Change search
Refine search result
1234567 51 - 100 of 3673
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Changing to Teaching and Learning in English2016Conference paper (Other academic)
    Abstract [en]

    Abstract

    In this presentation I give some of the background to my work in Language choice in higher education and present research on learning in English, teaching in English and disciplinary differences in the attitudes to English language use. The presentation ends with a summary of factors involved in language choice in order to facilitate a discussion amongst faculty about language choice in training courses for university staff.

  • 52.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Linneaus University.
    Changing to Teaching and Learning in English2015Conference paper (Other academic)
  • 53.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm University, Sweden.
    Disciplinary Affordance vs Pedagogical Affordance: Teaching the Multimodal Discourse of University Science2017Conference paper (Other academic)
    Abstract [en]

    Disciplinary Affordance vs Pedagogical Affordance: Teaching the

    Multimodal Discourse of University Science

    The natural sciences have been extremely successful in modeling some specific aspects

    of the world around us. This success is in no small part due to the creation of generally

    accepted, paradigmatic ways of representing the world through a range of semiotic

    resources. The discourse of science is of necessity multimodal (see for example Lemke,

    1998) and it is therefore important for undergraduate science students to learn to

    master this multimodal discourse (Airey & Linder, 2009). In this paper, I approach the

    teaching of multimodal science discourse via the concept of affordance.

    Since its introduction by Gibson (1979) the concept of affordance has been debated by a

    number of researchers. Most famous, perhaps is the disagreement between Gibson and

    Norman (1988) about whether affordances are inherent properties of objects or are

    only present when perceived by an organism. More recently, affordance has been

    drawn on in the educational arena, particularly with respect to multimodality (see

    Fredlund, 2015 for a recent example). Here, Kress et al (2001) have claimed that

    different modes have different specialized affordances.

    In the presentation the interrelated concepts of disciplinary affordance and pedagogical

    affordance will be presented. Both concepts make a radical break with the views of both

    Gibson and Norman in that rather than focusing on the perception of an individual, they

    refer to the disciplinary community as a whole. Disciplinary affordance is "the agreed

    meaning making functions that a semiotic resource fulfills for a disciplinary community".

    Similarly, pedagogical affordance is "the aptness of a semiotic resource for the teaching

    and learning of some particular educational content" (Airey, 2015). As such, in a

    teaching situation the question of whether these affordances are inherent or perceived

    becomes moot. Rather, the issue is the process through which students come to use

    semiotic resources in a way that is accepted within the discipline. In this characterization

    then, learning can be framed in terms of coming to perceive and leverage the

    disciplinary affordances of semiotic resources.

    In this paper, I will discuss: the disciplinary affordances of individual semiotic resources,

    how these affordances can be made “visible” to students and how the disciplinary

    affordances of semiotic resources are ultimately leveraged and coordinated in order to

    make science meanings.

    References:

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis   Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2011b). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education.   Across the disciplines, 8(3), unpaginated.  Retrieved from http://wac.colostate.edu/atd/clil/airey.cfm

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman, & R. Säljö (Eds.), Scientific literacy – teori och praktik (pp. 41-58): Gleerups.

    Airey, J. (2014) Representations in Undergraduate Physics. Docent lecture, Ångström Laboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. (2016). Undergraduate Teaching with Multiple Semiotic Resources: Disciplinary Affordance vs Pedagogical Affordance.   Paper presented at 8icom. University of Cape Town, Cape Town.

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark.

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance "The 5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J. & Linder, C. (2017) Social Semiotics in University Physics Education: Multiple Representations in Physics Education   Springer. pp 85-122

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182.

    Fredlund 2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. Acta Universitatis Upsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics.

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics. European Journal of Physics. 36 055002.

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies 2015 4:3 , 302-316.

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception (pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

    Hodge, R. & Kress, G. (1988). Social Semiotics. Cambridge: Polity Press.

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18(3), 242-252. doi:10.1080/10288457.2014.953294

    Lo, M. L. (2012). Variation theory and the improvement of teaching and learning (Vol. 323). Gothenburg: Göteborgs Universitet.

    Marton, F. (2015). Necessary conditions of learning. New York: Routledge.

    Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

    Thibault, P. (1991). Social semiotics as praxis. Minneapolis: University of Minnesota Press.

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge.

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

  • 54.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Disciplinary Affordance vs Pedagogical Affordance: Teaching the Multimodal Discourse of University Science2017Conference paper (Other academic)
    Abstract [en]

    The natural sciences have been extremely successful in modeling some specific aspects of the world around us. This success is in no small part due to the creation of generally accepted, paradigmatic ways of representing the world through a range of semiotic resources. The discourse of science is of necessity multimodal (see for example Lemke, 1998) and it is therefore important for undergraduate science students to learn to master this multimodal discourse (Airey & Linder, 2009). In this paper, I approach the teaching of multimodal science discourse via the concept of affordance. Since its introduction by Gibson (1979) the concept of affordance has been debated by a number of researchers. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Fredlund, 2015 for a recent example). Here, Kress et al (2001) have claimed that different modes have different specialized affordances. In the presentation the interrelated concepts of disciplinary affordance and pedagogical affordance will be presented. Both concepts make a radical break with the views of both Gibson and Norman in that rather than focusing on the perception of an individual, they refer to the disciplinary community as a whole. Disciplinary affordance is "the agreed meaning making functions that a semiotic resource fulfills for a disciplinary community". Similarly, pedagogical affordance is "the aptness of a semiotic resource for the teaching and learning of some particular educational content" (Airey, 2015). As such, in a teaching situation the question of whether these affordances are inherent or perceived becomes moot. Rather, the issue is the process through which students come to use semiotic resources in a way that is accepted within the discipline. In this characterization then, learning can be framed in terms of coming to perceive and leverage the disciplinary affordances of semiotic resources. In this paper, I will discuss: the disciplinary affordances of individual semiotic resources, how these affordances can be made “visible” to students and how the disciplinary affordances of semiotic resources are ultimately leveraged and coordinated in order to make science meanings.

  • 55.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Disciplinary literacy2013In: Scientific literacy: teori och praktik / [ed] E. Lundqvist, R. Säljö & L. Östman, Malmö, Sweden: Gleerups Utbildning AB, 2013, p. 41-58Chapter in book (Refereed)
    Abstract [sv]

    I detta kapitel läggs fram ett nytt begrepp, disciplinary literacy, som ett alternativ till scientific literacy. För varje ämne, disciplinary literacy inriktar sig mot kommunikativa praktiker inom tre miljöer: akademin, arbetsplatsen och samhället och definieras som förmågan att delta i dessa ämnesrelaterade kommunikativa praktiker på ett lämpligt sätt. Frågeställningen för kapitlet är om det kan vara givande att betrakta främjandet av studenters disciplinary literacy som ett av de huvudsakliga målen med universitetsstudier. Tillämpningen av begreppet illustreras genom material hämtat från ett forskningsprojekt där högskolelärare i fysik från Sverige och Sydafrika diskuterar de lärandemål de har för sina studenter.

  • 56.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    EMI, CLIL, EAP: What’s the difference?2018Conference paper (Other academic)
    Abstract [en]

    In this presentation I will examine the differences between the terms EMI (English Medium Instruction, CLIL (Content and Language Integrated Learning and EAP (English for Academic Purposes). I will also discuss what it means to become disciplinary literate in a first, second and third language.

  • 57.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    EMI, CLIL, EAP:What’s the difference?2018Conference paper (Other academic)
    Abstract [en]

    EMI, CLIL, EAP: What’s the difference?

    Abstract

    In this presentation I will examine the differences between the terms EMI (English Medium Instruction, CLIL (Content and Language Integrated Learning and EAP (English for Academic Purposes). I will also discuss what it means to become disciplinary literate in a first, second and third language.

    References

    Airey, J. (2009). Estimating bilingual scientific literacy in Sweden. International Journal of Content and Language Integrated   Learning, 1(2), 26-35. 

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. ActaUniversitatis  Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2010). Närundervisningsspråketändrastill engelska[When the teaching language changes to English] Omundervisning  påengelska(pp. 57-64). Stockholm: HögskoleverketRapport 2010:15R

    Airey, J. (2010a). The ability of students to explain science concepts in two languages. Hermes - Journal of Language and   Communication Studies, 45, 35-49. 

    Airey, J. (2011a). Talking about Teaching in English. Swedish university lecturers' experiences of changing their teaching language.   Ibérica, 22(Fall), 35-54. 

    Airey, J. (2011b). Initiating Collaboration in Higher Education: Disciplinary Literacy and the Scholarship of Teaching and Learning   Dynamic content and language collaboration in higher education: theory, research, and reflections(pp. 57-65). Cape Town,   South Africa: Cape Peninsula University of Technology.

    Airey, J. (2011c). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education.   Across the disciplines, 8(3), unpaginated. Retrieved from http://wac.colostate.edu/atd/clil/airey.cfm

    Airey, J. (2011d). The relationship between teaching language and student learning in Swedish university physics. In B. Preisler, I.   Klitgård, & A.  Fabricius(Eds.), Language and learning in the international university: From English uniformity to diversity   and hybridity(pp. 3-18). Bristol, UK: Multilingual Matters.

    Airey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden. AILA Review, 25(2012), 64–79. Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman, & R. Säljö(Eds.), Scientific literacy – teori och praktik (pp. 41-58): Gleerups. 

    Airey, J. (2015). From stimulated recall to disciplinary literacy: Summarizing ten years of research into teaching and learning in   English. In SlobodankaDimova, Anna Kristina Hultgren, & Christian Jensen (Eds.), English-Medium Instruction in European   Higher Education. English in Europe, Volume 3(pp. 157-176): De GruyterMouton.

    Airey, J. (2016). Content and Language Integrated Learning (CLIL) and English for Academic Purposes (EAP). In Hyland, K. &   Shaw, P. (Eds.), RoutledgeHandbook of English for Academic Purposes. (pp. 71-83) London: Routledge.

    Airey, J. (2017). CLIL: Combining Language and Content. ESP Today, 5(2), 297-302. 

    Airey, J., & Larsson, J. (2018). Developing Students’ Disciplinary Literacy? The Case of University Physics. In K.-S. Tang & K.   Danielsson(Eds.), Global Developments in Literacy Research for Science Education: Springer.

    Airey, J., Lauridsen, K., Raisanen, A., Salö, L., & Schwach, V. (2017). The Expansion of English-medium Instruction in the Nordic   Countries. Can Top-down University Language Policies Encourage Bottom-up Disciplinary Literacy Goals? Higher Education.   doi:10.1007/s10734-015-9950-2

    Duff, P.A. (1997). Immersion in Hungary: an ELF experiment. In R. K. Johnson & M. Swain (Eds.), Immersion education:   International perspectives(pp. 19-43). Cambridge, UK: CUP.

    European Commission. (2003). Promoting Language Learning and Linguistic Diversity: An Action Plan 2004 – 2006.   http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2003:0449:FIN:EN:PDF

    Kuteeva, M., & Airey, J. (2014). Disciplinary Differences in the Use of English in Higher Education: Reflections on Recent Policy   Developments  Higher Education, 67(5), 533-549. doi:10.1007/s10734-013-9660-6

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational   Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science   and Technology Education, 18(3), 242-252. doi:10.1080/10288457.2014.953294

    Marsh, Herbert. W., Hau, Kit-Tai., & Kong, Chit-Kwong. (2000). Late immersion and language of instruction (English vs. Chinese) in   Hong Kong high schools: Achievement growth in language and non-language subjects. Harvard Educational Review, 70(3),   302-346. 

    Met, M., & Lorenz, E. B. (1997). Lessons from U.S. immersion programs: Two decades of experience. In R. K. Johnson & M. Swain   (Eds.),Immersion education: International perspectives(pp. 243-264). Cambridge, UK: CUP.

    Thøgersen, J., & Airey, J. (2011). Lecturing undergraduate science in Danish and in English: A comparison of speaking rate and   rhetorical style. English for Specific Purposes, 30(3), 209-221.

  • 58.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Language and Engineering: Towards Bilingual Scientific Literacy2008In: Paper presented at the Engineering Education Development Conference, Royal Institute of Technology, Stockholm, Sweden, 26-27 November., 2008Conference paper (Other academic)
  • 59.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm University.
    Learning and Sharing Disciplinary Knowledge: The Role of Representations2017Conference paper (Other academic)
    Abstract [en]

    Learning and Sharing Disciplinary Knowledge: The Role of Representations.

    Abstract

    In recent years there has been a large amount of interest in the roles that different representations (graphs, algebra, diagrams, sketches, physical models, gesture, etc.) play in student learning. In the literature two distinct but interrelated ways of thinking about such representations can be identified. The first tradition draws on the principles of constructivism emphasizing that students need to build knowledge for themselves. Here students are encouraged to create their own representations by working with materials of various kinds and it is in this hands-on representational process that students come to develop their understanding.

    The second tradition holds that there are a number of paradigmatic ways of representing disciplinary knowledge that have been created and refined over time. These paradigmatic disciplinary representations need to be mastered in order for students to be able to both understand and effectively communicate knowledge within a given discipline.

    In this session I would like to open up a discussion about how these two ways of viewing representations might be brought together. To do this I will first present some of the theoretical and empirical work we have been doing in Sweden over the last fifteen years. In particular there are three concepts that I would like to introduce for our discussion: critical constellations of representations, the disciplinary affordance of representations and the pedagogical affordance of representations.

    References 

    Airey, J. (2006). Physics Students' Experiences of the Disciplinary Discourse Encountered in Lectures in English and Swedish.   Licentiate Thesis. Uppsala, Sweden: Department of Physics, Uppsala University.,

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis   Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2014) Representations in Undergraduate Physics. Docent lecture, Ångström Laboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics In: SACF   Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher   Education (STINT) , 2015 (pp. 103). urn:nbn:se:uu:diva-266049.

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (2017) Social Semiotics in Physics Education : Multiple Representations in Physics Education   Springer

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark.

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance"The 5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Eriksson, U. (2015) Reading the Sky: From Starspots to Spotting Stars Uppsala: Acta Universitatis Upsaliensis.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182.

    Fredlund 2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. Acta Universitatis Upsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics.

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics. European Journal of Physics. 36 055002.

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies 2015 4:3 , 302-316

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception (pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

    Linder, C. (2013). Disciplinary discourse, representation, and appresentation in the teaching and learning of science. European   Journal of Science and Mathematics Education, 1(2), 43-49.

    National Research Council. (2012). Discipline Based Education Research. Understanding and Improving Learning in Undergraduate Science and Engineering. Washington DC: The National Academies Press.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge.

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

     

     

  • 60.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Learning and Sharing Disciplinary Knowledge: The Role of Representations2017Conference paper (Other academic)
    Abstract [en]

    In recent years there has been a large amount of interest in the roles that different representations (graphs, algebra, diagrams, sketches, physical models, gesture, etc.) play in student learning. In the literature two distinct but interrelated ways of thinking about such representations can be identified. The first tradition draws on the principles of constructivism emphasizing that students need to build knowledge for themselves. Here students are encouraged to create their own representations by working with materials of various kinds and it is in this hands-on representational process that students come to develop their understanding.

    The second tradition holds that there are a number of paradigmatic ways of representing disciplinary knowledge that have been created and refined over time. These paradigmatic disciplinary representations need to be mastered in order for students to be able to both understand and effectively communicate knowledge within a given discipline.

    In this session I would like to open up a discussion about how these two ways of viewing representations might be brought together. To do this I will first present some of the theoretical and empirical work we have been doing in Sweden over the last fifteen years. In particular there are three concepts that I would like to introduce for our discussion: critical constellations of representations, the disciplinary affordance of representations and the pedagogical affordance of representations.

  • 61.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics. Physics Education Research.
    När undervisningsspråket blir engelska2006In: Språkvård, ISSN 0038-8440, no 4, p. 20-25Article in journal (Other academic)
    Abstract [sv]

    Engelska blir vanligare och vanligare som undervisningsspråk i högre utbildning. Vad händer med ämnesinlärningen när undervisningsspråket blir engelska? John Airey har undersökt svenska fysikstudenter. Det behövs många goda råd för att undervisningen ska fungera.

  • 62.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics.
    Physics Students' Experiences of the Disciplinary Discourse Encountered in Lectures in English and Swedish2006Licentiate thesis, monograph (Other scientific)
  • 63.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Representations in Undergraduate Physics2014Other (Other academic)
    Abstract [en]

    Representations in undergraduate physics

    Problem solving is one of the most important parts of undergraduate physics education, yet a huge body of international research has clearly shown that simply being able to solve a set of physics problems correctly is not a good indicator of students having attained appropriate physics understanding. Grounded in a comparison of the way experts and novices solve problems, the research focus has gradually shifted towards the importance of representational competence in solving physics problems.Physicists use a wide range of representations to communicate physics knowledge (e.g. mathematics,  graphs, diagrams, and spoken and written language, etc.). Many of these representations are highly specialized and have been developed and refined into their present form over time. It is the appropriate coordination of these different representations that allows complex physics meanings to be made and shared. Experienced physicists naturally maintain coherence as they move from one representation to the next in order to solve a physics problem. For students, however, learning to appropriately use physics representations in this way is a challenging task. This lecture addresses the critical role that representations play in undergraduate physics education. The research that has been carried out in this area will be summarized and a number of theoretical constructs that have been developed in the Division of Physics Education Research will be presented and illustrated using empirical data. The consequences of this research work for the teaching and learning of undergraduate physics will be discussed.

  • 64.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Research on physics teaching and learning, physics teacher education, and physics culture at Uppsala University2017Conference paper (Other academic)
    Abstract [en]

    This project compares the affordances and constraints for physics teachers’ professional identity building across four countries. The results of the study will be related to the potential consequences of this identity building for pupils’ science performance in school. The training of future physics teachers typically occurs across three environments, the physics department, the education department and school (during teaching practice). As they move through these three environments, trainees are in the process of building their professional identity. However, what is signalled as valuable for a future physics teacher differs considerably in different parts of the education. In educational research, professional identity has been used in a variety of ways (See for example overviews of the concept in Beauchamp & Thomas, 2009; and Beijaard, Meijer, & Verloop, 2004). In this project we draw on the work of Sfard and Pruzak (2005) who have defined identity as an analytical category for use in educational research. The project leverages this concept of identity as an analytical tool to understand how the value-systems present in teacher training environments and society as a whole potentially affect the future practice of trainee physics teachers. For identities to be recognized as professional they must fit into accepted discourses. Thus the project endeavours to identify discourse models that tacitly steer the professional identity formation of future physics teachers. Interviews will be carried out with trainee physics teachers and the various training staff that they meet during their education (physics lecturers, education lecturers, school mentors). It has been suggested that the perceived status of the teaching profession in society has a major bearing on the type of professional identity teachers can enact. Thus, in this project research interviews will be carried out in parallel across four countries with varying teacher status and PISA science scores: Sweden, Finland, Singapore and England. These interviews will be analysed following the design developed in a pilot study that has already carried out by the project group in Sweden. The research questions for the project are as follows: In four countries where the societal status of the teaching profession differs widely: What discourse models are enacted in the educational environments trainee physics teachers meet? What are the potential affordances and constraints of these discourse models for the constitution of physics teacher professional identities? In what ways do perceptions of the status assigned by society to the teaching profession potentially affect this professional identity building? What are the potential consequences of the answers to the above questions for the view of science communicated to pupils in school? In an extensive Swedish pilot study, four potentially competing discourse models were identified: these are: the critically reflective teacher, the practically well-equipped teacher, the syllabus implementer and the physics expert. Of these, the physics expert discourse model was found to dominate in both the physics department and amongst mentors in schools. In the physics expert discourse model the values of the discipline of physics dominate. Thus, the overarching goal of physics teaching is to create future physicists. In this model, the latest research in physics is seen as interesting and motivating, whereas secondary school subject matter is viewed as inherently unsophisticated and boring—something that needs to be made interesting. The model co-exists with the three other discourse models, which were more likely to be enacted in the education department. These other models value quite different goals such as the development of practical skills, reflective practice, critical thinking and citizenship. We claim that knowledge of the different discourse models at work in four countries with quite different outcomes on PISA science will useful in a number of ways. For teacher trainers, a better understanding of these models would allow informed decisions to be taken about the coordination of teacher education. For prospective teachers, knowledge of the discourse models at work during their education empowers them to question the kind of teacher they want to become.

  • 65.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Research on physics teaching and learning, physics teacher education, and physics culture at Uppsala University2017Conference paper (Other academic)
    Abstract [en]

    This project compares the affordances and constraints for physics teachers’ professional identity building across four countries. The results of the study will be related to the potential consequences of this identity building for pupils’ science performance in school. The training of future physics teachers typically occurs across three environments, the physics department, the education department and school (during teaching practice). As they move through these three environments, trainees are in the process of building their professional identity. However, what is signalled as valuable for a future physics teacher differs considerably in different parts of the education. In educational research, professional identity has been used in a variety of ways (See for example overviews of the concept in Beauchamp & Thomas, 2009; and Beijaard, Meijer, & Verloop, 2004). In this project we draw on the work of Sfard and Pruzak (2005) who have defined identity as an analytical category for use in educational research. The project leverages this concept of identity as an analytical tool to understand how the value-systems present in teacher training environments and society as a whole potentially affect the future practice of trainee physics teachers. For identities to be recognized as professional they must fit into accepted discourses. Thus the project endeavours to identify discourse models that tacitly steer the professional identity formation of future physics teachers. Interviews will be carried out with trainee physics teachers and the various training staff that they meet during their education (physics lecturers, education lecturers, school mentors). It has been suggested that the perceived status of the teaching profession in society has a major bearing on the type of professional identity teachers can enact. Thus, in this project research interviews will be carried out in parallel across four countries with varying teacher status and PISA science scores: Sweden, Finland, Singapore and England. These interviews will be analysed following the design developed in a pilot study that has already carried out by the project group in Sweden. The research questions for the project are as follows: In four countries where the societal status of the teaching profession differs widely: What discourse models are enacted in the educational environments trainee physics teachers meet? What are the potential affordances and constraints of these discourse models for the constitution of physics teacher professional identities? In what ways do perceptions of the status assigned by society to the teaching profession potentially affect this professional identity building? What are the potential consequences of the answers to the above questions for the view of science communicated to pupils in school? In an extensive Swedish pilot study, four potentially competing discourse models were identified: these are: the critically reflective teacher, the practically well-equipped teacher, the syllabus implementer and the physics expert. Of these, the physics expert discourse model was found to dominate in both the physics department and amongst mentors in schools. In the physics expert discourse model the values of the discipline of physics dominate. Thus, the overarching goal of physics teaching is to create future physicists. In this model, the latest research in physics is seen as interesting and motivating, whereas secondary school subject matter is viewed as inherently unsophisticated and boring—something that needs to be made interesting. The model co-exists with the three other discourse models, which were more likely to be enacted in the education department. These other models value quite different goals such as the development of practical skills, reflective practice, critical thinking and citizenship. We claim that knowledge of the different discourse models at work in four countries with quite different outcomes on PISA science will useful in a number of ways. For teacher trainers, a better understanding of these models would allow informed decisions to be taken about the coordination of teacher education. For prospective teachers, knowledge of the discourse models at work during their education empowers them to question the kind of teacher they want to become.

  • 66.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm University.
    Semiotic Resources and Disciplinary Literacy2017Conference paper (Other academic)
    Abstract [en]

    Semiotic Resources and Disciplinary Literacy

    Project leader: John Airey, Reader in Physics Education Research, Uppsala University

    Type of funding: Four-year position as Research Assistant

    Contact details: john.airey@physics.uu.se

     

    Abstract

    In this research project we focused on the different semiotic resources used in physics (e.g. graphs, diagrams, language, mathematics, apparatus, etc.). We were interested in the ways in which undergraduate physics students learn to combine the different resources used in physics in order to become “disciplinary literate” and what university lecturers do to help their students in this process. Comparative data on the disciplinary literacy goals of physics lecturers for their students was collected at five universities in South Africa and four universities in Sweden.

    One of the main contributions of the project concerned what we termed the disciplinary affordance of a semiotic resource, that is, the specific meaning-making functions a particular resource plays for the discipline. We contrasted these meaning-making functions with the way that students initially viewed the same resource.

    We proposed two ways that lecturers can direct their students’ attention towards the disciplinary affordances of a given resource. The first involves unpacking the disciplinary affordance in order to create a new resource with higher pedagogical affordance. Our second proposal involved the use of systematic variation in order to help students notice the disciplinary relevant aspects of a given resource. A total of 19 articles/book chapters were published as a direct result of this funding.

    Selected publications

    Airey, J., & Linder, C. (2017). Social Semiotics in University Physics Education. In D. F. Treagust, R. Duit, & H. H. Fischer (Eds.), Multiple Representations in Physics Education (pp. 95-122). Cham, Switzerland: Springer.

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman & R. Säljö (Eds.), Scientific literacy – teori och praktik (pp. 41-58). Lund: Gleerups.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the Anatomy of Disciplinary Discernment An example for Astronomy. European Journal of Science and Mathematics Education, 2(3), 167-182. 

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education 98(3), 412-442.

    Fredlund, T., Airey, J., & Linder, C. (2015). Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations. European Journal of Physics. 36, (5), 055001.

    Fredlund, T., Linder, C., & Airey, J. (2015). A social semiotic approach to identifying critical aspects. International Journal for Lesson and Learning Studies. 4 (3), 302-316

    Fredlund, T., Linder, C. Airey, J., & Linder, A.  (2014) Unpacking physics representations: Towards an appreciation of disciplinary affordance. Physical Review: Special Topics Physics Education Research 10, 020129

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18, (3), 242-252.  

     

  • 67.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Semiotic Resources and Disciplinary Literacy2017Conference paper (Other academic)
    Abstract [en]

    In this research project we focused on the different semiotic resources used in physics (e.g. graphs, diagrams, language, mathematics, apparatus, etc.). We were interested in the ways in which undergraduate physics students learn to combine the different resources used in physics in order to become “disciplinary literate” and what university lecturers do to help their students in this process. Comparative data on the disciplinary literacy goals of physics lecturers for their students was collected at five universities in South Africa and four universities in Sweden.

    One of the main contributions of the project concerned what we termed the disciplinary affordance of a semiotic resource, that is, the specific meaning-making functions a particular resource plays for the discipline. We contrasted these meaning-making functions with the way that students initially viewed the same resource.

    We proposed two ways that lecturers can direct their students’ attention towards the disciplinary affordances of a given resource. The first involves unpacking the disciplinary affordance in order to create a new resource with higher pedagogical affordance. Our second proposal involved the use of systematic variation in order to help students notice the disciplinary relevant aspects of a given resource. A total of 19 articles/book chapters were published as a direct result of this funding.

  • 68.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics2015In: SACF Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher Education (STINT) , 2015, p. 103-Conference paper (Other academic)
    Abstract [en]

    Social semiotics is a broad construct where all communication in a particular social group is viewed as being realized by the use of semiotic resources. In social semiotics the particular meaning assigned to these semiotic resources is negotiated within the group itself and has often developed over an extended period of time. In the discipline of physics, examples of such semiotic resources are; graphs, diagrams, mathematics, language, etc. 

    In this presentation, social semiotics is used to build theory with respect to the construction and sharing of disciplinary knowledge in the teaching and learning of university physics. Based on empirical studies of physics students, a number of theoretical constructs have been developed in our research group. These constructs are: disciplinary affordance, disciplinary discourse, discursive fluency, discourse imitation and critical constellations. I will present these constructs and examine their usefulness for problematizing teaching and learning with multiple representations in higher education.

  • 69.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Teaching in English: The effects of language choice on student learning in Swedish university science2008In: Paper presented at the International Research Conference on Language Planning and Language Policy, Saltsjöbaden, Stockholm, 9-10 June., 2008Conference paper (Refereed)
  • 70.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    The ability of students to explain science concepts in two languages2010In: Hermes - Journal of Language and Communication Studies, ISSN 0904-1699, E-ISSN 1903-1785, Vol. 45, p. 35-49Article in journal (Refereed)
  • 71.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    The Concept of Affordance in the Teaching and Learning of Undergraduate Science2018Conference paper (Refereed)
    Abstract [en]

    The Concept of Affordance in Teaching and Learning Undergraduate Science 

     

    John Airey 

    Physics Education Research Group

    Department of Physics and Astronomy

    Uppsala University

    Sweden

     

    And   

     

    Department of Mathematics and Science Education

    Stockholm University

    Sweden

    Since its introduction by Gibson (1979)the concept of affordance has been debated by a number of researchers. Most famous, perhaps is the disagreement between Gibson and Norman(1988)about whether affordances are inherent properties of objects or are only present when perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Fredlund, 2015 for a recent example). 

    In the presentation the interrelated concepts of disciplinary affordance and pedagogical affordance will be presented. Both concepts make a radical break with the views of both Gibson and Norman in that rather than focusing on the perception of an individual, they refer to the disciplinary community as a whole. Disciplinary affordance is "the agreed meaning making functions that a semiotic resource fulfills for a disciplinary community". Similarly, pedagogical affordance is "the aptness of a semiotic resource for the teaching and learning of some particular educational content" (Airey, 2015). As such, in a teaching situation the question of whether these affordances are inherent or perceived becomes moot. Rather, the issue is the process through which students come to use semiotic resources in a way that is accepted within the discipline. In this characterization then, learning can be framed in terms of coming to perceive and leverage the disciplinary affordances of semiotic resources. 

    References

    Airey, J. (2006). Physics Students' Experiences of the Disciplinary Discourse Encountered in Lectures in English and Swedish.   Licentiate Thesis. Uppsala, Sweden: Department of Physics, Uppsala University., 

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. ActaUniversitatis  Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2014) resresentationsin Undergraduate Physics. Docent lecture,ÅngströmLaboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics In: SACF   Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher   Education (STINT) , 2015 (pp. 103). urn:nbn:se:uu:diva-266049. 

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (2017) Social Semiotics in Physics Education : Multiple Representations in Physics Education   Springer 

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark. 

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance"The5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Eriksson, U. (2015) Reading the Sky: From Starspotsto Spotting Stars Uppsala:ActaUniversitatisUpsaliensis.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442. 

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182. 

    Fredlund 2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. Acta Universitatis Upsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics. 

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics.European Journal of Physics. 36055002. 

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies2015 4:3 , 302-316 

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception(pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

    Linder, C. (2013). Disciplinary discourse, representation, and appresentationin the teaching and learning of science. European  Journal of Science and Mathematics Education, 1(2), 43-49.

    Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge. 

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

  • 72.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    The Concept of Affordance in the Teaching and Learning of Undergraduate Science2018Conference paper (Other academic)
    Abstract [en]

    Since its introduction by Gibson (1979) the concept of affordance has been debated by a number of researchers. Most famous, perhaps is the disagreement between Gibson and Norman(1988) about whether affordances are inherent properties of objects or are only present when perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Fredlund, 2015 for a recent example). 

    In the presentation the interrelated concepts of disciplinary affordance and pedagogical affordance will be presented. Both concepts make a radical break with the views of both Gibson and Norman in that rather than focusing on the perception of an individual, they refer to the disciplinary community as a whole. Disciplinary affordance is "the agreed meaning making functions that a semiotic resource fulfills for a disciplinary community". Similarly, pedagogical affordance is "the aptness of a semiotic resource for the teaching and learning of some particular educational content" (Airey, 2015). As such, in a teaching situation the question of whether these affordances are inherent or perceived becomes moot. Rather, the issue is the process through which students come to use semiotic resources in a way that is accepted within the discipline. In this characterization then, learning can be framed in terms of coming to perceive and leverage the disciplinary affordances of semiotic resources. 

  • 73.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    The relationship between teaching language and student learning in Swedish university physics2011In: Language and learning in the international university: From English uniformity to diversity and hybridity / [ed] B. Preisler, I. Klitgård & A. Fabricius, Bristol: Multilingual Matters, 2011, p. 3-18Chapter in book (Refereed)
  • 74.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Undergraduate Teaching and Learning in English2016Conference paper (Other academic)
    Abstract [en]

    In this presentation I discuss the use of English in the teaching and learning of undergraduate physics. Research is presented on what happens when students change to learning in English and what happens when university lecturers change to teaching in English. The presentation concludes by suggesting that the use of English in any given course or programme should be pedagogically motvated and that this should be set out in the learning outcomes of the syllabus. This suggests that physics courses taught in the meduim of English should have language learning outcomes. This in turn suggests that these outcomes should be both taught and tested as part of the course.

  • 75.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. School of Languages and Literature Linnæus University, Sweden.
    Undergraduate Teaching with Multiple Semiotic Resources: Disciplinary Affordance vs Pedagogical Affordance2016Conference paper (Refereed)
    Abstract [en]

    Since its introduction by Gibson (1979) the concept of affordance has been discussed at length by a number of researchers. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Fredlund et al 2015 for a recent example). Here, Kress et al (2001) have claimed that different modes have different specialized affordances. In this paper the interrelated concepts of disciplinary affordance and pedagogical affordance are discussed. Both concepts make a radical break with the views of both Gibson and Norman in that rather than focusing on the perception of an individual, they refer to the disciplinary community as a whole. Disciplinary affordance is "the agreed meaning making functions that a semiotic resource fulfils for a disciplinary community". Similarly, pedagogical affordance is "the aptness of a semiotic resource for the teaching and learning of some particular educational content" (Airey 2015). As such, the question of whether these affordances are inherent or perceived becomes moot. Rather, the issue is the process through which students can come to see semiotic resources in a way that corresponds to the disciplinary affordance accepted within the discipline. The power of the term, then, is that learning can now be framed as coming to perceive the disciplinary affordances of semiotic resources. In this paper I will briefly discuss the history of the term affordance, define the terms disciplinary affordance and pedagogical affordance and illustrate their usefulness in a number of educational settings.

    References

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis   Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2011b). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education.   Across the disciplines, 8(3), unpaginated.  Retrieved from http://wac.colostate.edu/atd/clil/airey.cfm

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman, & R. Säljö (Eds.), Scientific literacy – teori och praktik

       (pp. 41-58): Gleerups.

    Airey, J. (2014) Representations in Undergraduate Physics. Docent lecture, Ångström Laboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. (2016). Undergraduate Teaching with Multiple Semiotic Resources: Disciplinary Affordance vs Pedagogical Affordance.   Paper presented at 8icom. University of Cape Town, Cape Town.

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark.

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance "The 5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J. & Linder, C. (in press) Social Semiotics in University Physics Education: Multiple Representations in Physics Education   Springer.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182. 

    Fredlund 2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. Acta Universitatis Upsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics.

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics. European Journal of Physics. 36 055002.

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies 2015 4:3 , 302-316.

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception (pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

               Hodge, R. & Kress, G. (1988). Social Semiotics. Cambridge: Polity Press.

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18(3), 242-252. doi:10.1080/10288457.2014.953294

    Lo, M. L. (2012). Variation theory and the improvement of teaching and learning (Vol. 323). Gothenburg: Göteborgs Universitet.

    Marton, F. (2015). Necessary conditions of learning. New York: Routledge.

    Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

               Thibault, P. (1991). Social semiotics as praxis. Minneapolis: University of Minnesota Press.

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge.

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

  • 76.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Undervisning på engelska oftare i Norden än i Europa2009Other (Other (popular science, discussion, etc.))
  • 77.
    Airey, John
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Stockholm University.
    Using variation and unpacking to help students decode disciplinary-specific semiotic resources2018In: 9ICOM - Complete book of abstracts, Odense, Denmark.: Syddansk Universitet, 2018Conference paper (Other academic)
    Abstract [en]

    In this presentation I will describe a social semiotic approach (Halliday 1978; van Leeuwen 2005) to the multimodal teaching and learning of a discipline that takes variation theory (Marton & Booth 1997; Runesson 2005) as its theoretical framing. Following Airey and Linder (2017:95) I define social semiotics as “the study of the development and reproduction of specialized systems of meaning making in particular sections of society”

     

    Learning at university level involves coming to understand the ways in which disciplinary-specific semiotic resources can be coordinated to make appropriate disciplinary meanings (Airey & Linder 2009). Nowhere is this more true than in undergraduate physics where a particularly wide range of semiotic resources such as graphs, diagrams, mathematics and language are essential for meaning making.  In order to learn to make these disciplinary meanings, students need to discover the disciplinary affordances(Fredlund et al. 2012, 2014; Airey & Linder 2017) of the semiotic resources used in their discipline. 

     

    Fredlund et al. (2015) propose a three-stage process that lecturers can use to help their students:  

     

    1. Identify the disciplinary relevant aspects needed for a particular task. 

    2. Select semiotic resources that showcase these aspects. 

    3. Create structured variation within these semiotic resources to help students notice the disciplinary relevant aspects and their relationships to each other.

     

    However, many disciplinary specific semiotic resources have been rationalized to create a kind of disciplinary shorthand(Airey 2009). In such cases the disciplinary relevant aspects needed may no longer be present in resources used, but are rather implied. In such cases the resources will need to be unpacked for students (Fredlund et al. 2014).  Such unpacking increases the pedagogical affordance of semiotic resources but simultaneously decreases their disciplinary affordance. 

    References

    '

    Airey, J. (2006). Physics Students' Experiences of the Disciplinary Discourse Encountered in Lectures in English and Swedish.   Licentiate Thesis. Uppsala, Sweden: Department of Physics, Uppsala University., 

    Airey J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. ActaUniversitatis  Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala Retrieved 2009-04-27, from   http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2014) representations in Undergraduate Physics. Docent lecture, ÅngströmLaboratory, 9th June 2014 From   http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-226598

    Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics In: SACF   Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher   Education (STINT) , 2015 (pp. 103). urn:nbn:se:uu:diva-266049. 

    Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations   ESERA 2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

    Airey, J., & Linder, C. (2009). "A disciplinary discourse perspective on university science learning: Achieving fluency in a critical   constellation of modes." Journal of Research in Science Teaching, 46(1), 27-49.

    Airey, J. & Linder, C. (2017) Social Semiotics in Physics Education : Multiple Representations in Physics Education   Springer 

    Airey, J., & Eriksson, U. (2014). A semiotic analysis of the disciplinary affordances of the Hertzsprung-Russell diagram in   astronomy. Paper presented at the The 5th International 360 conference: Encompassing the multimodality of knowledge,   Aarhus, Denmark. 

    Airey, J., Eriksson, U., Fredlund, T., and Linder, C. (2014). "The concept of disciplinary affordance”The5th International 360   conference: Encompassing the multimodality of knowledge. City: Aarhus University: Aarhus, Denmark, pp. 20.

    Eriksson, U. (2015) Reading the Sky: From Starspotsto Spotting Stars Uppsala:ActaUniversitatisUpsaliensis.

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Who needs 3D when the Universe is flat? Science Education, 98(3),   412-442. 

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (2014). Introducing the anatomy of disciplinary discernment: an example from   astronomy. European Journal of Science and Mathematics Education, 2(3), 167‐182. 

    Fredlund2015 Using a Social Semiotic Perspective to Inform the Teaching and Learning of Physics. ActaUniversitatisUpsaliensis.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students   sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T, Airey, J, & Linder, C. (2015a). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in   physics representations. European Journal of Physics. 

    Fredlund, T. & Linder, C., & Airey, J. (2015b). Towards addressing transient learning challenges in undergraduate physics: an   example from electrostatics.European Journal of Physics. 36055002. 

    Fredlund, T. & Linder, C., & Airey, J. (2015c). A social semiotic approach to identifying critical aspects. International Journal for   Lesson and Learning Studies2015 4:3 , 302-316 

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary   affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128).

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception(pp. 127-143). Boston: Houghton   Miffin.

    Halliday, M. A. K. (1978). Language as a social semiotic. London: Arnold.

    Linder, C. (2013). Disciplinary discourse, representation, and appresentationin the teaching and learning of science. European  Journal of Science and Mathematics Education, 1(2), 43-49.

    Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

    Mavers, D. Glossary of multimodal terms  Retrieved 6 May, 2014, from http://multimodalityglossary.wordpress.com/affordance/

    van Leeuwen, T. (2005). Introducing social semiotics. London: Routledge. 

    Volkwyn, T., Airey, J., Gregorčič, B., & Heijkenskjöld, F. (in press). Learning Science through Transduction: Multimodal disciplinary   meaning-making in the physics laboratory. Designs for Learning.

    Volkwyn, T., Airey, J., Gregorčič, B., & Heijkenskjöld, F. (2016). Multimodal transduction in secondary school physics 8th International Conference on Multimodality, 7th-9th December 2016. Cape Town, South Africa. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316982.

    Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

  • 78.
    Airey, John
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Using variation and unpacking to help students decode disciplinary-specific semiotic resources2018Conference paper (Other academic)
    Abstract [en]

    In this presentation I will describe a social semiotic approach (Halliday 1978; van Leeuwen 2005) to the multimodal teaching and learning of a discipline that takes variation theory (Marton & Booth 1997; Runesson 2005) as its theoretical framing. Following Airey and Linder (2017:95) I define social semiotics as “the study of the development and reproduction of specialized systems of meaning making in particular sections of society”

    Learning at university level involves coming to understand the ways in which disciplinary-specific semiotic resources can be coordinated to make appropriate disciplinary meanings (Airey & Linder 2009). Nowhere is this more true than in undergraduate physics where a particularly wide range of semiotic resources such as graphs, diagrams, mathematics and language are essential for meaning making.  In order to learn to make these disciplinary meanings, students need to discover the disciplinary affordances(Fredlund et al. 2012, 2014; Airey & Linder 2017) of the semiotic resources used in their discipline. 

    Fredlund et al. (2015) propose a three-stage process that lecturers can use to help their students:  

    1. Identify the disciplinary relevant aspects needed for a particular task. 

    2. Select semiotic resources that showcase these aspects. 

    3. Create structured variation within these semiotic resources to help students notice the disciplinary relevant aspects and their relationships to each other.

    However, many disciplinary specific semiotic resources have been rationalized to create a kind of disciplinary shorthand(Airey 2009). In such cases the disciplinary relevant aspects needed may no longer be present in resources used, but are rather implied. In such cases the resources will need to be unpacked for students (Fredlund et al. 2014).  Such unpacking increases the pedagogical affordance of semiotic resources but simultaneously decreases their disciplinary affordance. 

  • 79.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Linneuniversitet.
    Berge, Maria
    Umeå.
    That's Funny!: The humorous effect of misappropriating  disciplinary-specific semiotic resources2014Conference paper (Refereed)
    Abstract [en]

    The socialization of disciplinary outsiders into an academic discipline has been described both in terms of becoming fluent in a disciplinary discourse (Airey, 2009; Airey & Linder, 2009; Northedge, 2002) and achieving disciplinary literacy (Airey, 2011, 2013; Geisler, 1994). In this paper we investigate disciplinary boundaries by documenting the responses of academics to a semiotic disciplinary hybrid. The hybrid we use is the Physikalisches Lied, a bogus piece of sheet music into which disciplinary-specific semiotic resources from the realm of physics have been incorporated to humorous effect.

    The piece is presented to three distinct disciplinary focus groups: physicists, musicians and a group of academics who have had little contact with either discipline. In order to elicit disciplinary responses that are free from researcher prompts, each focus group is first asked the simple, open-ended question What do you see here? Once discussion of this question is exhausted the focus groups are asked to identify as many puns as they can—essentially all the disciplinary items that they feel have been misappropriated—and to attempt to explain what this means from a disciplinary standpoint. The differences in the responses of the three groups are presented and analysed.

    We argue that semiotic material focused on by each of the three groups and the nature of the explanation offered, provide evidence of the degree of integration into the disciplines of physics and music. Our findings shed light on the process of becoming a disciplinary insider and the semiotic work involved in this process.

  • 80.
    Airey, John
    et al.
    Uppsala universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    What do you see here?: using an analysis of the Hertzsprung-Russell diagram in astronomy to create a survey of disciplinary discernment2014In: Book of abstracts: The First Conference of the International Association for Cognitive Semiotics(IACS-2014), September 25-27, 2014 Lund University, 2014, p. 52-53Conference paper (Refereed)
    Abstract [en]

    Becoming part of a discipline involves learning to interpret and use a range of disciplinary-specific semiotic resources (Airey, 2009). These resources have been developed and assigned particular specialist meanings over time. Nowhere is this truer than in the sciences, where it is the norm that disciplinary-specific representations have been introduced and then refined by a number of different actors in order to reconcile them with subsequent empirical and theoretical advances. As a consequence, many of the semiotic resources used in the sciences today still retain some (potentially confusing) traces of their historical roots. However, it has been repeatedly shown that university lecturers underestimate the challenges such disciplinary specific semiotic resources may present to undergraduates (Northedge, 2002; Tobias, 1986).

    In this paper we analyse one such disciplinary-specific semiotic resource from the field of Astronomy—the Hertzsprung-Russell diagram. First, we audit the potential of this semiotic resource to provide access to disciplinary knowledge—what Fredlund et al (2012) have termed its disciplinary affordances. Our analysis includes consideration of the use of scales, labels, symbols, sizes and colour. We show how, for historical reasons, the use of these aspects in the resource may differ from what might be expected by a newcomer to the discipline. Using the results of our analysis we then created an online questionnaire to probe what is discerned (Eriksson, Linder, Airey, & Redfors, in press) with respect to each of these aspects by astronomers and physicists ranging from first year undergraduates to university professors.

    Our findings suggest that some of the issues we highlight in our analysis may, in fact, be contributors to the alternative conceptions of undergraduate students and we therefore propose that lecturers pay particular attention to the disambiguation of these features for their students.

  • 81.
    Airey, John
    et al.
    Uppsala universitet.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Fredlund, Tobias
    Uppsala universitet.
    Linder, Cedric
    Uppsala universitet.
    On the disciplinary affordances of semiotic resources2014In: Book of abstracts: The First Conference of the International Association for Cognitive Semiotics(IACS-2014), September 25-27, 2014 Lund University, 2014, p. 54-55Conference paper (Refereed)
    Abstract [en]

    In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.

  • 82.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Eriksson, Urban
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Fredlund, Tobias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    On the Disciplinary Affordances of Semiotic Resources2014Conference paper (Refereed)
    Abstract [en]

    In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.

  • 83.
    Airey, John
    et al.
    Uppsala universitet, Fysikundervisningens didaktik.
    Eriksson, Urban
    Uppsala universitet, Fysikundervisningens didaktik.
    Fredlund, Tobias
    Uppsala universitet, Fysikundervisningens didaktik.
    Linder, Cedric
    Uppsala universitet, Fysikundervisningens didaktik.
    On the Disciplinary Affordances of Semiotic Resources2014In: IACS-2014 Book of abstracts, 2014, p. 54-55Conference paper (Refereed)
    Abstract [en]

    In the late 70’s Gibson (1979) introduced the concept of affordance. Initially framed around the needs of an organism in its environment, over the years the term has been appropriated and debated at length by a number of researchers in various fields. Most famous, perhaps is the disagreement between Gibson and Norman (1988) about whether affordances are inherent properties of objects or are only present when they are perceived by an organism. More recently, affordance has been drawn on in the educational arena, particularly with respect to multimodality (see Linder (2013) for a recent example). Here, Kress et al. (2001) have claimed that different modes have different specialized affordances. Then, building on this idea, Airey and Linder (2009) suggested that there is a critical constellation of modes that students need to achieve fluency in before they can experience a concept in an appropriate disciplinary manner. Later, Airey (2009) nuanced this claim, shifting the focus from the modes themselves to a critical constellation of semiotic resources, thus acknowledging that different semiotic resources within a mode often have different affordances (e.g. two or more diagrams may form the critical constellation).

    In this theoretical paper the concept of disciplinary affordance (Fredlund et al., 2012) is suggested as a useful analytical tool for use in education. The concept makes a radical break with the views of both Gibson and Norman in that rather than focusing on the discernment of one individual, it refers to the disciplinary community as a whole. Put simply, the disciplinary affordances of a given semiotic resource are determined by those functions that the resource is expected to fulfil by the disciplinary community. Disciplinary affordances have thus been negotiated and developed within the discipline over time. As such, the question of whether these affordances are inherent or discerned becomes moot. Rather, from an educational perspective the issue is whether the meaning that a semiotic resource affords to an individual matches the disciplinary affordance assigned by the community. The power of the term for educational work is that learning can now be framed as coming to discern the disciplinary affordances of semiotic resources.

    In this paper we will briefly discuss the history of the term affordance, define the term disciplinary affordance and illustrate its usefulness in a number of educational settings.

  • 84.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm University Sweden.
    Grundström Lindqvist, Josefine
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Kung, Rebecca
    Independent Researcher.
    What does it mean to understand a physics equation?: A study of undergraduate answers In three countries2017Conference paper (Other academic)
    Abstract [en]

    What does it mean to understand a physics Equation?   A study of Undergraduate answers In Three countries.

    John Airey1,2 Josefine Grundström Lindqvist1 Rebecca Kung3

    1Department of Physics, Uppsala University, Sweden

    2Department of Mathematics and Science Education, Stockholm University, Sweden

    3Independent researcher, Grosse Ile, MI, USA.        

                                                    

    In this paper we are interested in how undergraduate students in the US, Australia and Sweden experience the physics equations they meet in their education. We asked over 350 students the same simple question: How do you know when you understand a physics equation? Students wrote free-text answers to this question and these were transcribed and coded. The analysis resulted in eight themes (significance, origin, describe, predict, parts, relationships, calculate and explain). Each of these themes represents a different disciplinary aspect of student understanding of physics equations. We argue that together the different aspects we find represent a more holistic view of physics equations that we would like all our students to experience. Based on this work we wondered how best to highlight this more holistic view of equations. This prompted us to write a set of questions that reflect the original data with respect to the eight themes. We suggest that when students are working with problem solving they may ask themselves these questions in order to check their holistic understanding of what the physics equations they are using represent. In continuing work we are asking the same question to a cohort of physics lecturers. We are also trialling the themes and related questions that we generated in teaching situations. Here we are interested in whether students perceive the questions as helpful in their learning.

    Keywords: International Studies in Education, Physics, Higher Education

    Background

    As a discipline, physics is concerned with describing the world by constructing models, the end product of this modelling process often being an equation. Despite their importance in the representation of physics knowledge, physics equations have received surprisingly little attention in the literature. The work that has been done has tended to focus on the use of equations in problem solving (see Hsu, Brewe, Foster, & Harper, 2004 for an overview and Hegde & Meera, 2012 for a more recent example). One significant study is that of Sherin (2001) who examined students ability to construct equations. The majority of work suggests that many students in calculus-based physics courses focus their attention exclusively on selecting an equation and substituting in known values—so called “plug and chug” (see Tuminaro 2004). This behaviour—what Redish (1994) has termed the “Dead Leaves” approach to physics equations—has been framed as a major hurdle to students’ ability to see the bigger picture of physics. However, very little work has examined what students think it means to understand a physics equation, the only work we could locate was that of Domert et al, 2007 and Hechter, 2010. Building on these two sources this study examines student understanding of physics equations in three countries. Our research questions are:

    1. How do students in three countries say they know that they have understood a physics equation?
    2. What different disciplinary aspects of equations can be seen in an analysis of the complete set of answers to research question 1?
    3. How might a more holistic view of the understanding of equations be communicated to students?

    Method

    This qualitative study uses a research design based on minimum input and maximised output. We asked students in the US (n=83), Australia (n=168) and Sweden (n=105) the same simple question:

    How do you know when you understand a physics equation?

    Students wrote free-text answers to this question and these were transcribed and coded. Using qualitative analysis techniques drawn from the phenomenographic tradition, the whole dataset was then treated as a “pool of meaning” (See Airey, 2012 for an example of this type of analysis).

    Analysis and Results

    In our analysis we initially looked for differences across countries, however it quickly became apparent that there was a range of answers that repeated across countries. This led us to treat the data as a single set. This first analysis resulted in 15 preliminary categories. These categories were later broken up and reconstructed to form eight themes: Significance, Origin, Describe, Predict, Parts, Relationships, Calculate and Explain. We suggest that each of these eight themes represents a different disciplinary aspect of the expressed student understanding of physics equations. We argue that together the different aspects we find represent a more holistic view of physics equations that we would like all our students to experience. Based on this work we wondered how best to highlight this more holistic view of equations. This prompted us to write a set of questions that reflect the original data with respect to the eight themes:

    1      Significance: Why, when, where

    Do you know why the equation is needed?

    Do you know where the equation can and cannot be used? (boundary conditions/areas of physics).

    Do you understand what the equation means for its area of physics?

    What status does this equation have in physics? (fundamental law, empirical approximation, mathematical conversion, etc.).

    2      Origin

    Do you know the historical roots of the equation?

    Can you derive the equation?

    3      Describe/visualize

    Can you use the equation to describe a real-life situation?

    Can you describe an experiment that the equation models?

    Can you visualize the equation by drawing diagrams, graphs etc.

    4      Predict

    Can you use the equation to predict?

    5      Parts

    Can you describe the physical meaning of each of the components of the equation?

    How does a change in one component affect other components in the equation?

    Can you manipulate/rearrange the equation?

    6      Other equations

    Can you relate this equation to other equations you know?

    Can you construct the equation from other equations that you know?

    7      Calculate

    Can you use the equation to solve a physics problem?

    Can you use the equation to solve a physics problem in a different context than the one in which it was presented?

    When you use the equation to calculate an answer do you know:

    • How your answer relates to the original variables?
    • The physical meaning of this answer?
    • Whether your answer is reasonable?

    8      Explain

    Can you explain the equation to someone else?

    Discussion and conclusion

    The motivation for this study came from an experience the first author had a number of years ago. In an interview situation, students were asked in passing about whether they understood a certain equation. They replied “yes” and that the equation was “trivial”. However when questioned about what one of the terms in the equation meant and the students did not know! The students clearly meant that the equation was trivial from a mathematical point of view—they knew they could easily use the equation to “calculate stuff” so they said that they understood it. In Redish’s (1994) terms they were using the “Dead Leaves” approach to physics equations.

    We believe the questions we have generated in this study have the potential to help physics students who think they understand a physics equation to check whether there might be other aspects that they may not yet have considered.

    Our questions are based on student-generated data. Potentially physics lecturers could experience physics equations in even more complex ways. In continuing work we are therefore asking the same question to a cohort of physics lecturers. We are also trialling the themes and related questions that we generated in various teaching situations. Here we are interested in whether students perceive the questions as helpful in their learning.

    Acknowledgements

    Support from the Swedish Research Council, VR project no. 2016-04113, is gratefully acknowledged.

    REFERENCES

    Airey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden. AILA Review, 25(2012), 64–79.

    Domert, D., Airey, J., Linder, C., & Kung, R. (2007). An exploration of university physics students' epistemological mindsets towards the understanding of physics equations. NorDiNa,Nordic Studies in Science Education(3), 15-28.

    Hechter, R. P. (2010). What does it understand the equation' really mean? Physics Education, 45(132).

    Hegde, B. & Meera, B. N. (2012). How do they solve it? An insight into the learner's approach to the mechanism of physics problem solving. Phys. Rev. ST Phys. Educ. Res. 8, 010109

    Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource Letter RPS-1: Research in problem solving. American Journal of Physics, 72(9), 1147-1156.

    Redish, E. (1994). The implications of cognitive studies for teaching physics. American Journal of Physics, 62(6), 796-803.

    Sherin, B. L. (2001). How students understand physics equations. Cognitive Instruction, 19, 479-541.

    Tuminaro, J. (2004). A Cognitive framework for analyzing and describing introductory students' use of mathematics in physics. PhD Thesis. University of Maryland, Physics Department.

     

  • 85.
    Airey, John
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Grundström Lindqvist, Josefine
    Kung, Rebecca
    What does it mean to understand a physics equation?: A study of undergraduate answers in three countries2017Conference paper (Other academic)
    Abstract [en]

    In this paper we are interested in how undergraduate students in the US, Australia and Sweden experience the physics equations they meet in their education. We asked over 350 students the same simple question: How do you know when you understand a physics equation? Students wrote free-text answers to this question and these were transcribed and coded. The analysis resulted in eight themes (significance, origin, describe, predict, parts, relationships, calculate and explain). Each of these themes represents a different disciplinary aspect of student understanding of physics equations. We argue that together the different aspects we find represent a more holistic view of physics equations that we would like all our students to experience. Based on this work we wondered how best to highlight this more holistic view of equations. This prompted us to write a set of questions that reflect the original data with respect to the eight themes. We suggest that when students are working with problem solving they may ask themselves these questions in order to check their holistic understanding of what the physics equations they are using represent. In continuing work we are asking the same question to a cohort of physics lecturers. We are also trialling the themes and related questions that we generated in teaching situations. Here we are interested in whether students perceive the questions as helpful in their learning.

  • 86.
    Airey, John
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden; Linnaeus University, Sweden.
    Larsson, Johanna
    Developing Students’ Disciplinary Literacy? The Case of University Physics2018In: Global Developments in Literacy Research for Science Education / [ed] Kok-Sing Tang, Kristina Danielsson, Springer, 2018, p. 357-376Chapter in book (Refereed)
    Abstract [en]

    In this chapter we use the concept of disciplinary literacy (Airey, 2011a, 2013) to analyze the goals of university physics lecturers. Disciplinary literacy refers to a particular mix of disciplinary-specific communicative practices developed for three specific sites: the academy, the workplace and society. It has been suggested that the development of disciplinary literacy may be seen as one of the primary goals of university studies (Airey, 2011a).

    The main data set used in this chapter comes from a comparative study of physics lecturers in Sweden and South Africa (Airey, 2012, 2013; Linder, Airey, Mayaba, & Webb, 2014). Semi-structured interviews were carried out using a disciplinary literacy discussion matrix (Airey, 2011b), which enabled us to probe the lecturers’ disciplinary literacy goals in the various semiotic resource systems used in undergraduate physics (i.e. graphs, diagrams, mathematics, language).

    The findings suggest that whilst physics lecturers have strikingly similar disciplinary literacy goals for their students, regardless of setting, they have very different ideas about whether they themselves should teach students to handle these disciplinary-specific semiotic resources. It is suggested that the similarity in physics lecturers’ disciplinary literacy goals across highly disparate settings may be related to the hierarchical, singular nature of the discipline of physics (Bernstein, 1999, 2000).

    In the final section of the chapter some preliminary evidence about the disciplinary literacy goals of those involved in physics teacher training is presented. Using Bernstein’s constructs, a potential conflict between the hierarchical singular of physics and the horizontal region of teacher training is noticeable.

    Going forward it would be interesting to apply the concept of disciplinary literacy to the analysis of other disciplines—particularly those with different combinations of Bernstein’s classifications of hierarchical/horizontal and singular/region.

  • 87.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Larsson, Johanna
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Developing Students’ Disciplinary Literacy?: The Case of University Physics2018In: Global Developments in Literacy Research for Science Education / [ed] Kok-Sing Tang, Kristina Danielsson, Cham, Switzerland: Springer, 2018, p. 357-376Chapter in book (Refereed)
    Abstract [en]

    The main data set used in this chapter comes from a comparative study of physics

    lecturers in Sweden and South Africa. (Airey 2012; 2013: Linder et al 2014). Semistructured

    interviews were carried out using a disciplinary literacy discussion matrix

    (Airey 2011b), which enabled us to probe the lecturers’ disciplinary literacy goals in the

    various semiotic resource systems used in undergraduate physics (i.e. graphs, diagrams,

    mathematics, language, etc.).

    The findings suggest that whilst physics lecturers have strikingly similar

    disciplinary literacy goals for their students, regardless of setting; they have very different

    ideas about whether they themselves should teach students to handle these disciplinaryspecific

    semiotic resources. It is suggested that the similarity in physics

    lecturers’disciplinary literacy goals across highly disparate settings may be related to the

    hierarchical, singular nature of the discipline of physics (Bernstein 1999; 2000).

    In the final section of the chapter some preliminary evidence about the disciplinary

    literacy goals of those involved in physics teacher training is presented. Using Bernstein’s

    constructs, a potential conflict between the hierarchical singular of physics and the

    horizontal region of teacher training is noticeable.

    Going forward it would be interesting to apply the concept of disciplinary literacy

    to the analysis of other disciplines—particularly those with different combinations of

    Bernstein’s classifications of hierarchical/horizontal and singular/region.

    References

    Airey, J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala  Retrieved 2009-04-27, from http://publications.uu.se/theses/abstract.xsql?dbid=9547

    Airey, J. (2011a). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education. Across the disciplines, 8(3).

    Airey, J. (2011b). Initiating Collaboration in Higher Education: Disciplinary Literacy and the Scholarship of Teaching and Learning Dynamic content and language collaboration in higher education: theory, research, and reflections (pp. 57-65). Cape Town, South Africa: Cape Peninsula University of Technology.

    Airey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden. AILA Review, 25(2012), 64–79.

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman, & R. Säljö (Eds.), Scientific literacy – teori och praktik (pp. 41-58): Gleerups.

    Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics In: SACF Singapore-Sweden Excellence Seminars, Swedish Foundation for International Cooperation in Research in Higher Education (STINT), 2015 (pp. 103). urn:nbn:se:uu:diva-266049.

    Airey, J., & Larsson, J. (2014). What Knowledge Do Trainee Physics Teachers Need to Learn? Differences in the Views of Training Staff. International Science Education Conference ISEC 2014, National Institute of Education, Singapore. 25-27 November 2014.

    Airey, J., Lauridsen, K., Raisanen, A., Salö, L., & Schwach, V. (2016). The Expansion of English medium Instruction in the Nordic Countries. Can Top-down University Language Policies Encourage Bottom-up Disciplinary Literacy Goals? Higher Education. DOI: 10.1007/s10734-015-9950-2

    Airey, J., & Linder, C. (2008). Bilingual Scientific Literacy? The use of English in Swedish university science programmes. Nordic Journal of English Studies, 7(3), 145-161.

    Airey, J., & Linder, C. (2011). Bilingual scientific literacy. In C. Linder, L. Östman, D. Roberts, P.-O. Wickman, G. Ericksen & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 106-124). London: Routledge.

    Airey, J. & Linder, C. (in press) Social Semiotics in University Physics Education. In D. Treagust, R. Duit, R. & H. Fischer (Eds.), Multiple Representations in Physics Education Springer.

    American Association of Physics Teachers. (1996). Physics at the crossroads   Retrieved from http://www.aapt.org/Events/crossroads.cfm

    Becher, T., & Trowler, P. (1989). Academic Tribes and Territories. Milton Keynes: Open University Press.

    Bennett, K. (2010). Academic discourse in Portugal: A whole different ballgame? Journal of English for Academic Purposes, 9(1), 21-32.

    Bernstein, B. (1999). Vertical and horizontal discourse: An essay. British Journal of Sociology Education, 20(2), 157-173.

    Bernstein, B. (2000). pedagogy, symbolic control and identity: theory, research and critique. Lanham: Rowman and Littlefield.

    Björk, L., & Räisänen, C. A. (2003). Academic Writing: A university writing course (3 ed.). Lund: studentlitteratur.

    Bogdan, R. C., and Biklen, S. R. 1992. Qualitative research for education: An introduction to theory and methods. Boston: Allyn and Bacon, Inc.

    CHE-SAIP. (2013).  Review of undergraduate physics education in public higher education institutions. http://www.saip.org.za/images/stories/documents/documents/Undergrad_Physics_Report_Final.pdf

    Duff, P. (2010). Language socialization into academic discourse communities. Annual Review of Applied Linguistics, 30(March 2010), 169-192.

    European Commission Expert Group. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels: European Commission.

    Forsman, J. (2015). Complexity Theory and Physics Education Research: The Case of Student Retention in Physics and Related Degree Programmes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. Uppsala: Acta Universitatis Upsaliensis. Retrieved from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A846064&dswid=-4668

    Fortanet-Gomez, I. (2013). CLIL in Higher Education. Towards a Multilingual Language Policy. Bristol UK: Multilingual Matters.

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

    Fredlund, T., Linder, C., Airey, J., & Linder, A. (2014). Unpacking physics representations: Towards an appreciation of disciplinary affordance. Phys. Rev. ST Phys. Educ. Res., 10(020128 (2014)).

    Fredlund, T., Airey, J., & Linder, C. (2015). Enhancing the possibilities for learning: Variation of disciplinary-relevant aspects in physics representations. European Journal of Physics, 36(5), 055001.

    Gee, J. P. (1991). What is literacy? In C. Mitchell & K. Weiler (Eds.), Rewriting literacy: Culture and the discourse of the other (pp. 3-11). New York: Bergin & Garvey.

    Gibson, J. J. (1979). The theory of affordances The Ecological Approach to Visual Perception (pp. 127-143). Boston: Houghton Miffin.

    Halliday, M. A. K. (1993). The analysis of scientific texts in English and Chinese. In M. A. K. Halliday & J. R Martin (Eds.), Writing science: Literacy and discursive power (pp. 124-132). London: Falmer Press.

    Halliday, M. A. K., & Martin, J. R. (1993). Writing science: Literacy and discursive power. London: The Falmer Press.

    Hurd, P. d. H. (1958). Science literacy: Its meaning for American schools. Educational Leadership, 16, 13-16.

    Ivanič, R. (1998). Writing and Identity: The discoursal construction of identity in academic writing. Amsterdam, Netherlands: John Benjamins.

    Johannsen, B. F. (2013). Attrition and retention in university physics: A longitudinal qualitative study of the interaction between first year students and the study of physics (Doctoral dissertation, University of Copenhagen, Faculty of Science, Department of Science Education).

    Josephson, O. (2005). Parallellspråkighet [parallel language use]. Språkvård, 2005(1), 3.

    Korpan, C. A., Bisanz, G. L., Bisanz, J., & Henderson, J. M. (1997). Assessing literacy in science: Evaluation of scientific news briefs. Science Education. Science Education, 81, 515-532.

    Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.

    Kuteeva, M., & Airey, J. (2014). Disciplinary Differences in the Use of English in Higher Education: Reflections on Recent Policy Developments  Higher Education 67(5), 533-549.

    Larsson, J., & Airey, J. (2014). Searching for stories: The training environment as a constituting factor in the professional identity work of future physics teachers. British Educational Research Association Conference BERA 2014, London, September 2014.

    Larsson, J., & Airey, J. (2015). The "physics expert" discourse model – counterproductive for trainee physics teachers' professional identity building? Paper presented at the 11th Conference of the European Science Education Research Association (ESERA) Helsinki, August 31 to September 4, 2015.

    Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84:, 71–94.

    Lea, M. R., & Street, B.V. (1998). Student writing in higher education: An academic literacies approach. Studies in Higher Education, 23(2), 157-172.

    Lemke, J. L. (1998). Teaching all the languages of science: Words, symbols, images, and actions  Retrieved September 16, 2005, from http://academic.brooklyn.cuny.edu/education/jlemke/papers/barcelon.htm

    Lillis, T., & Scott, M. (2007). Defining academic literacies research: issues of epistemology, ideology and strategy. Journal of Applied Linguistics, 4(4), 5–32.

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18(3), 242-252. doi:10.1080/10288457.2014.953294

    Martin, J. R. (2011). Bridging troubled waters: Interdisciplinarity and what makes it stick. In F. Christie & K. Maton (Eds.), Disciplinarity (pp. 35-61). London: Continuum International Publishing.

    Moje, E. B. (2007). Developing Socially Just Subject-Matter Instruction: A Review of the Literature on Disciplinary Literacy Teaching. Review of Research in Education 31(March 2007), 1–44.

    McDermott, L. (1990). A view from physics. In M. Gardner, J. G. Greeno, F. Reif, A. H. Schoenfeld, A. A. diSessa, & E. Stage (Eds.), Toward a scientific practice of science education (pp. 3-30). Hillsdale: Lawrence Erlbaum Associates.

    National Research Council. (2013). Adapting to a Changing World --- Challenges and Opportunities in Undergraduate Physics Education. Committee on Undergraduate Physics Education Research and Implementation. Board on Physics and Astronomy Division on Engineering and Physical Sciences. Washington, D.C.: National Academies Press.

    Nordic Educational Research Association. (2009). Literacy as worldmaking. Congress of the Nordic Educational Research Association: Available from http://www.neracongress2009.com.

    Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240.

    Northedge, A. (2002). Organizing excursions into specialist discourse communities: A sociocultural account of university teaching. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Sociocultural perspectives on the future of education (pp. 252-264). Oxford: Blackwell Publishers.

    Parodi, G. (2012) University Genres and Multisemiotic Features: Accessing Specialized Knowledge Through Disciplinarity. Fórum Linguístico. 9:4, 259-282.

    Phillipson, R. (2006). English, a cuckoo in the European higher education nest of languages. European Journal of English Studies, 10(1), 13–32.

    Roberts, D. (2007). Scientific literacy/science literacy: Threats and opportunities. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729-780). Mahwah, New Jersey: Lawrence Erlbaum Associates.

    Seymour, E., & Hewitt, N. (1997). Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press.

    Shanahan, T., & Shanahan, C. (2012). What is disciplinary literacy and why does it matter?. Topics in Language Disorders, 32(1), 7-18.

    Swales, J. (1990). Genre analysis: English in academic and research settings. Cambridge: Cambridge University Press.

    Swales, J., & Feak, C. (2004). Academic Writing for Graduate Students: Essential tasks and skills. Ann Arbor: University of Michigan Press.

    Tang, K. S. K., Ho, C., & Putra, G. B. S. (2016). Developing Multimodal Communication Competencies: A Case of Disciplinary Literacy Focus in Singapore. In Using Multimodal Representations to Support Learning in the Science Classroom (pp. 135-158). Springer International Publishing.

    UNESCO. (2004). The Plurality of Literacy and its Implications for Policies and Programmes. Paris: UNESCO.

    Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601-623. 

  • 88.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Larsson, Johanna
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    What Knowledge Do Trainee Physics Teachers Need to Learn?: Differences in the Views of Training Staff2014In: International Science Education Conference 2014 Programme, Singapore: Ministry of Education, National Institute of Education , 2014, p. 62-Conference paper (Refereed)
    Abstract [en]

    Although the impact of disciplinary differences on teaching and learning has been extensively discussed in the literature (e.g. Becher 1989; Becher and Trowler 2001; Lindblom-Ylännea et al. 2006; Neumann 2001; Neumann and Becher 2002), little research has explored this issue in relation to teacher training. In particular, we know of no work that examines differing views about the knowledge that trainee teachers need to learn across different settings. In this paper we analyse differences in the expressed views of staff involved in the training of prospective physics teachers in three environments: the education department, the physics department and schools. We analyse these differences in terms of two constructs: disciplinary literacy goals (Airey 2011, 2013) and disciplinary knowledge structures (Bernstein 1999).

    In terms of disciplinary literacy we find a stronger emphasis on learning goals for the academy expressed by informants from the physics and education departments. This can be contrasted with the view that the needs of the workplace are paramount expressed by school practitioners.

    Then, using Bernstein’s knowledge structures, we also identify clear differences in views about the nature of knowledge itself with a more hierarchical view of knowledge prevalent in the physics department and the more horizontal view of knowledge prevalent in the education department.

    The study highlights the often-conflicting signals about what constitutes useful knowledge that prospective physics teachers need to negotiate during their training. We tentatively suggest that more attention should be paid to both the theory/practice divide and potential epistemological differences in the training of prospective teachers.

  • 89.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm University.
    Larsson, Johanna
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Linder, Anne
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Investigating Undergraduate Physics Lecturers’ Disciplinary Literacy Goals For Their Students2017Conference paper (Other academic)
    Abstract [en]

    Investigating Undergraduate Physics Lecturers’ disciplinary literacy Goals for their students.

    Abstract

     In this presentation we use the concept of disciplinary literacy (Airey, 2011a; 2013) to analyse the expressed learning goals of university physics lecturers for their students. We define disciplinary literacy in terms of learning to control a particular set of multimodal communicative practices. We believe it is important to document the expressed intentions of lecturers in this way, since it has previously been suggested that the development of such disciplinary literacy may be seen as one of the primary goals of university studies (Airey, 2011a).

    The main data set used in this presentation comes from a comparative study of 30 physics lecturers from Sweden and South Africa. (Airey, 2012, 2013; Linder et al, 2014). Semi-structured interviews were carried out using a disciplinary literacy discussion matrix (Airey, 2011b), which enabled us to probe the lecturers’ disciplinary literacy goals in the various semiotic resource systems used in undergraduate physics (e.g. graphs, diagrams, mathematics, spoken and written languages, etc.).

    The findings suggest that physics lecturers in both countries have strikingly similar disciplinary literacy goals for their students and hold similar beliefs about disciplinary semiotic resources. The lecturers also agree that teaching disciplinary literacy ought not to be their job. Here though, there were differences in whether the lecturers teach students to handle disciplinary-specific semiotic resources. These differences appear to be based on individual decisions, rather than being specific to a particular country or institution.

    Keywords: Higher education, Scientific literacy, Representations.

    Introduction: disciplinary literacy

    In this presentation we examine the notion of disciplinary literacy in university physics (see Airey, 2011a, 2011b, 2013 and the extensive overview in Moje, 2007). Drawing on the work of Gee (1991), Airey (2001a) has broadened the definition of literacy to include semiotic resource systems other than language, defining disciplinary literacy as:

    The ability to appropriately participate in the communicative practices of a discipline.

    He goes on to suggest that the development of disciplinary literacy may be seen as one of the primary goals of university studies. In this study we use this disciplinary literacy concept to compare and problematize the goals of undergraduate physics lecturers in Sweden and South Africa.

    Research questions

    Our research questions for this study are:

    1. What do physics lecturers at universities in Sweden and South Africa say about disciplinary literacy in terms of the range of semiotic resources they want their students to learn to master?
    2. To what extent do these physics lecturers say that they themselves take responsibility for the development of this disciplinary literacy in their students?

    Data Collection

    The data set used for this presentation is taken from a comparative research project where 30 university physics lecturers from a total of nine universities in Sweden (4) and South Africa (5) described the disciplinary literacy goals they have for their students (Airey, 2012, 2013; Linder et al, 2014). A disciplinary literacy discussion matrix (Airey, 2011b) was used as the basis for in-depth, semi-structured interviews.

    These were conducted in English and lasted approximately 60 minutes each. In the interviews the lecturers were encouraged to talk about the semiotic resources they think their students need to learn to control.

    Analysis

    The analysis drew on ideas from the phenomenographic research tradition by treating the interview transcripts as a single data set or “pool of meaning” (Marton & Booth, 1997: 133). The aim was to understand the expressed disciplinary literacy goals of the physics lecturers interviewed. Following the approach to qualitative data analysis advocated by Bogdan and Biklen (1992), iterative cycles were made through the data looking for patterns and key statements. Each cycle resulted in loosely labeled categories that were often split up, renamed or amalgamated in the next iteration. More background and details of the approach used can be found in Airey (2012).

    Results and Discussion

    Analysis of the 30 interviews resulted in the identification of four themes with respect to the lecturers’ disciplinary literacy goals:

    1. Teaching physics is not the same thing as developing students’ disciplinary literacy.

    All the lecturers expressed a strong commitment that physics is independent of the semiotic resources used to construct it. For them, developing disciplinary literacy and teaching physics were quite separate things.

    These are tools, physics is something else. Physics is more than the sum of these tools it’s the way physicists think about things—a shared reference of how to analyse things around you.

    This theme challenges contemporary thinking in education and linguistics. Halliday and Martin (1993, p. 9) for example insist that communicative practices are not some sort of passive reflection of a priori disciplinary knowledge, but rather are actively engaged in bringing knowledge into being. In science education, an even more radical stance has been taken by Wickman and Östman (2002), who insist that disciplinary learning itself should be viewed as a form of discourse change.

    1. Disciplinary literacy in a range of semiotic resources is necessary for learning physics.

    All the lecturers in the study felt it was desirable that students develop disciplinary literacy in a range of semiotic resources in order to cope with their studies. In many ways this finding is unremarkable, with a number of researchers having commented on the wide range of semiotic systems needed for appropriate knowledge construction and communication in physics (e.g. Airey, 2009; Lemke, 1998; McDermott, 1990; Parodi, 2012).

    1. Developing disciplinary literacy is not really the job of a physics teacher.

    All physics lecturers expressed frustration at the low levels of disciplinary literacy in their students, feeling that they really should not have to work with the development of these skills, e.g.:

    I cannot say that I test them or train them in English. Of course they can always come and ask me, but I don’t think that I take responsibility for training them in English

    Northedge (2002) holds that the role of a university lecturer should be one of a discourse guide leading “excursions” into disciplinary discourse. However, although some lecturers actually did in fact work in this way (see category 4) the none of physics lecturers interviewed in this study felt comfortable with this role.

    1. Some teachers were prepared to take responsibility for the development of certain aspects of students’ disciplinary literacy.

    Nonetheless, some physics lecturers did say that the development of students’ disciplinary literacy would be something that they would work with. In these cases, lecturers (somewhat grudgingly) took on Northedge’s (2002) role of a discourse guide. This position was most common for mathematics, which was seen as essential for an understanding of physics (see Airey, 2012. p. 75 for further discussion of this theme).

    To be able to express it in a precise enough way you need mathematics. Language is more limited than mathematics in this case. So they need to use mathematics to see physics rather than language.

     

    Conclusion

    In this presentation we have applied the concept of disciplinary literacy to the goals of university physics lecturers. Lecturers reported their belief that disciplinary literacy in a wide range of semiotic resources is a necessary condition for physics learning. However, the same lecturers do not feel the development of this disciplinary literacy is their job. Although some lecturers were prepared to help students develop specific aspects of disciplinary literacy, all the lecturers interviewed believed that teaching physics is something that is separate from teaching disciplinary literacy. Here, Airey has argued that:

    Until lecturers see their role as one of socialising students into the discourse of their discipline…[they] will continue to insist that they are not [teachers of disciplinary literacy] and that this should be a job for someone else.                                                                                                                        (Airey, 2011b, p. 50)

    References

    Airey, J. (2009). Science, Language and Literacy. Case Studies of Learning in Swedish University Physics. Acta Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 81. Uppsala, Sweden.: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A173193&dswid=-4725.

    Airey, J. (2011a). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education. Across the disciplines, 8(3), unpaginated.

    Airey, J. (2011b). Initiating Collaboration in Higher Education: Disciplinary Literacy and the Scholarship of Teaching and Learning Dynamic content and language collaboration in higher education: theory, research, and reflections (pp. 57-65). Cape Town, South Africa: Cape Peninsula University of Technology.

    Airey, J. (2012). “I don’t teach language.” The linguistic attitudes of physics lecturers in Sweden. AILA Review, 25(2012), 64–79.

    Airey, J. (2013). Disciplinary Literacy. In E. Lundqvist, L. Östman, & R. Säljö (Eds.), Scientific literacy – teori och praktik (pp. 41-58): Gleerups.

    Bogdan, R. C., & Biklen, S. R. (1992). Qualitative research for education: An introduction to theory and methods. (2 ed.). Boston: Allyn and Bacon, Inc.

    Gee, J. P. (1991). What is literacy? In C. Mitchell & K. Weiler (Eds.), Rewriting literacy: Culture and the discourse of the other (pp. 3-11). New York: Bergin & Garvey.

    Halliday, M. A. K., & Martin, J. R. (1993). Writing science: Literacy and discursive power. London: The Falmer Press.

    Lemke, J. L. (1998). Teaching all the languages of science: Words, symbols, images, and actions. http://academic.brooklyn.cuny.edu/education/jlemke/papers/barcelon.htm.

    Linder, A., Airey, J., Mayaba, N., & Webb, P. (2014). Fostering Disciplinary Literacy? South African Physics Lecturers’ Educational Responses to their Students’ Lack of Representational Competence. African Journal of Research in Mathematics, Science and Technology Education, 18(3), 242-252. doi:10.1080/10288457.2014.953294

    Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum Associates.

    McDermott, L. (1990). A view from physics. In M. Gardner, J. G. Greeno, F. Reif, A. H. Schoenfeld, A. A. diSessa, & E. Stage (Eds.), Toward a scientific practice of science education (pp. 3-30). Hillsdale: Lawrence Erlbaum Associates.

    Moje, E. B. (2007). Developing Socially Just Subject-Matter Instruction: A Review of the Literature on Disciplinary Literacy Teaching. Review of Research in Education 31 (March 2007), 1–44.

    Northedge, A. (2002). Organizing excursions into specialist discourse communities: A sociocultural account of university teaching. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Sociocultural perspectives on the future of education (pp. 252-264). Oxford: Blackwell Publishers.

    Parodi, G. (2012) University Genres and Multisemiotic Features: Accessing Specialized Knowledge Through Disciplinarity. Fórum Linguístico. 9:4, 259-282.

    Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601-623.

  • 90.
    Airey, John
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Larsson, Johanna
    Linder, Anne
    Investigating Undergraduate Physics Lecturers’ Disciplinary Literacy Goals For Their Students2017Conference paper (Other academic)
    Abstract [en]

    In this presentation we use the concept of disciplinary literacy (Airey, 2011a; 2013) to analyse the expressed learning goals of university physics lecturers for their students. We define disciplinary literacy in terms of learning to control a particular set of multimodal communicative practices. We believe it is important to document the expressed intentions of lecturers in this way, since it has previously been suggested that the development of such disciplinary literacy may be seen as one of the primary goals of university studies (Airey, 2011a).

    The main data set used in this presentation comes from a comparative study of 30 physics lecturers from Sweden and South Africa. (Airey, 2012, 2013; Linder et al, 2014). Semi-structured interviews were carried out using a disciplinary literacy discussion matrix (Airey, 2011b), which enabled us to probe the lecturers’ disciplinary literacy goals in the various semiotic resource systems used in undergraduate physics (e.g. graphs, diagrams, mathematics, spoken and written languages, etc.).

    The findings suggest that physics lecturers in both countries have strikingly similar disciplinary literacy goals for their students and hold similar beliefs about disciplinary semiotic resources. The lecturers also agree that teaching disciplinary literacy ought not to be their job. Here though, there were differences in whether the lecturers teach students to handle disciplinary-specific semiotic resources. These differences appear to be based on individual decisions, rather than being specific to a particular country or institution.

  • 91.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Linder, Anne
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Mayaba, Nokhanyo
    Nelson Mandela Metropolitan University.
    Webb, Paul
    Nelson Mandela Metropolitan University.
    Problematising Disciplinary Literacy in a Multilingual Society: The Case of University Physics in South Africa.2013Conference paper (Refereed)
    Abstract [en]

    Problematising Disciplinary Literacy in a Multilingual Society:The Case of University Physics in South Africa

     

    John Airey1,3 Anne Linder1, Nokhanyo Mayaba 2 & Paul Webb2

    1 Department of Physics and Astronomy, Uppsala University, Sweden.

    2 Centre for Educational Research, Technology and Innovation, Nelson Mandela Metropolitan University, South Africa.

    3 School of Languages and Literature, Linnæus University, Sweden

    john.airey@physics.uu.se, anne.linder@physics.uu.se, nokhanyo.mayaba@nmmu.ac.za, paul.webb@nmmu.ac.za

    Abstract

    Over a decade has passed since Northedge (2002) convincingly argued that the role of the university lecturer should be viewed as one of leading students on excursions into the specialist discourse of their field. In his view, disciplinary discourses have come into being in order to create and share disciplinary knowledge that could not otherwise be appropriately construed in everyday discourse. Thus, Northedge’s conclusion is that in order for disciplinary learning to occur, students will need explicit guidance in accessing and using the specialist discourse of their chosen field. Building on this work, Airey (in press) argues that all university lecturers are, at least to some extent, teachers of language—even in monolingual settings. A radical approach to this claim has been suggested by Wickman and Östman (2002) who insist that learning itself be treated as a form of discourse change.

    In an attempt to operationalise Wickman and Östman’s assertion, Airey (2011b) suggests that the goals of any undergraduate degree programme may be framed in terms of the development of disciplinary literacy. Here, disciplinary literacy is defined as the ability to appropriately participate in the communicative practices of a discipline. Further, in his subsequent work, Airey (2011a) claims that all disciplines attempt to meet the needs of three specific sites: the academy, the workplace and society. He argues that the relative emphasis placed on teaching for these three sites will be different from discipline to discipline and will indeed vary within a discipline depending on the setting. In the South African setting two questions arise from this assertion. The first is: For any given discipline, what particular balance between teaching for the academy, the workplace and society is desirable and/or practicable? The second question follows on from the first: Having pragmatically decided on the teaching balance between the academy, workplace and society, what consequences does the decision have for the language(s) that lecturers should be helping their students to interpret and use? In order to address these two questions we conducted an interview-based case study of the disciplinary literacy goals of South African university lecturers in one particular discipline (physics). Thus, our overarching research question is as follows: How do South African physics lecturers problematise the development of disciplinary literacy in their students?

    The data collected forms part of a larger international comparative study of the disciplinary literacy goals of physics lecturers in Sweden and South Africa. A disciplinary literacy discussion matrix (Airey, 2011a) was employed as the starting point for conducting in-depth, semi-structured interviews with 20 physics lecturers from five South African universities. The choice of these five universities was purposeful—their student cohorts encompassing a range of different first languages and cultural backgrounds. The interviews were conducted in English, lasted between 30 and 60 minutes, and were later transcribed verbatim. The transcripts were then analysed qualitatively. This involved “working with data, organizing it, breaking it into manageable units, synthesizing it, searching for patterns, discovering what is important and what is to be learned, and deciding what you will tell others” (Bogdan & Biklen, 1992:145).

    The main finding of this study is that all the lecturers mentioned language as being problematic in some way. However, there were a number of important differences in the ways the lecturers problematise the development of disciplinary literacy both across and within the different university physics departments. These differences can be seen to involve on the one hand, the lecturers’ own self-image in terms of whether they are comfortable with viewing themselves as language teachers/literacy developers, and on the other hand, their recognition of the diverse linguistic and cultural backgrounds of their students. The differences will be illustrated and discussed using transcript excerpts. These findings are in contrast to parallel data collected in Sweden. In that particular (bilingual) setting, language was viewed as unproblematic, and the most striking characteristic was the very similarity of the responses of physics lecturers (Airey, in press). It is thus suggested that the differences in findings between Sweden and South Africa are a product of the latter’s diverse multilingual and multicultural environment. One pedagogical conclusion is that, given the differences in approach we find, inter- and intra faculty discussions about undergraduate disciplinary literacy goals would appear to have the distinct potential for reforming undergraduate physics. Similarly, an administrative conclusion is that a one-size-fits-all language policy for universities does not appear to be meaningful in such a diverse multilingual/multicultural environment.

    Finally, it should be mentioned that our choice of physics as an exemplar in this study has important implications for the interpretation of the findings. Drawing on Bernstein (1999), Martin (2011) suggests that disciplines have predominantly horizontal or hierarchical knowledge structures. Here it is claimed that physics has the most hierarchical knowledge structure of all disciplines. Thus, the findings presented here should be taken as illustrative of the situation in disciplines with more hierarchical knowledge structures (such as the natural and applied sciences). Kuteeva and Airey (in review) find that the issue of the language of instruction in such disciplines is viewed as much less problematic than in disciplines with more horizontal knowledge structures (such as the arts, humanities and, to some extent, social sciences). See Bennett (2010) for a provocative discussion of language use in such disciplines.

    Funding from the Swedish National Research Council and the South African National Research Foundation is gratefully acknowledged.

    References:

    Airey, J. (2011a). The Disciplinary Literacy Discussion Matrix: A Heuristic Tool for Initiating Collaboration in Higher Education. Across the disciplines, 8(3).

    Airey, J. (2011b). Initiating Collaboration in Higher Education: Disciplinary Literacy and the Scholarship of Teaching and Learning. Dynamic content and language collaboration in higher education: theory, research, and reflections (pp. 57-65). Cape Town, South Africa: Cape Peninsula University of Technology.

    Airey, J. (in press). I Don’t Teach Language. The Linguistic Attitudes of Physics Lecturers in Sweden. AILA Review, 25(2012), xx-xx.

    Bennett, K. (2010). Academic discourse in Portugal: A whole different ballgame? Journal of English for Academic Purposes, 9(1), 21-32.

    Bernstein, M. (1999). Vertical and horizontal discourse: An essay. British Journal of Sociology Education, 20(2), 157-173.

    Bogdan, R. C., & Biklen, S. R. (1992). Qualitative research for education: An introduction to theory and methods. (2 ed.). Boston: Allyn and Bacon, Inc.

    Kuteeva, M., & Airey, J. (in review). Disciplinary Differences in the Use of English in Swedish Higher Education: Reflections on Recent Policy Developments  Studies in Higher Education.

    Martin, J. R. (2011). Bridging troubled waters: Interdisciplinarity and what makes it stick. In F. Christie & K. Maton (Eds.), Disciplinarity (pp. 35-61). London: Continuum International Publishing.

    Northedge, A. (2002). Organizing excursions into specialist discourse communities: A sociocultural account of university teaching. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Sociocultural perspectives on the future of education (pp. 252-264). Oxford: Blackwell Publishers.

    Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601-623.

     

  • 92.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    A Disciplinary Discourse Perspective on University Science Learning: Achieving fluency in a critical constellation of modes2008In: Journal of Research in Science Teaching, ISSN 0022-4308, E-ISSN 1098-2736, Vol. 46, no 1, p. 27-49Article in journal (Refereed)
    Abstract [en]

    In this theoretical article we use an interpretative study with physics undergraduates to exemplify a proposed characterization of student learning in university science in terms of fluency in disciplinary discourse. Drawing on ideas from a number of different sources in the literature, we characterize what we call “disciplinary discourse” as the complex of representations, tools and activities of a discipline, describing how it can be seen as being made up of various “modes”. For university science, examples of these modes are: spoken and written language, mathematics, gesture, images (including pictures, graphs and diagrams), tools (such as experimental apparatus and measurement equipment) and activities (such as ways of working—both practice and praxis, analytical routines, actions, etc.). Using physics as an illustrative example, we discuss the relationship between the ways of knowing that constitute a discipline and the modes of disciplinary discourse used to represent this knowing. The data comes from stimulated recall interviews where physics undergraduates discuss their learning experiences during lectures. These interviews are used to anecdotally illustrate our proposed characterization of learning and its associated theoretical constructs. Students describe a repetitive practice aspect to their learning, which we suggest is necessary for achieving fluency in the various modes of disciplinary discourse. Here we found instances of discourse imitation, where students are seemingly fluent in one or more modes of disciplinary discourse without having related this to a teacher-intended disciplinary way of knowing. The examples lead to the suggestion that fluency in a critical constellation of modes of disciplinary discourse may be a necessary (though not always sufficient) condition for gaining meaningful holistic access to disciplinary ways of knowing. One implication is that in order to be effective, science teachers need to know which modes are critical for an understanding of the material they wish to teach.

  • 93.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Bilingual Scientific Literacy2008In: Paper presented at the Beyond Borders of Scientific Literacy: International Perspectives on New Directions for Policy and Practice Symposium at the Canadian Society for the Study of Education Congress Conference, Vancouver, B.C., Canada, May 31 - June 8., 2008Conference paper (Refereed)
  • 94.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Kalmar University College.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Bilingual Scientific Literacy?: The Use of English in Swedish University Science Courses2008In: Nordic Journal of English Studies, ISSN 1654-6970, E-ISSN 1654-6970, Vol. 7, no 3, p. 145-161Article in journal (Refereed)
    Abstract [en]

    A direct consequence of the Bologna declaration on harmonisation of Europeaneducation has been an increase in the number of courses taught in English at Swedishuniversities. A worrying aspect of this development is the lack of research into the effectson disciplinary learning that may be related to changing the teaching language to Englishin this way. In fact, little is known at all about the complex inter-relationship betweenlanguage and learning. In this article we attempt to map out the types of parameters thatour research indicates would determine an appropriate language mix in one section ofSwedish higher education—natural science degree courses. We do this from theperspective of the overall goal of science education, which we suggest is the productionof scientifically literate graduates. Here we introduce a new term, bilingual scientificliteracy to describe the particular set of language-specific science skills that we hope tofoster within a given degree course. As an illustration of our constructs, we carry out asimple language audit of thirty Swedish undergraduate physics syllabuses, listing thetypes of input provided for students and the types of production expected from students inboth languages. We use this information to map out an ‘implied student’ for the courseswith respect to bilingual scientific literacy. The article finishes by identifying issues forfurther research in this area.

  • 95.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics. Department of Human Sciences, University of Kalmar.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics. Department of Physics, University of the Western Cape, Cape Town, South Africa..
    Disciplinary learning in a second language: A case study from university physics2007In: Researching Content and Language Integration in Higher Education / [ed] Wilkinson, Robert and Zegers, Vera, Maastricht: Maastricht University Language Centre , 2007, p. 161-171Chapter in book (Refereed)
    Abstract [en]

    There is a popular movement within Swedish universities and university colleges towards delivery of courses and degree programmes through the medium of English. This is particularly true in natural science, engineering and medicine where such teaching has been commonplace for some time. However, the rationale for using English as the language of instruction appears to be more a pragmatic response to outside pressures rather than a conscious educational decision. This situation has recently been challenged with the publication of the report of the Parliamentary Committee for the Swedish Language, Mål i Mun, which discusses the effects of so called domain losses to English.

     

    This paper gives an overview of the continuing debate surrounding teaching through the medium of English, and examines some of the research carried out in this area. In contrast to the wealth of studies carried out in the pre-university school world, very few studies have been identified at university level. One conclusion is that little appears to be known about what goes on when Swedish university students are taught in English by Swedish lecturers. The paper concludes by suggesting a number of research questions that need to be addressed in order to better understand this area. This paper will be of interest to anyone who teaches, or plans to teach, university subjects through the medium of English.

  • 96.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics Didactics.
    Language and the Experience of Learning University Physics in Sweden2006In: European journal of physics, ISSN 0143-0807, E-ISSN 1361-6404, Vol. 27, no 3, p. 553-560Article in journal (Refereed)
    Abstract [en]

    This qualitative study explores the relationship between the lecturing language (English or Swedish) and the related learning experiences of 22 undergraduate physics students at two Swedish universities. Students attended lectures in both English and Swedish as part of their regular undergraduate programme. These lectures were videotaped and students were then interviewed about their learning experiences using selected excerpts of the video in a process of stimulated recall. The study finds that although the students initially report no difference in their experience of learning physics when taught in Swedish or English, there are in fact some important differences which become apparent during stimulated recall. The pedagogical implications of these differences are discussed.

  • 97.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science, Physics Didactics.
    Learning through English: further insights from a case study in Swedish university physics2008In: Paper presented at the Nätverk och Utveckling 2008 Lärande i en ny tid - samtal om undervisning i högre utbildning Conference, Kalmar, Sweden, 7-9 May., 2008Conference paper (Refereed)
  • 98.
    Airey, John
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Linder, Cedric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
    Social Semiotics in University Physics Education2017In: Multiple Representations in Physics Education / [ed] Treagust, Duit and Fischer, Cham: Springer, 2017, p. 95-122Chapter in book (Refereed)
  • 99.
    Airey, John
    et al.
    Stockholm University, Faculty of Science, Department of Mathematics and Science Education. Uppsala University, Sweden.
    Linder, Cedric
    Social Semiotics in University Physics Education2017In: Multiple Representations in Physics Education / [ed] David F. Treagust, Reinders Duit, Hans E. Fischer, Springer, 2017, p. 95-122Chapter in book (Refereed)
    Abstract [en]

    In this chapter we discuss the application of social semiotics to the teaching and learning of university physics. Social semiotics is a broad construct where all communication in a particular social group is realized through the use of semiotic resources. In the discipline of physics, examples of such semiotic resources are graphs, diagrams, mathematics, spoken and written language, and laboratory apparatus. In physics education research it is usual to refer to most of these semiotic resources as representations. In social semiotics, then, disciplinary learning can be viewed as coming to interpret and use the meaning potential of disciplinary-specific semiotic resources (representations) that has been assigned by the discipline. We use this complementary depiction of representations to build theory with respect to the construction and sharing of disciplinary knowledge in the teaching and learning of university physics. To facilitate both scholarly discussion and future research in the area, a number of theoretical constructs have been developed. These constructs take their point of departure in empirical studies of teaching and learning in undergraduate physics. In the chapter we present each of these constructs in turn and examine their usefulness for problematizing teaching and learning with multiple representations in university physics.

  • 100.
    Airey, John
    et al.
    Linnaeus University, Faculty of Arts and Humanities, Department of Languages. Uppsala University.
    Linder, Cedric
    Uppsala University.
    Social semiotics in university physics education: Leveraging critical constellations of disciplinary representations2015In: Science Education Research: Engaging learners for a sustainable future / [ed] Jari Lavonen, Kalle Juuti, Jarkko Lampiselkä, Anna Uitto, Kaisa Hahl, European Science Education Research Association , 2015Conference paper (Refereed)
    Abstract [en]

    Social semiotics is a broad construct where all communication is viewed as being realized through signs and their signification. In physics education we usually refer to these signs as disciplinary representations. These disciplinary representations are the semiotic resources used in physics communication, such as written and oral languages, diagrams, graphs, mathematics, apparatus and simulations. This alternative depiction of representations is used to build theory with respect to the construction and sharing of disciplinary knowledge in the teaching and learning of university physics. Based on empirical studies of physics students cooperating to explain the refraction of light, a number of theoretical constructs were developed. In this presentation we describe these constructs and examine their usefulness for problematizing teaching and learning in university physics. The theoretical constructs are: fluency in semiotic resources, disciplinary affordance and critical constellations.

    The conclusion formulates a proposal that has these constructs provide university physics teachers with a new set of meaningfully and practical tools, which will enable them to re-conceptualize their practice in ways that have the distinct potential to optimally enhance student learning.

1234567 51 - 100 of 3673
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf