscosities of silicone oil foams were measured at room temperature in order to determine the effect of dispersed phase on the viscosity of a liquid and its effect on foaming ability. The effective viscosity of the samples increased with volume fraction of the second phase. The foaming ability was improved by the presence of the particles. The improved foaming effect was for the most part not a result of the increased viscosity. No connection between the particle size and the effective viscosity could be determined. On the other hand particle morphology and the particle size distribution had effect on the effective viscosity. The viscosity data were compared with a number of existing equations for the estimation of effective viscosity. Einstein-Roscoe equation is suitable for two-phase mixtures containing globular particles with narrow particle size distribution and low interfacial tension. New mathematical models are required for effective viscosity prediction, where the suspending phase viscosity, effect of the interfacial tension, as well as the particle morphology should be taken in consideration.

  • 78.
    Albertsson, Galina Jelkina
    et al.
    Department of Materials Science and Engineering, Royal Institute of Technology.
    Engström, Fredrik
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Teng, Lidong
    Department of Materials Science and Engineering, Royal Institute of Technology.
    Effect of the Heat Treatment on the Chromium Partition in Cr-Containing Industrial and Synthetic Slags2014In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 85, no 10, p. 1418-1431Article in journal (Refereed)
    Abstract [en]

    In the present work, the effects of the slag composition and heat-treatment conditions on the phase relationships in a number of Cr-containing industrial and synthetic slags were investigated with a view to control the precipitation of Cr-spinel in the slag phase. Gas/slag equilibrium technique was used for the chromium partition and the phase relationship study. The phase relationships in synthetic slags and industrial EAF slags supplied by Swedish steelmaking plants have been investigated experimentally in the temperature range of 1473–1873 K. The slags were re-melted, slow-cooled to, and soaked at targeted temperatures in controlled atmosphere. Two different heat-treatment sequences were used in the present experiments. The oxygen partial pressure () was maintained by a suitable mixture of CO and CO2 gases. Phases present and their compositions in the quenched slags were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The chromium content in the phases present was analyzed using wavelength-dispersive spectrometer (WDS). Chromium partition was found to depend on the heat-treatment temperature

  • 79.
    Albertsson, Galina Jelkina
    et al.
    Department of Materials Science and Engineering, Royal Institute of Technology, Division of Materials Process Science, Royal Institute of Technology (KTH).
    Teng, Lidong
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Minerals and Metallurgical Engineering.
    Effect of basicity on chromium partition in CaO-MgO-SiO2-Cr 2O3 synthetic slag at 1873 K2014In: Transactions of the Institution of Mining and Metallurgy Section C - Mineral Processing and Extractive Metallurgy, ISSN 0371-9553, E-ISSN 1743-2855, Vol. 123, no 2, p. 116-122Article in journal (Refereed)
    Abstract [en]

    The objective of the present work is to get an understanding of the phase relationships in the CaO-MgO-SiO2-Cr2O3 system with a view to control the precipitation of Cr-spinel in the slag phase. The equilibrium phases in CaO-MgO-SiO2-Cr2O3 slag system at 1873 K (1600°C) have been investigated experimentally and compared with the results from thermodynamic calculations. The Cr2O 3 and MgO contents in the slag were fixed at 6 and 8 wt-% respectively. The basicity (CaO/SiO2) of slag was varied in the range 1·0-2·0. A gas/slag equilibrium technique was adopted to synthesise the slag at a high temperature in air. The samples were heated to and soaked at 1873 K (1600°C) for 24 h in order to achieve the equilibrium state and subsequently quenched in water. The chromium distribution and phase compositions in the quenched slag were studied using scanning electron microscope wavelength dispersive spectroscopy and X-ray diffraction techniques. FactSage software was used for the phase equilibrium calculations. The experimental results obtained from the present work were compared with the calculation results from FactSage software. It was found that the spinel formation at 1873 K (1600°C) is favoured in the slag basicity range 1·0-1·4

  • 80.
    Albertsson, Galina Jelkina
    et al.
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Teng, Lidong
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Engström, Fredrik
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Seetharaman, Seshadri
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Effect of the heat treatment on the chromium partition in CaO-MgO-SiO2-Cr2O3 synthetic slags2013In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 44, no 6, p. 1586-1597Article in journal (Refereed)
    Abstract [en]

    Mg-spinel phase is known to be important for control of Cr leaching from Cr-containing slags. The objective of the present study is to get an understanding of the phase relationships in the CaO-MgO-SiO2-Cr2O3 system with a view to control the precipitation of Cr-spinel in the slag phase. The equilibrium phases in CaO-MgO-SiO2-Cr2O3 slag system in the range of 1673 K to 1873 K (1400 °C to 1600 °C) have been investigated experimentally and compared with the results from thermodynamic calculations. The slag compositions close to the industrial slag systems were chosen. The Cr2O3 and MgO contents in the slag were fixed to be 6 and 8 wt pct, respectively. The basicity (CaO/SiO2) of the slag was varied in the range of 1.0 to 2.0. The slags were synthesized at a pre-determined oxygen partial pressure (10-4) or air (2.13 × 104 Pa) at a temperature above the liquidus temperature. The samples were then soaked at targeted temperatures for 24 hours in controlled atmosphere in order to achieve the equilibrium state before quenching in water. Four different heat-treatment regimes (defined as Ia, Ib, II.a and II.b) in Section II-D) were used in the present experiments. The lower oxygen partial pressure was maintained by a suitable mixture of CO and CO2 gases. Phases present and their compositions in the quenched slags were studied using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction techniques. The chromium content in the phases present was analyzed using wavelength-dispersive spectrometer. The experimental results obtained are compared with the calculation results from Factsage software. The size of spinel crystals increased drastically after slow-cooling from 1873 K (1600 °C) followed by annealing at 1673 K (1400 °C) for 24 hours (heating regimes II) compared to samples being quenched directly after soaking at 1873 K (1600 °C) (heating regime I.a). It was found that the amount of foreign elements in the spinel phase, and other phases decreased after soaking at oxygen partial pressure of 10-4 Pa resulting in phases with less defects and foreign oxide contents compared to those treated in air. The size of spinel crystals was found to be larger in samples with lower basicity

  • 81.
    Albertsson, Galina
    et al.
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Teng, Lidong
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Björkman, Bo
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Seetharaman, Seshadri
    Division of Materials Process Science, Royal Institute of Technology (KTH).
    Effect of low oxygen partial pressure on the chromium partition in CaO–MgO–SiO2–Cr2O3–Al2O3 synthetic slag at elevated temperatures2013In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 84, no 7, p. 670-679Article in journal (Refereed)
    Abstract [en]

    The objective of the present work is to get an understanding of the impact of Al2O3 addition on the phase relationships in the CaO–MgO–Al2O3–SiO2–Cr2O3 slags at low oxygen partial pressures ( = 10−4 Pa), with a view to control the precipitation of Cr-spinel in the slag. The equilibrium phases in CaO–MgO–Al2O3–SiO2–Cr2O3 slag system in the range on 1673–1873 K have been investigated. The compositions close to the industrial slag systems were chosen. The Cr2O3 content was fixed at 6 wt% and MgO at 8 wt%. Al2O3 contents in the slag were varied in the range of 3–12 wt%. The basicity (CaO/SiO2) of slag was set to 1.6. Gas/slag equilibrium technique was adopted. The samples were heated to 1873 K and soaked at this temperature for 24 h. The samples were then slow cooled to 1673 K and equilibrated for an additional 24 h. The oxygen partial pressure was kept at 10−4 Pa. A gas mixture of CO/CO2 was used to control the oxygen partial pressure. After the equilibration, the samples were quenched in water. The chromium distribution and phase compositions in the quenched slags were studied using SEM–WDS and XRD techniques. The results were compared with the phase equilibrium calculations obtained from FACTSAGE software and the samples equilibrated in air. The size of spinel crystals increased drastically after slow cooling followed by annealing compared to samples being quenched after soaking at 1873 K. It was also found that low oxygen partial pressure had a strong impact on chromium partition. The amount of spinel phase increases with increased Al2O3 content.

  • 82.
    Albertsson, Galina
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Teng, Lidong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Björkman, Bo
    Seetharaman, Seshadri
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Engström, Fredrik
    Effect of Low Oxygen Partial Pressure on the Chromium Partition in CaO-MgO-SiO2-Cr2O3-Al2O3 Synthetic Slag at Elevated Temperatures2013In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 84, no 7, p. 670-679Article in journal (Refereed)
    Abstract [en]

    The objective of the present work is to get an understanding of the impact of Al2O3 addition on the phase relationships in the CaO-MgO-Al2O3-SiO2-Cr2O3 slags at low oxygen partial pressures (P-O2 = 10(-4) Pa), with a view to control the precipitation of Cr-spinel in the slag. The equilibrium phases in CaO-MgO-Al2O3-SiO2-Cr2O3 slag system in the range on 1673-1873 K have been investigated. The compositions close to the industrial slag systems were chosen. The Cr2O3 content was fixed at 6 wt% and MgO at 8 wt%. Al2O3 contents in the slag were varied in the range of 3-12 wt%. The basicity (CaO/SiO2) of slag was set to 1.6. Gas/slag equilibrium technique was adopted. The samples were heated to 1873 K and soaked at this temperature for 24 h. The samples were then slow cooled to 1673 K and equilibrated for an additional 24 h. The oxygen partial pressure was kept at 10(-4) Pa. A gas mixture of CO/CO2 was used to control the oxygen partial pressure. After the equilibration, the samples were quenched in water. The chromium distribution and phase compositions in the quenched slags were studied using SEM-WDS and XRD techniques. The results were compared with the phase equilibrium calculations obtained from FACTSAGE software and the samples equilibrated in air. The size of spinel crystals increased drastically after slow cooling followed by annealing compared to samples being quenched after soaking at 1873 K. It was also found that low oxygen partial pressure had a strong impact on chromium partition. The amount of spinel phase increases with increased Al2O3 content.

  • 83.
    Aldén, Rickard
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Metallurgical investigation in weldability of Aluminium Silicon coated boron steel with different coating thickness.2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Hot-pressed aluminium and silicon coated boron steel is used in the car industry where high tensile strength is of great importance, such as in the safety cage of a car where deformation has to be kept to a minimum in case of a collision. After hot-pressing the AlSi-boron steel shows excellent properties with high tensile strength, minimal spring back and also shows good protection against corrosion. A thickness of the AlSi coating of 150 [g/m2] for AlSi coated boron steel is typically used by the car industry today. However the coating thickness would be desirable to be minimized to 80 [g/m2]. Welding of this boron steel with 80 [g/m2]have shown difficulties; and it’s not clear why this occurs.

    In this report the metallurgical properties of the different coating layers will be investigated, simulations with Thermocalc module Dictra will be used, SEM/EDS will be used to characterize phases in coating layers and correlate to weldability. Resistance spot welding tests will also be performed where the welding parameters of pre-pulse, pulse time, time in between pulses and current will be varied to achieve desirable weld plug diameter without expulsion. Hardness testing in form of micro Vickers will executed. The Materials used will be USIBOR® 1500, AS80 with four different annealing times and one sample of AS150.

  • 84.
    Alevanau, Aliaksandr
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Study of pyrolysis and gasification of biomass from the self-organization perspective2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the analysis of kinetics of i) low-temperature pyrolysis of gaseous hydrocarbons, ii) high-temperature steam gasification of char of wood pellets (>700oC), iii) high temperature pyrolysis of straw pellets in an atmosphere of argon and steam, and iv) high temperature pyrolysis of slices of transversally cut wooden sticks. The results of the kinetic measurements in the high-temperature cases are approximated using a least-square based optimization software, which was specially developed to analyse kinetics prone for deviation from the Arrhenius law.In the thesis a general analysis of the researched materials and kinetics of their pyrolysis and gasification is presented from the self-organization perspective. The energy transfer phenomena in both the pyrolysis and gasification processes of biomass are discussed with an emphasis on an analysis of basic phenomena involving the self-organized dynamics on fractal structures in the chosen biomass samples.

  • 85.
    Alexandrova, L.
    et al.
    Institute of Physical Chemistry, Bulgarian Academy of Sciences.
    Kota, Hanumantha Rao
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Forssberg, Eric
    Grigorov, L.
    Department of Inorganic Chemistry, University of Sofia.
    Pugh, R.J.
    Institute for Surface Chemistry, Box 5607, SE-11486 Stockholm.
    The influence of mixed cationic-anionic surfactants on the three-phase contact parameters in silica-solution systems2011In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 373, no 1-3, p. 145-151Article in journal (Refereed)
    Abstract [en]

    The formation of thin wetting films on silica surface from aqueous solution of a) tetradecyltrimetilammonium bromide (C14TAB) and (b) surfactant mixture of the cationic C14TAB with the anionic sodium alkyl- (straight chain C12-, C14- and C16-) sulfonates, was studied using the microscopic thin wetting film method developed by Platikanov. Film lifetimes, three-phase contact (TPC) expansion rates, receding contact angles and surface tension were measured. It was found that the mixed surfactants caused lower contact angles, lower rates of the thin aqueous film rupture and longer film lifetimes, as compared to the pure C14TAB. This behavior was explained by the strong initial adsorption of interfacial complexes from the mixed surfactant system at the air/solution interface, followed by adsorption at the silica interface. The formation of the interfacial complexes at the air/solution interface was proved by means of the surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants controls the strength of the interfacial complex and causes synergistic lowering in the surface tension. The film rupture mechanism was explained by the heterocoagulation mechanism between the positively charged air/solution interface and the solution/silica interface, which remained negatively charged.

  • 86.
    Alexandrova, L.
    et al.
    Institute of Physical Chemistry, Bulgarian Academy of Sciences.
    Rao, K. Hanumantha
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Forssberg, Eric
    Grigorov, L.
    Department of Inorganic Chemistry, University of Sofia.
    Pugh, R.J.
    Three-phase-contact parameters measurements for silica-mixed cationic-anionic surfactant systems2009In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 348, no 1-3, p. 228-233Article in journal (Refereed)
    Abstract [en]

    The stability and interactions in thin wetting films between the silica surface and air bubble containing (a) straight chain C10 amine and (b) cationic/anionic surfactant mixture of a straight chain C10 amine with sodium C8, C10 and (straight chain) C12 sulfonates, were studied using the microscopic thin wetting film method developed by Platikanov [Platikanov D., J. Phys. Chem., 68 (1964) 3619]. Film lifetimes, three-phase contact (TPC) expansion rate, receding contact angles and surface tension were measured. The presence of the mixed cationic/anionic surfactants was found to lessen contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants hetero-coagulation could arise through the formation of positively charged interfacial complexes. Mixed solution of cationic and anionic surfactants shows synergistic lowering in surface tension. The formation of the interfacial complex at the air/solution interface was confirmed by surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants system controls the strength of the interfacial complex. The observed phenomena were discussed in terms of the electrostatic heterocoagulation theory, where the interactions can be attractive or repulsive depending on the different surface activity and charge of the respective surfactants at the two interfaces.

  • 87.
    Alexandrova, L.
    et al.
    Luleå University of Technology.
    Rao, K. Hanumantha
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Forssberg, Eric
    Pugh, R.J.
    Grigorov, L.
    University of Sofia.
    Thin film studies in mixed cationic-anionic surfactant system2003In: Proceedings of the XXII International Mineral Processing Congress / [ed] Leon Lorenzen, Marshalltown, South Africa: South African Institute of Mining and Metallurgy, 2003, p. 838-846Conference paper (Refereed)
  • 88.
    Alexis, Jonas
    et al.
    Swerea-Mefos.
    Jonsson, Lage
    KTH, Superseded Departments, Applied Process Metallurgy.
    Jönsson, Pär
    KTH, Superseded Departments, Applied Process Metallurgy.
    Heat and fluid-flow models for stirring conditionsin ladle furnaces and their practical implications in secondary refiningoperations1997In: Clean Steel 5, Vol 1,  2-4 June 1997, Balatonszeplak,Hungary, Balatonszeplak, 1997, p. 49-58Conference paper (Refereed)
  • 89.
    Alexis, Jonas
    et al.
    Swerea-Mefos.
    Jönsson, Pär
    KTH, Superseded Departments, Applied Process Metallurgy.
    Jonsson, Lage
    KTH, Superseded Departments, Applied Process Metallurgy.
    A model of an induction-stirred ladle accounting for slag and surface deformation1999In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 39, no 8, p. 772-778Article in journal (Refereed)
  • 90.
    Alexis, Jonas
    et al.
    Swerea-Mefos.
    Jönsson, Pär
    KTH, Superseded Departments, Metallurgy.
    Jonsson, Lage
    Heating and electromagnetic stirring in a ladle furnace – a simulationmodel2000In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 40, no 11, p. 1098-1104Article in journal (Refereed)
    Abstract [en]

    A three-dimensional simulation model coupling heating and induction stirring in an ASEA-SKF ladle furnace was developed. Data of the heat transfer from the area to the steel bath were predicted in a separate model and included as boundary conditions in a ladle model. The are model considers the contributions of heat transferred by of each of the following mechanisms: radiation, convection, condensation and energy transported by electrons. Predictions were made to simulate the change of temperature distribution in the ladle during simultaneous heating with electrodes and stirring by induction. A first attempt was made to compare the predictions with measured temperatures from a 100 t ASEA-SKF ladle. The agreement was found to be fairly good when heat-flux data for a 25 cm are length were used as input to the ladle model. This indicates that the model can be used for more in-depth studies of the effects of heating for ladles that are inductively stirred.

  • 91.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Linares Arregui, Irene
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Hazar, Selcuk
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Numerical analysis of plasticity effects on fatigue growth of a short crack in a bainitic high strength bearing steel2016In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 92, p. 36-51Article in journal (Refereed)
    Abstract [en]

    Plasticity effects on fatigue growth were simulated for a physically short crack. The material description comprised the Drucker-Prager yield surface, non-associated flow rule and non-linear combined hardening. The simulated development of the growth limiting parameter agreed with the experimental crack behaviour with early rapid propagation followed by a transition to slow R-controlled growth. The crack was open to the tip without any crack face closure throughout all load cycles. Instead compressive residual stresses developed at the unloaded tip which supplied an explanation to the slow rate of the propagated short crack in this bainitic high strength bearing steel. The material's strength differential effect was the key difference explaining why compressive residual stresses instead of crack face closure was responsible for the short crack effect in this material.

  • 92.
    Ali, Sharafat
    et al.
    Science and Technology Division, Corning Incorporated, Corning, NY, United States.
    Bogdanoff, Toni
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Seifeddine, Salem
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Jonson, Bo
    School of Engineering, Department of Built Environment and Energy Technology, Linnæus University, Växjö, Sweden.
    Hardness, elastic modulus and refractive index of oxynitride glasses prepared from woody biofuel ashes2017In: European Journal of Glass Science and Techology. Part B. Physics and Chemistry of Glasses, ISSN 1753-3562, Vol. 58, no 6, p. 231-236Article in journal (Refereed)
    Abstract [en]

    This paper reports the hardness, elastic modulus and refractive index values of the oxynitride glasses prepared from woody biofuel ashes. The glasses were prepared in nitrogen atmosphere at 1350-1500°C with addition of Ca metal as a precursor to the extra addition of this modifier. The glasses were homogenous, but appeared translucent grey to black. They contained up to 23 eq% of Ca and 5 eq% of N. The glass densities vary slightly between 2·76 to 2·92 g/cm3. The molar volume and compactness values vary between 8·01 cm3/mol to 8·31 cm3/mol and 0·446 to 0·462 respectively. Mechanical properties like hardness and reduced elastic modulus show values, up to 10 and 105 GPa, respectively. These properties are strongly correlated with the amount of N in the glass. The refractive index (1·54-1·75) increases with increasing N and Ca contents.

  • 93. Alirezaei, Mohammadamin
    et al.
    Doostmohammadi, Hamid
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Microstructure evolution in cast and equilibrium heat-treated CuZn30-(Si) alloys2016In: International Journal of Cast Metals Research, ISSN 1364-0461, E-ISSN 1743-1336, Vol. 29, no 4, p. 222-227Article in journal (Refereed)
    Abstract [en]

    The main object of this work was to investigate the effect of Si addition and heat treatment on the microstructure of CuZn30 alloy. The alloys were prepared by casting and then the chemical composition, microstructure and phases were determined by optical and scanning electron microscope and XRD analysis. The resulting microstructures contained two phases, alpha and beta', with volume fraction depending on silicon content. Increments of Si content led to the formation of a Widmanstatten structure. It was also found that the silicon dissolved completely in alpha + beta phases and the lattice parameters of both alpha- and beta'-phases increased as the Si content increased. Hardness tests showed that hardness of both the as-cast and heat-treated samples increased as the Si content increased, and a significant increment of hardness in heat-treated alloy was due to the formation of a martensite phase.

  • 94.
    Allertz, Carl
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sulfur and nitrogen in ladle slag2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present work deals with some aspects of slags related to secondary metallurgy in the steelmaking process. More specifically the focus is given to sulfur and nitrogen in ladle slags. Even though slags have been fairly well-researched in the past, the available data for these elements in typical ladle slag compositions is rather scarce. In some cases the available data is in discordance. There are also inconsistencies between the literature data and what is commonly observed in the industrial processes.

    Sulfide capacities were measured at steelmaking temperatures, 1823–1873 K, in ladle slags. The data was found to be in reasonable agreement with the industrial process norms. The sulfide capacity was found to increase with the basic oxides CaO and MgO; and decrease with the acidic components Al2O3 and SiO2. The sulfide capacity was also found to increase with temperature.

    The dependence of sulfide capacity on the oxygen partial pressure, for slags containing multivalent elements, was investigated experimentally at 1873 K with a slag containing vanadium oxide. A strong dependence of oxygen partial pressure was observed. The sulfide capacity increase by more than two orders of magnitude when the oxygen partial pressure was increased from 4.6×10-16 atm to 9.7×10-10 atm.

    The nitrogen solubility and the effect of carbon was investigated in typical ladle slags and the CaO–MgO–SiO2 system at 1873 K. Carbon increases the nitrogen solubility substantially. In the absence of carbon, the nitrogen solubility is extremely low. Low concentrations of cyanide was detected in the carbon saturated slag. This was much lower than the total nitrogen content and formation of cyanide cannot explain the large increase.

    The possibility of removing sulfur with oxidation from used ladle slag was investigated experimentally at 1373–1673 K. The sulfur removal of mostly solid slag was found to be a slow process, and would not suitable for industrial practice. At 1673 K the slag was mostly liquid and more than 85% of the sulfur was removed after 60 min of oxidation in pure oxygen atmosphere.

     

  • 95.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Du, Sichen
    Possibility of Sulfur Removal from Ladle Slag by Oxidation in the Temperature Range 1373-1673 K2015In: Journal of Sustainable Metallurgy, ISSN 2199-3823, Vol. 1, no 3, p. 229-239Article in journal (Refereed)
    Abstract [en]

    Experiments were conducted to investigate the possibility of removing sulfur from used ladle slag by oxidation. Slag samples (solid, two-phase mixture, and liquid with a small fraction of solid MgO particles) were subjected to an oxygen-rich atmosphere in the temperature range 1373–1673 K. The sulfur removal from the samples of solid and two-phase mixture was found to be a slow process due to the slow diffusion. The sulfur removal was found to have little dependence on temperature in the range 1373–1573 K. When the slag was mostly liquid (at 1673 K), the sulfur removal was significantly increased. More than 85 % of the sulfur could be removed after 60 min of oxidation in pure oxygen. An increase in oxygen partial pressure was found to increase the desulfurization slightly. Increasing the Al2O3 content in the slag decreased the degree of sulfur removal.

  • 96.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Du, Sichen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    The Effect of Oxygen Potential on the Sulfide Capacity for Slags Containing Multivalent SpeciesManuscript (preprint) (Other academic)
  • 97.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Kojola, Niklas
    Hui, Wang
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    A Study of Nitrogen Pickup from the Slag during Waiting Time of Ladle Treatment2014In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 85, no 4, p. 689-696Article in journal (Refereed)
    Abstract [en]

    An investigation of the nitrogen pickup of liquid steel from ladle slag after vacuum degassing was made. Nitride capacities, C-N, of a number of ladle slags were determined at controlled nitrogen and oxygen potentials at 1873K. The nitride capacities in the composition range studied were found to be very low. In accordance with the literature, the nitride capacity was found to increase with increasing SiO2 content. Industrial trials were performed. The nitrogen content of the steel was determined before and after vacuum degassing as well as after the waiting period. Three different trends of the variation of nitrogen content in the steel were observed. Both the laboratory study and the industrial trials revealed that the transfer of nitrogen from slag to steel was not the reason for nitrogen pickup in the steel subsequent to vacuum degassing.

  • 98.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Li, Fan
    White, Jesse F.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Effect of carbon on the solubility of nitrogen in slag2015In: International Journal of Materials Research - Zeitschrift für Metallkunde, ISSN 1862-5282, E-ISSN 2195-8556, Vol. 106, no 8, p. 822-830Article in journal (Refereed)
    Abstract [en]

    The effect of carbon on nitrogen solubility in slag was investigated for the ternary CaO-MgO-SiO2 and the quaternary Al2O3-CaO-MgO-SiO2 slag systems at 1 873 K under controlled oxygen and nitrogen potentials. Gas-slag equilibration experiments were conducted using molybdenum and graphite crucibles. In the absence of carbon, the nitrogen solubility was very low. The presence of carbon greatly increased the nitrogen solubility in slag. The total nitrogen content was found to increase with SiO2 and MgO concentration for the carbon saturated slags. Low levels of cyanide were found by wet chemistry with considerable uncertainty. The results analyzed by different methods ruled out cyanide formation being the main reason for the large increase in nitrogen solubility in the presence of pure carbon.

  • 99.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sulfide Capacity in Ladle Slag at Steelmaking Temperatures2015In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 46, no 6, p. 2609-2615Article in journal (Refereed)
    Abstract [en]

    Sulfide capacity measurements were conducted at 1823 K and 1873 K (1550 degrees C and 1600 degrees C) for the quaternary Al2O3-CaO-MgO-SiO2 system, for typical compositions used in the ladle in steelmaking. A copper-slag equilibrium was used under controlled oxygen and sulfur potentials. The sulfide capacity is strongly dependent on the composition and it was found to increase with the basic oxides, while it decreases with increase of the acidic components. It was found that CaO is more effective in holding sulfur in the slag compared to MgO when replacing SiO2. For the present slag compositions, Al2O3 and SiO2 behaved similar with respect to sulfur, and no considerable effect could be recorded when replacing one for the other. The sulfide capacity was also found to be strongly dependent on the temperature, increasing with temperature. The present results were compared with industrial data from the ladle, after vacuum treatment, and they were in good agreement.

  • 100.
    Almaari, Firas
    et al.
    Linnaeus University, Faculty of Technology, Department of Building Technology.
    Aljbban, Essam
    Linnaeus University, Faculty of Technology, Department of Building Technology.
    Strain Rate Effect on Fracture Mechanical Properties of Ferritic-Pearlitic Ductile Iron.2018Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    This study investigates the effect of strain rate on fracture properties of Ferritic-Pearlitic Ductile Iron.

    A series of dynamic three point bending tests, with various load application rates, are conducted on Charpy V-notch specimens, in room temperature and approximately -18 °C.

    The tests are performed in a custom-made fixture and during the tests, force and displacement data are recorded. A XFEM (Extended Finite Element Method) model of the test setup has been established and material data from the tests are used as input to the model.

    The test results show a strong dependency of the strain rate regarding the force needed for crack initiation. Moreover, it can be concluded that low temperature makes the material very brittle, even at low load application rates.

1234567 51 - 100 of 3710
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf