Change search
Refine search result
1234567 51 - 100 of 1200162
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulation of Nd3+ ions in a crystalline PEO surface1998In: ELECTROCHIMICA ACTA, ISSN 0013-4686, Vol. 43, no 10-11, p. 1361-1364Article in journal (Other scientific)
    Abstract [en]

    Poly(ethylene oxide) based electrolytes are systems in which ionic salts are dissolved into an amorphous EO matrix. Potentials developed earlier to model crystalline and amorphous bulk PEO systems are here used for the MD simulation at 400 K of the behavi

  • 52.
    Aabloo, A
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Thomas, John Oswald
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Materials Chemistry, Structural Chemistry. strukturkemi.
    Molecular dynamics simulations of a poly(ethylene oxide) surface1997In: POLYMER, ISSN 0032-3861, Vol. 38, no 18, p. A47-A51Article in journal (Refereed)
    Abstract [en]

    Potentials developed earlier for crystalline and amorphous bulk PEO systems have been used for the MD simulation of a PEO surface model. The surface comprises the outer region of a 122 Angstrom-thick sheet of PEO in which the PEO, -(CH2-CH2-O)(n)- chains

  • 53. Aaboe, L
    et al.
    Lindelöf, Peter
    University of Kalmar, Baltic Business School.
    Löfsten, H
    Incubator performance: An efficiency frontier analysis2008In: International Journal of Business Innovation and Research, ISSN 1751-0252, E-ISSN 1751-0260, Vol. 2, no 4, p. 354-380Article in journal (Refereed)
    Abstract [en]

    Assessments and evaluations of incubators has been a topic of discussion for as long as incubators have been in existence due to the fact that there has not been an agreement on how to determine good performance. This paper demonstrates the use of Data Envelopment Analysis (DEA) when studying performance of incubators. More specifically, it does so within the four dimensions of cooperation with universities, business networks, external funding and competence development on a sample of 16 Swedish incubators. We show that DEA enables us to measure non-numerical dimensions, and to simultaneously take into account the efforts made by both the incubator and the outcomes. Moreover, DEA provides benchmarks and, based on a model that divides the incubators into four different groups, illustrates the difference between the benchmark and the incubators' current situation.

  • 54. Aaboen, L
    et al.
    Lindelöf, Peter
    University of Kalmar, Baltic Business School.
    Löfsten, H
    Critical dimensions for technology transfer Incubator-facilitated links between finance, academia and NTBFs2008In: International Journal of Management and Enterprise Development, ISSN 1468-4330, E-ISSN 1741-8127, Vol. 5, no 3, p. 331-335Article in journal (Refereed)
    Abstract [en]

    This paper explores incubator facilitation of technology transfer for their New Technology-Based Firms (NTBFs). Empirical evidence gathered from six interviews with incubator managers, together with a survey of 131 NTBFs in incubators in Sweden, in 2005, and the findings made in a survey of 273 NTBFs situated inside-and-outside Science Parks in 1999, are used for the exploration. It is suggested that incubators do facilitate technology transfer for their NTBFs. It is further suggested that the development towards increased ability to facilitate technology transfer will continue as a results of the efforts made on the incubator and systemic level.

  • 55.
    Aaboen, Lise
    NTNU, Trondheim.
    BATON-CHANGING ON EGGSHELLS – TRANSFERRING SUPPLIER RELATIONSHIPS WHEN MOVING PRODUCTION2014Conference paper (Refereed)
    Abstract [en]

    Production transfers are a result of outsourcing and offshoring decisions. Though, because of

    the strategic focus of the outsourcing literature have not the operational issues of how

    relationship development between sender, receiver and raw material been fully depicted. The

    purpose of the present paper is to explore relationship development connected to transfer of

    raw material supplies responsibility during transfer of production. To fulfil the purpose, four

    different production transfers were studied: three from Sweden to China, Romania and

    Hungary respectively and one transfer from Holland to Sweden. We can see that the

    dependence and power shifts gradually between the sender and the receiver and the

    relationship between them sets the arena for what relationship is developed between the

    receiver and the raw material suppliers. Furthermore, short social distances can over bridge

    cultural and technological distances to some extent, because it motivates to take the

    relationship into a more developed state.

  • 56.
    Aaboen, Lise
    et al.
    Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
    Fredriksson, Anna
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    The relationship development aspect of production transfer2016In: Journal of Purchasing and Supply Management, ISSN 1478-4092, E-ISSN 1873-6505, Vol. 22, no 1, p. 53-65Article in journal (Refereed)
    Abstract [en]

    Production transfers are a result of outsourcing and offshoring decisions. Because of the strategic focus of the outsourcing literature, the operational issues of relationship development between sender and receiver and its impact on the transfer progress have not been fully depicted. The purpose of the present paper is to explore relationship development during production transfer. To fulfil this purpose, we studied three different production transfers and derived four propositions for further testing. Our main conclusions included that dependence and power gradually shift between the sender and the receiver and that the relationship between them sets the arena for what types of relationships can be developed between the receiver and the suppliers. Furthermore, short social distances can bridge cultural and technological distances to some extent, because it motivates the actors to bring their relationship into a more developed state. Finally, we noticed that the headquarters’ involvement can work both as an inhibitor as well as a converter.

  • 57.
    Aaboen, Lise
    et al.
    Norwegian University of Science and Technology .
    La Rocca, Antonella
    BI Norwegian Business School.
    Lind, Frida
    Chalmers University of Technology.
    Perna, Andrea
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Industrial Engineering & Management. Universita' Politecnica delle Marche.
    Shih, Tommy
    Starting up in Business Networks: Why relationships matter in entrepreneurship2016 (ed. 1st)Book (Refereed)
  • 58.
    Aaboen, Lise
    et al.
    Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway.
    Laage-Hellman, Jens
    Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, Sweden.
    Lind, Frida
    Department of Technology Management and Economics, Chalmers University of Technology, Gothenburg, Sweden.
    Öberg, Christina
    Örebro University, Örebro University School of Business.
    Shih, Tommy
    Department of Business Administration, Lund University, Lund, Sweden.
    Exploring the roles of university spin-offs in business networks2016In: Industrial Marketing Management, ISSN 0019-8501, E-ISSN 1873-2062, Vol. 59, p. 157-166Article in journal (Refereed)
    Abstract [en]

    This paper identifies different university spin-off (USO) roles related to resource interaction among business parties. It does so by mapping how USOs become part of business networks in terms of their roles relative to other parties. The theoretical frame of reference focuses on roles and resource interaction based on an industrial network approach to business markets. The empirical research is based onfive cases of USOs representing a variety in terms of technology, degree of newness, sector, and area of application. As a result of the analysis, three different roles are identified: the USO as resource mediator, resource re-combiner and resource renewer. These roles reflect how USOs adapt resources to, or require changes among, business parties' resources. The paper also discusses the main resource interfaces associated with the three roles and related challenges. The paper contributes to previous research through illustrating USOs' roles relative to business parties from a resource interaction point of view, and by pointing to the establishment of new companies in business networks as a way of implementing innovation. Finally, the paper discusses the managerial implications of the research in terms of the USO's need to understand which role to take and how to develop it.

  • 59. AAboen, Lise
    et al.
    Laage-Hellman, Jens
    Chalmers University of technology, Gothenburg, Sweden.
    Lind, Frida
    Chalmers University of technology, Gothenburg, Sweden.
    Öberg, Christina
    Örebro University, Örebro University School of Business.
    Shih, Tommy
    Lund University, Lund, Sweden.
    University spin-offs and their roles in business networks2014In: IMP Conference, 2014Conference paper (Refereed)
  • 60. Aaboen, Lise
    et al.
    Lindelöf, Peter
    Löfsten, Hans
    Incubator performance: an efficiency frontier analysis2008In: International Journal of Business Innovation and Research, ISSN 1751-0252, Vol. 2, no 4, p. 354-380Article in journal (Refereed)
  • 61. Aaboen, Lise
    et al.
    Lindelöf, Peter
    Löfsten, Hans
    Towards incubator facilitation of technology transfer2008In: International Journal of Management and Enterprise Development, ISSN 1468-4330, E-ISSN 1741-8127, Vol. 5, no 3, p. 331-335Article in journal (Refereed)
  • 62.
    Aaboen, Lise
    et al.
    Chalmers tekniska högskola.
    Lindelöf, Peter
    The University of Nottingham.
    von Koch, Christopher
    School of Economics and Commercial Law, Department of Business Administration, Göteborg.
    Löfsten, Hans
    Chalmers universitet.
    Corporate governance and performance of small high-tech firms in Sweden2006In: Technovation, ISSN 0166-4972, E-ISSN 1879-2383, Vol. 26, no 8, p. 955-968Article in journal (Refereed)
    Abstract [en]

    The approach uses data from a sample of 183 small high-tech firms, new technology-based firms (small high-tech firms) in Sweden (54 variables under the headings of work experience, board and advice, financing, motivation—performance priorities, technological innovation and strategy). This study identifies some core areas of importance in corporate governance. Few managers in this study had a strong background and experience of finance and the preparation of business. Only 64 per cent of the managers have had previous work experience before starting the firm. The survey makes it clear that the small high-tech firms are likely to have a strong link with banking institutions. The consequence of these links is that most of the firm's capital supply is from banks, and that there are strong ownership links between banks and industry. The background of the founder does seem to have had an effect on the problem of financing and ownership issues. It is private sector organizations (banks) and families that are most frequently consulted by small high-tech firms (However, low means). It is also the private and public sector organizations, in connection with external board membership, regional development agencies and banks that are most frequently consulted. In the future, it is reasonable to search for factor patterns that can begin to explain and predict the direction of corporate governance in small new technology-based firms.

  • 63. Aaboen, Lise
    et al.
    Lindelöf, Peter
    von Koch, Christopher
    Löfsten, Hans
    Corporate governance and performance of small high-tech firms in Sweden2006In: Technovation, ISSN 0166-4972, E-ISSN 1879-2383, Vol. 26, no 8, p. 955-968Article in journal (Refereed)
    Abstract [en]

    The approach uses data from a sample of 183 small high-tech firms, new, technology-based firms (small high-tech firms) in Sweden (54 variables under the headings of work experience, board and advice, financing, motivation-performance priorities, technological innovation and strategy). This study identifies some core areas of importance in corporate governance. Few managers in this study had a strong background and experience of finance and the preparation of business. Only 64 per cent of the managers have had previous work experience before starting the firm. The survey makes it clear that the small high-tech firms are likely to have a strong link with banking institutions. The consequence of these links is that most of the firm's capital supply is from banks, and that there are strong ownership links between banks and industry. The background of the founder does seem to have had an effect on the problem of financing and ownership issues. It is private sector organizations (banks) and families that are most frequently consulted by small high-tech firms (However, low means). It is also the private and public sector organizations, in connection with external board membership, regional development agencies and banks that are most frequently consulted. In the future, it is reasonable to search for factor patterns that can begin to explain and predict the direction of corporate governance in small new technology-based firms.

  • 64. Aaboen, Lise
    et al.
    Löfsten, Hans
    Bengtsson, Lars
    Nourishment for the piggy bank: facilitation of external financing in incubators2011In: International Journal of Technology Transfer and Commercialisation, ISSN 1470-6075, E-ISSN 1741-5284, Vol. 10, no 3/4, p. 354-374Article in journal (Refereed)
    Abstract [en]

    In this paper, we argue that incubators facilitate access to external financing for their incubatees. Incubators use a wide range of activities to facilitate the accessing of external financing from public and private sources. We have grouped these into two sets of activities. The general activities aim to develop the conditions for external financing through information, education of incubatees, network-building and lobbying activities. The specific activities aim to assist the individual incubatee in their pursuit of external finance through help in application procedures, establishing need for capital, making contacts with the best public or private investor, etc. Based on the survey data, we have also shown that it is more common for incubatees to attract external capital compared to non-incubator firms. The incubatees seem especially successful in attracting public capital. The incubatees also attract more private external capital, however, the observed frequency of private capital in the incubatees are low.

  • 65. Aabou, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    ZZ -> l(+)l(-)l '(+)l '(-) cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector2018In: Physical Review C. Nuclear Physics, ISSN 0556-2813, E-ISSN 1089-490XArticle in journal (Refereed)
    Abstract [en]

    Measurements of ZZ production in the l(+)l(-)l'(+)l'(-) channel in proton-proton collisions at 13 TeV center-of-mass energy at the Large Hadron Collider are presented. The data correspond to 36.1 fb(-1) of collisions collected by the ATLAS experiment in 2015 and 2016. Here l and l ' stand for electrons or muons. Integrated and differential ZZ -> l(+)l(-)l'(+)l'(-) cross sections with Z -> l(+)l(-) candidate masses in the range of 66 GeV to 116 GeV are measured in a fiducial phase space corresponding to the detector acceptance and corrected for detector effects. The differential cross sections are presented in bins of twenty observables, including several that describe the jet activity. The integrated cross section is also extrapolated to a total phase space and to all standard model decays of Z bosons with mass between 66 GeV and 116 GeV, resulting in a value of 17.3 +/- 0.9 [+/- 0.6(start) +/- 0.5 (syst) +/- 0.6 (lumi)] pb. The measurements are found to be in good agreement with the standard model. A search for neutral triple gauge couplings is performed using the transverse momentum distribution of the leading Z boson candidate. No evidence for such couplings is found and exclusion limits are set on their parameters.

  • 66. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 647-665Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived charged R-hadronsis reported using a data sample corresponding to 3.2fb(-1)of proton-proton collisions at root s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadronsin the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.

  • 67. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 11, article id 111802Article in journal (Refereed)
    Abstract [en]

    A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained.

  • 68. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at s=13 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 760, p. 520-537Article in journal (Refereed)
    Abstract [en]

    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb (1) of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at root s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

  • 69. Aaboud, B
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for scalar leptoquarks in pp collisions at √s = 13 TeV with the ATLAS experiment2016In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 18, no 9, article id 093016Article in journal (Refereed)
    Abstract [en]

    We report a search for first generation scalar leptoquarks using 1.03 fb(-1) of proton-proton collisions data produced by the Large Hadron Collider at root s = 7 TeV and recorded by the ATLAS experiment. Leptoquarks are sought via their decay into an electron or neutrino and a quark, producing events with two oppositely charged electrons and at least two jets, or events with an electron, missing transverse momentum and at least two jets. Control data samples are used to validate background predictions from Monte Carlo simulation. In the signal region, the observed event yields are consistent with the background expectations. We exclude at 95% confidence level the production of first generation scalar leptoquark with masses m(LQ) < 660 (607) GeV when assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).

  • 70.
    Aaboud, M.
    et al.
    Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
    Aad, G.
    CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
    Abbott, B.
    Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, United States of America.
    Abdallah, J.
    University of Iowa, Iowa City, United States of America.
    Augsten, K.
    Czech Technical University in Prague, Praha, Czech Republic.
    Caforio, D.
    Czech Technical University in Prague, Praha, Czech Republic.
    Gallus, P.
    Czech Technical University in Prague, Praha, Czech Republic.
    Guenther, J.
    Czech Technical University in Prague, Praha, Czech Republic.
    Hubaček, Z.
    Czech Technical University in Prague, Praha, Czech Republic.
    Myska, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Pospisil, S.
    Czech Technical University in Prague, Praha, Czech Republic.
    Seifert, F.
    Czech Technical University in Prague, Praha, Czech Republic.
    Simak, V.
    Czech Technical University in Prague, Praha, Czech Republic.
    Slavicek, Tomas
    Czech Technical University in Prague, Praha, Czech Republic.
    Smolek, K.
    Czech Technical University in Prague, Praha, Czech Republic.
    Solar, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Sopczak, A.
    Czech Technical University in Prague, Praha, Czech Republic.
    Sopko, V.
    Czech Technical University in Prague, Praha, Czech Republic.
    Suk, M.
    Czech Technical University in Prague, Praha, Czech Republic.
    Tureček, D.
    Czech Technical University in Prague, Praha, Czech Republic.
    Search for the Standard Model Higgs boson produced by vector-boson fusion and decaying to bottom quarks in root s=8TeV pp collisions with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 112Article in journal (Refereed)
    Abstract [en]

    A search with the ATLAS detector is presented for the Standard Model Higgs boson produced by vector-boson fusion and decaying to a pair of bottom quarks, using 20.2 fb−1 of LHC proton-proton collision data at s=8" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">s√=8s=8 TeV. The signal is searched for as a resonance in the invariant mass distribution of a pair of jets containing b-hadrons in vector-boson-fusion candidate events. The yield is measured to be −0.8 ± 2.3 times the Standard Model cross-section for a Higgs boson mass of 125 GeV. The upper limit on the cross-section times the branching ratio is found to be 4.4 times the Standard Model cross-section at the 95% confidence level, consistent with the expected limit value of 5.4 (5.7) in the background-only (Standard Model production) hypothesis.

  • 71. Aaboud, M
    et al.
    Amorim, Antonio
    KTH.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Search for metastable heavy charged particles with large ionization energy loss in pp collisions at root s=13 TeV using the ATLAS experiment2016In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 93, no 11, article id 112015Article in journal (Refereed)
    Abstract [en]

    This paper presents a search for massive charged long-lived particles produced in pp collisions at root s = 13 TeV at the LHC using the ATLAS experiment. The data set used corresponds to an integrated luminosity of 3.2 fb(-1). Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as R-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the root s = 8 TeV data set, thanks to the increase in expected signal cross section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on R-hadron production cross sections and masses are set. Gluino R-hadrons with lifetimes above 0.4 ns and decaying to q (q) over bar plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 and 1590 GeV. In the case of stable R-hadrons the lower mass limit at the 95% confidence level is 1570 GeV

  • 72. Aaboud, M.
    et al.
    Annovi, A.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the llbb final state in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 783, p. 392-414Article in journal (Refereed)
    Abstract [en]

    A search for a heavy neutral Higgs boson, A, decaying into a Z boson and another heavy Higgs boson, H, is performed using a data sample corresponding to an integrated luminosity of 36.1 fb(-1) from proton-proton collisions at root s = 13 TeV recorded in 2015 and 2016 by the ATLAS detector at the Large Hadron Collider. The search considers the Z boson decaying to electrons or muons and the H boson into a pair of b-quarks. No evidence for the production of an A boson is found. Considering each production process separately, the 95% confidence-level upper limits on the pp -> A -> ZH production cross-section times the branching ratio H -> bb are in the range of 14-830 fb for the gluon-gluon fusion process and 26-570 fb for the b-associated process for the mass ranges 130-700 GeV of the H boson and 230-800 GeV of the A boson. The results are interpreted in the context of two-Higgs-doublet models.

  • 73.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco; LPTPM, Oujda, Morocco.
    Artamonov, A.
    ITEP, Moscow, Russia.
    Asimakopoulou, Eleni Myrto
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV pp collisions with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 050Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetric partners of top quarks decaying as (t) over tilde (1) -> c (chi) over tilde (0)(1)and supersymmetric partners of charm quarks decaying as (c) over tilde (1) -> c (chi) over tilde (0 )(1)where (chi) over tilde (0)(1) is the lightest neutralino, is presented. The search uses 36.1 fb(-1) pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to c (chi) over tilde (0)(1), top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For m (t) over tilde (1,(c) over tilde1) - m((chi) over tilde 10)< 100 GeV, top and charm squark masses up to 500 GeV are excluded.

  • 74. Aaboud, M.
    et al.
    Asimakopoulou, E. M.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb + Pb and pp collisions with ATLAS2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 789, p. 167-190Article in journal (Refereed)
    Abstract [en]

    Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb(-1) of Pb + Pb collision data at root(NN)-N-s = 5.02 TeV and 25 pb(-1) of pp collision data at. root s= 5.02 TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum 63.1 < p(T)(gamma) < 200 GeV and vertical bar eta(gamma vertical bar) < 2.37 are paired with all jets in the event that have p(T)(jet) > 31.6 GeV and pseudorapidity vertical bar eta(Jet)vertical bar < 2.8. The transverse momentum balance given by the jet-to-photon p(T) ratio, x(j gamma), is measured for pairs with azimuthal opening angle Delta phi > 7 pi/8. Distributions of the per-photon jet yield as a function of x(j gamma), (1/N-gamma)(dN/dx(j gamma)), are corrected for detector effects via a two-dimensional unfolding procedure and reported at the particle level. In pp collisions, the distributions are well described by Monte Carlo event generators. In Pb + Pb collisions, the x(j gamma) distribution is modified from that observed in pp collisions with increasing centrality, consistent with the picture of parton energy loss in the hot nuclear medium. The data are compared with a suite of energy-loss models and calculations. (C) 2018 The Author(s). Published by Elsevier B.V.

  • 75. Aaboud, M.
    et al.
    Asimakopoulou, E. M.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H -> WW* -> e nu mu nu decay channel in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 789, p. 508-529Article in journal (Refereed)
    Abstract [en]

    Higgs boson production cross-sections in proton-proton collisions are measured in the H -> WW*-> e nu mu nu decay channel. The proton-proton collision data were produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). The product of the H -> WW* branching fraction times the gluon-gluon fusion and vector-boson fusion cross-sections are measured to be 11.4(-1.1)(+1.2)(stat.)(-1.7)(+1.8)(syst.) pb and 0.50(-0.22)(+0.24)(stat.) +/- 0.17(syst.) pb, respectively, in agreement with Standard Model predictions. (C) 2019 The Author. Published by Elsevier B.V.

  • 76.
    Aaboud, M.
    et al.
    Facult ́e des Sciences, Universit ́e Mohamed Premier and LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, P. H. Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Properties of g -> b(b)over-bar at small opening angles in pp collisions with the ATLAS detector at root s=13 TeV2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052004Article in journal (Refereed)
    Abstract [en]

    The fragmentation of high-energy gluons at small opening angles is largely unconstrained by present measurements. Gluon splitting to b-quark pairs is a unique probe into the properties of gluon fragmentation because identified b-tagged jets provide a proxy for the quark daughters of the initial gluon. In this study, key differential distributions related to the g -> b (b) over bar process are measured using 33 fb(-1) of root s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2016. Jets constructed from charged-particle tracks, clustered with the anti-k(t) jet algorithm with radius parameter R = 0.2, are used to probe angular scales below the R = 0.4 jet radius. The observables are unfolded to particle level in order to facilitate direct comparisons with predictions from present and future simulations. Multiple significant differences are observed between the data and parton shower Monte Carlo predictions, providing input to improve these predictions of the main source of background events in analyses involving boosted Higgs bosons decaying into b-quarks.

  • 77. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Searches for third-generation scalar leptoquarks in √s = 13 TeV pp collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 6, article id 144Article in journal (Refereed)
    Abstract [en]

    Limits are set on the pair production of scalar leptoquarks, where all possible decays of the leptoquark into a quark (t, b) and a lepton (, ) of the third generation are considered. The limits are presented as a function of the leptoquark mass and the branching ratio into charged leptons for up-type (LQ<sub ) and down-type (/t) leptoquarks. Many results are reinterpretations of previously published ATLAS searches. In all cases, LHC proton-proton collision data at a centre-of-mass energy of = 13 TeV recorded by the ATLAS detector in 2015 and 2016 are used, corresponding to an integrated luminosity of 36.1 fb(-1). Masses below 800 GeV are excluded for both LQu and LQd independently of the branching ratio, with masses below about 1 TeV being excluded for the limiting cases of branching ratios equal to zero or unity.

  • 78. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Woods, N.
    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 088Article in journal (Refereed)
    Abstract [en]

    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.

  • 79. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zhang, Z.
    Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment2019In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 122, no 23, article id 231801Article in journal (Refereed)
    Abstract [en]

    Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H -> invisible decays where H is produced according to the standard model via vector boson fusion, Z(ll)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb(-1) of pp collisions at a center-of-mass energy of root s = 13 TeV at the LHC. In combination with the results at root s = 7 and 8 TeV, an exclusion limit on the H -> invisible branching ratio of 0.26(0.17(-0.05)(+0.07)) at 95% confidence level is observed (expected).

  • 80. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Constraints on mediator-based dark matter and scalar dark energy models using root s= 13 TeV pp collision data collected by the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 142Article in journal (Refereed)
    Abstract [en]

    Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 37 fb(-1) = 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015-2016 are summarised in this paper. The results of experimental searches in a variety of final states are interpreted in terms of a set of spin-1 and spin-0 single-mediator dark matter simplified models and a second set of models involving an extended Higgs sector plus an additional vector or pseudo-scalar mediator. The searches considered in this paper constrain spin-1 leptophobic and leptophilic mediators, spin-0 colour-neutral and colour-charged mediators and vector or pseudo-scalar mediators embedded in extended Higgs sector models. In this case, also = 8 TeV pp collision data are used for the interpretation of the results. The results are also interpreted for the first time in terms of light scalar particles that could contribute to the accelerating expansion of the universe (dark energy).

  • 81. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the ratio of cross sections for inclusive isolated-photon production in pp collisions at root s=13 and 8 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 093Article in journal (Refereed)
    Abstract [en]

    The ratio of the cross sections for inclusive isolated-photon production in pp collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb(-1) and 20.2 fb(-1), respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of 2.5 (5) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for Z boson production at 13 and 8 TeV using the decay channels Z e(+)e(-) and Z (+-) is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

  • 82. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of VH, H -> b(b)over-barproduction as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 141Article in journal (Refereed)
    Abstract [en]

    Cross-sections of associated production of a Higgs boson decaying into bottomquark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the simplified template cross-section' framework. The results are obtained using 79.8 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons.

  • 83. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Modelling radiation damage to pixel sensors in the ATLAS detector2019In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, article id P06012Article in journal (Refereed)
    Abstract [en]

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 10(15) 1 MeV n(eq)/cm(2), while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (<= 10(15) 1 MeV n(eq)/cm(2)).

  • 84. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 1, article id 012006Article in journal (Refereed)
    Abstract [en]

    A search is conducted for the electroweak pair production of a chargino and a neutralino pp -> (chi) over tilde (+/-)(1)(chi) over tilde (0)(2), where the chargino decays into the lightest neutralino and a W boson, (chi) over tilde (+/-)(1) -> (chi) over tilde W-0(1)+/- while the neutralino decays into the lightest neutralino and a Standard Model-like 125 GeV Higgs boson,(chi) over tilde (0)(2) -> (chi) over tilde (0)(1)h. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final. states with missing transverse momentum are considered in this search. Higgs bosons in the final state are identified by either two jets originating from bottom quarks (h -> b (b) over bar), two photons (h -> gamma gamma), or leptons from the decay modes h -> WW, h -> ZZ or h -> tau tau. The analysis is based on 36.1 fb(-1) of s root s = 13 TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. Observations are consistent with the Standard Model expectations, and 95% confidence-level limits of up to 680 GeV in (chi) over tilde (+/-)(1)/(chi) over tilde (0)(2) mass are set in the context of a simplified supersymmetric model.

  • 85. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellajosyula, Venugopal
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for low-mass resonances decaying into two jets and produced in association with a photon using pp collisions root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 795, p. 56-75Article in journal (Refereed)
    Abstract [en]

    A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb(-1) of LHC proton-proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015-2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as b-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark Z' model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV. 

  • 86.
    Aaboud, M.
    et al.
    Faculté des SciencesUniversité Mohamed Premier and LPTPM Oujda Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Frate, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gradin, P. O. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN Geneva Switzerland.
    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 20162019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 3, article id 205Article in journal (Refereed)
    Abstract [en]

    The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1 fb1 to 36.7 fb1 of pp collision data at v s = 13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-tosimulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate ismeasured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z. mu mu. events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.

  • 87.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco; LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Frate, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for Higgs boson pair production in the (WWWW(*))-W-(*) decay channel using ATLAS data recorded at root s=13 TeV2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 124Article in journal (Refereed)
    Abstract [en]

    A search for a pair of neutral, scalar bosons with each decaying into two W bosons is presented using 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. This search uses three production models: non-resonant and resonant Higgs boson pair production and resonant production of a pair of heavy scalar particles. Three final states, classified by the number of leptons, are analysed: two same-sign leptons, three leptons, and four leptons. No significant excess over the expected Standard Model backgrounds is observed. An observed (expected) 95% confidence-level upper limit of 160 (120) times the Standard Model prediction of non-resonant Higgs boson pair production cross-section is set from a combined analysis of the three final states. Upper limits are set on the production cross-section times branching ratio of a heavy scalar X decaying into a Higgs boson pair in the mass range of 260 GeV m(X) 500 GeV and the observed (expected) limits range from 9.3 (10) pb to 2.8 (2.6) pb. Upper limits are set on the production cross-section times branching ratio of a heavy scalar X decaying into a pair of heavy scalars S for mass ranges of 280 GeV m(X) 340 GeV and 135 GeV m(S) 165 GeV and the observed (expected) limits range from 2.5 (2.5) pb to 0.16 (0.17) pb.

  • 88.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco; LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Frate, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for top-quark decays t -> Hq with 36 fb(-1) of pp collision data at root s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 123Article in journal (Refereed)
    Abstract [en]

    A search for flavour-changing neutral current decays of a top quark into an up-type quark (q = u, c) and the Standard Model Higgs boson, t Hq, is presented. The search is based on a dataset of pp collisions at = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider and corresponding to an integrated luminosity of 36.1 fb(-1). Two complementary analyses are performed to search for top-quark pair events in which one top quark decays into Wb and the other top quark decays into Hq, and target the Hbb and H (+-) decay modes, respectively. The high multiplicity of b-quark jets, or the presence of hadronically decaying -leptons, is exploited in the two analyses respectively. Multivariate techniques are used to separate the signal from the background, which is dominated by top-quark pair production. No significant excess of events above the background expectation is found, and 95% CL upper limits on the t Hq branching ratios are derived. The combination of these searches with ATLAS searches in diphoton and multilepton final states yields observed (expected) 95% CL upper limits on the t Hc and t Hu branching ratios of 1.1 x 10(-3) (8.3 x 10(-4)) and 1.2 x 10(-3) (8.3 x 10(-4)), respectively. The corresponding combined observed (expected) upper limits on the |(tcH)| and |(tuH)| couplings are 0.064 (0.055) and 0.066 (0.055), respectively.

  • 89. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Frate, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 9, article id 092004Article in journal (Refereed)
    Abstract [en]

    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1). Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z' boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.

  • 90.
    Aaboud, M.
    et al.
    Facult ́e des Sciences, Universit ́e Mohamed Premier and LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, P. H. Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for heavy long-lived multicharged particles in proton-proton collisions at root s=13 TeV using the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052003Article in journal (Refereed)
    Abstract [en]

    A search for heavy long-lived multicharged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb(-1) collected in 2015 and 2016 from proton-proton collisions at root s = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from vertical bar q vertical bar = 2e to vertical bar q vertical bar = 7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multicharged particles with masses between 50 and 980-1220 GeV (depending on their electric charge) are excluded.

  • 91.
    Aaboud, M.
    et al.
    Facult ́e des Sciences, Universit ́e Mohamed Premier and LPTPM, Oujda, Morocco.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U.F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    De Bruin, P. H. Sales
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    Search for long-lived particles produced in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052005Article in journal (Refereed)
    Abstract [en]

    A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb(-1) of proton-proton collision data at root s =13 TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two-vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

  • 92. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 5, article id 052009Article in journal (Refereed)
    Abstract [en]

    A search for four-top-quark production, t (t) over bart (t) over bar, is presented. It is based on proton-proton collision data with a center-of-mass energy root s = 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1). Data are analyzed in both the single-lepton and opposite-sign dilepton channels, characterized by the presence of one or two isolated electrons or muons with high-transverse momentum and multiple jets. A data-driven method is used to estimate the dominant background from top-quark pair production in association with jets. No significant excess above the Standard Model expectation is observed. The result is combined with the previous same-sign dilepton and multilepton searches carried out by the ATLAS Collaboration and an observed (expected) upper limit of 5.3 (2.1) times the four-top-quark Standard Model cross section is obtained at 95% confidence level. Additionally, an upper limit on the anomalous four-top-quark production cross section is set in the context of an effective field theory model.

  • 93. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb plus Pb Collisions at root s(NN)=5.02 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 212301Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of gamma gamma -> mu(+)mu(-)- production in Pb + Pb collisions recorded by the ATLAS detector at the Large Hadron Collider at root s(NN) = 5.02 TeV with an integrated luminosity of 0.49 nb(-1). The azimuthal angle and transverse momentum correlations between the muons are measured as a function of collision centrality. The muon pairs are produced from gamma gamma through the interaction of the large electromagnetic fields of the nuclei. The contribution from background sources of muon pairs is removed using a template fit method. In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with previous measurements of muon pair production in ultraperipheral collisions. The angular correlations are observed to broaden significantly in central collisions. The modifications arc qualitatively consistent with rescattering of the muons while passing through the hot matter produced in the collision.

  • 94. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for charged Higgs bosons decaying into top and bottom quarks at √s=13TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 085Article in journal (Refereed)
    Abstract [en]

    A search for charged Higgs bosons heavier than the top quark and decaying via H-+/- tb is presented. The data analysed corresponds to 36.1 fb(-1) of pp collisions at TeV and was recorded with the ATLAS detector at the LHC in 2015 and 2016. The production of a charged Higgs boson in association with a top quark and a bottom quark, pp tbH(+/-), is explored in the mass range from m(H)+/- = 200 to 2000 GeV using multi-jet final states with one or two electrons or muons. Events are categorised according to the multiplicity of jets and how likely these are to have originated from hadronisation of a bottom quark. Multivariate techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching ratio of a charged Higgs boson as a function of its mass, which range from 2.9 pb at m(H)+/- = 200 GeV to 0.070 pb at m(H)+/- = 2000 GeV. The results are interpreted in two benchmark scenarios of the Minimal Supersymmetric Standard Model.

  • 95. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for Higgs boson pair production in the bb‾WW* decay mode at √s=13 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 092Article in journal (Refereed)
    Abstract [en]

    A search for Higgs boson pair production in the bb‾WW* decay mode is performed in the bb‾lvqq final state using 36.1 fb-1 of proton-proton collision data at a centre-of-mass energy of 13TeV recorded with the ATLAS detector at the Large Hadron Collider. No evidence of events beyond the background expectation is found. Upper limits on the non-resonant pp → HH production cross section of 10 pb and on the resonant production cross section as a function of the HH invariant mass are obtained. Resonant production limits are set for scalar and spin-2 graviton hypotheses in the mass range 500 to 3000 GeV.

  • 96. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at √s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, p. 1-32, article id 012001Article in journal (Refereed)
    Abstract [en]

    A search is performed for a long-lived particle decaying into a final state that includes a pair of muons of opposite-sign electric charge, using proton-proton collision data collected at √s = 13 TeV by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 32.9 fb-1. No significant excess over the Standard Model expectation is observed. Limits at 95% confidence level on the lifetime of the long-lived particle are presented in models of new phenomena including gauge-mediated supersymmetry or decay of the Higgs boson, H, to a pair of dark photons, ZD. Lifetimes in the range cτ = 1-2400 cm are excluded, depending on the parameters of the model. In the supersymmetric model, the lightest neutralino is the next-to-lightest supersymmetric particle, with a relatively long lifetime due to its weak coupling to the gravitino, the lightest supersymmetric particle. The lifetime limits are determined for very light gravitino mass and various assumptions for the neutralino mass in the range 300-1000 GeV. In the dark photon model, the lifetime limits are interpreted as exclusion contours in the plane of the coupling between the ZD and the Standard Model Z boson versus the ZD mass (in the range 20-60 GeV), for various assumptions for the H -> ZDZD branching fraction.

  • 97. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro H.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for squarks and gluinos in final states with hadronically decaying tau-leptons, jets, and missing transverse momentum using pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012009Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau-lepton is presented. Two exclusive final states with either exactly one or at least two tau-leptons are considered. The analysis is based on proton-proton collisions at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with tau-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of tan beta in the range 2 <= tan beta <= 60, and below 120 TeV for tan beta > 30.

  • 98. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Combination of the Searches for Pair-Produced Vectorlike Partners of the Third-Generation Quarks at √s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 211801Article in journal (Refereed)
    Abstract [en]

    A combination of the searches for pair-produced vectorlike partners of the top and bottom quarks in various decay channels (T -> Zt/Wb/Ht, B -> Zb/Wt/Hb) is performed using 36.1 fb(-1) of pp collision data at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The observed data are found to be in good agreement with the standard model background prediction in all individual searches. Therefore, combined 95% confidence-level upper limits are set on the production cross section for a range of vectorlike quark scenarios, significantly improving upon the reach of the individual searches. Model-independent limits are set assuming the vectorlike quarks decay to standard model particles. A singlet T is excluded for masses below 1.31 TeV and a singlet B is excluded for masses below 1.22 TeV. Assuming a weak isospin (T, B) doublet and vertical bar V-Tb vertical bar << vertical bar V-tB vertical bar, T and B masses below 1.37 TeV are excluded.

  • 99. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam=4 TeV2018In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, article id P12006Article in journal (Refereed)
    Abstract [en]

    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the FLUKA Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached.

  • 100. Aaboud, M.
    et al.
    Asimakopoulou, Eleni M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bergeås Kuutmann, Elin
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bokan, Petar
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isacson, Max F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Mårtensson, Mikael U. F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Sales De Bruin, Pedro
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Cross-section measurements of the Higgs boson decaying into a pair of τ-leptons in proton-proton collisions at √s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 7, article id 072001Article in journal (Refereed)
    Abstract [en]

    A measurement of production cross sections of the Higgs boson in proton-proton collisions is presented in the H → τ τ decay channel. The analysis is performed using 36.1 fb-1 of data recorded by the ATLAS experiment at the Large Hadron Collider at a center-of-mass energy of √s = 13 TeV. All combinations of leptonic (τ → l v v‾ with l = e, μ) and hadronic (τ→ hadrons v) τ decays arc considered. The H → τ τ signal over the expected background from other Standard Model processes is established with an observed (expected) significance of 4.4 (4.1) standard deviations. Combined with results obtained using data taken at 7 and 8 TeV center-of-mass energies, the observed (expected) significance amounts to 6.4 (5.4) standard deviations and constitutes an observation of H → τ τ decays. Using the data taken at √s = 13 TeV, the total cross section in the H → τ τ decay channel is measured to be 3.77+0.60-0.59(stat)+0.87-0.74 (syst) pb, for a Higgs boson of mass 125 GeV assuming the relative contributions of its production modes as predicted by the Standard Model. Total cross sections in the H → τ τ decay channel are determined separately for vector-boson-fusion production and gluon-gluon-fusion production to be σVBFH → τ τ = 0.28 ± 0.09 (stat)+0.11-0.09 (syst) pb and σggFH → τ τ = 3.1 ± 1.0 (stat)+1.6-1.3 (syst) pb, respectively. Similarly, results of a fit are reported in the framework of simplified template cross sections. All measurements are in agreement with Standard Model expectations.

1234567 51 - 100 of 1200162
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf