Change search
Refine search result
8485868788 4301 - 4350 of 4373
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 4301. Zou, Qi
    et al.
    Li, Xin
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhou, Ji
    Bai, Kangkang
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Synthesis and photochromism of a spirooxazine derivative featuring a carbazole moiety: Fast thermal bleaching and excellent fatigue resistance2014In: Dyes and pigments, ISSN 0143-7208, E-ISSN 1873-3743, Vol. 107, p. 174-181Article in journal (Refereed)
    Abstract [en]

    A novel photochromic spirooxazine derivative bearing a carbazole moiety (SOC) was synthesized and studied in solution under flash photolysis conditions. It is found to exhibit excellent characteristics like high photochromic response, large steady-state optical density, fast thermal bleaching rate and good fatigue-resistance. The effect of different solvents on the photochromic properties of the compound was evaluated, revealing that the photochromic properties can be modulated by different solvents based on the corresponding polarity. The mechanism and kinetics of the thermal fading process of compound SOC were additionally investigated by theoretical simulations, where the isomerization pathway from the trans-trans-cis conformation was found to be several times faster than that from the cis-trans-cis conformation. This type of fast-bleaching and fatigue-resistent photochromic compounds is expected to pave an exciting avenue in future development of high-performance photochromic materials.

  • 4302. Zou, Yidong
    et al.
    Liu, Yang
    Wang, Xiangxue
    Sheng, Guodong
    Wang, Suhua
    Ai, Yuejie
    Ji, Yongfei
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Liu, Yunhai
    Hayat, Tasawar
    Wang, Xiangke
    Glycerol-Modified Binary Layered Double Hydroxide Nanocomposites for Uranium Immobilization via Extended X-ray Absorption Fine Structure Technique and Density Functional Theory Calculation2017In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 5, no 4, p. 3583-3595Article in journal (Refereed)
    Abstract [en]

    Novel, efficient, glycerol-modified nanoscale layered double hydroxides (rods Ca/Al LDH-Gl and flocculent Ni/Al LDH-Gl) were successfully synthesized by a simple one-step hydrothermal synthesis route and showed excellent adsorption capacities for U(VI) from aqueous solutions under various environmental conditions. The advanced spectroscopy analysis confirmed the existence of abundant oxygen-containing functional groups (e.g., C-O, O-C=O, and C=O) on the surfaces of Ca/AI LDH-Gl and Ni/Al LDH-Gl, which could provide enough free active sites for the binding of U(VI). The maximum adsorption capacities of Macro-application (Environment U(VI) calculated from the Sips model were 266.5 mg.g(-1) for Ca/Al LDH-Gl and 142.3 mg.g(-1) for Ni/Al LDH-Gl at 298.15 K, and the higher adsorption capacity of Ca/Al LDH-Gl might be due to more functional groups and abundant high-activity "Ca-O" groups. Macroscopic experiments proved that the interaction of U(VI) on Ca/Al LDH-Gl and Ni/Al LDH-Gl was due to surface complexation and electrostatic interactions. The extended Xray absorption fine structure analysis confirmed that U(IV) did not transformation to U(VI) on solid particles, and stable inner sphere complexes were not formed by reduction interaction but by chemical adsorption. The density functional theory (DFT) calculations further evidenced that the higher adsorption energies (i.e., E-ad = 4.00 eV for Ca/AI LDH-Gl-UO22+ and E-ad = 2.43 eV for Ca/Al LDH-Gl-UO2CO3) were mainly attributed to stronger hydrogen bonds and electrostatic interactions. The superior immobilization performance of Ca/AI LDH-Gl supports a potential strategy for decontamination of UO22+ from wastewater, and it may provide new insights for the efficient removal of radionuclides in environmental pollution cleanup.

  • 4303.
    Zrida, Hana
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Fernberg, Patrik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Ayadi, Zoubir
    Institut Jean Lamour, Ecole Européenne d’Ingénieurs en Génie des Matériaux, Université de Lorraine.
    Varna, Janis
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Microcracking in thermally cycled and aged Carbon fibre/polyimide laminates2017In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 94, no 1, p. 121-130Article in journal (Refereed)
    Abstract [en]

    Carbon fibre T650 8-harness satin weave fabric composites with thermosetting polyimide resin designed for high service temperatures are solidified at 340 °C. High thermal stresses develop after cooling down to room temperature, which lead to multiple cracking in bundles of the studied quasi-isotropic composite. The composites are subjected to two thermal cycling ramps and the increase of crack density in each bundle is quantified. Comparison of two ramps with the same lowest temperature shows that the highest temperature in the cycle has a significant effect on thermal fatigue resistance. During thermal aging tests at 288 °C the mechanical properties are degrading with time and the crack density after certain aging time is measured. Aging and fatigue effects are separately analysed showing that part of the cracking in thermal cycling tests is related to material aging during the high temperature part of the cycle. Numerical edge stress analysis and fracture mechanics are used to explain observations. The 3-D finite element edge stress analysis reveals that there is large edge effect that induces a large difference in the damage state between the different layers on the edge. The linear elastic fracture mechanics explains the higher initiated and propagated crack density in the surface layers comparing to the inner layers.

  • 4304.
    Zuleta, Marcelo
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Electrochemical and ion transport characterisation of a nanoporous carbon derived from SiC2005Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    In this doctoral project, a relatively new form of carbon material, with unique narrow pore size distribution around 7 Å and with uniform structure, has been electrochemically characterised using the single particle microelectrode technique. The carbon has been used as electrode material for supercapacitors. This type of capacitors is used as high power energy buffers in hybrid vehicles and for stationary power backup. The principle for the microelectrode technique consists of connecting a carbon particle with a carbon fibre by means of a micromanipulator. The single particle and carbon fibre together form a microelectrode. Combination of this technique with electroanalytical methods such as cyclic voltammetry and potential step measurements allows for the survey of electrochemical phenomena and for the determination of ion transport parameters inside the nanopores.

    A mathematical model based on Fick’s second law, for diffusion of ions inside the nanopores at non steady state, was used for the determination of effective diffusion coefficients (Deff). The coefficients were calculated from an asymptotic solution of Fick’s equation, applied for a thin layer adjacent to the external surface of the carbon particles and valid for the current response in a short time region. Another asymptotic solution was obtained, using spherical geometry and valid for the current response in a long time region.

    In this doctoral work, the carbon particles have been exposed to potential cycling, which mimics that of large electrodes during operation of a double layer capacitor. The potential-current response, E-I, for the nanoporous carbon, shows a pure capacitive behaviour between –0.5 V and 0.1 V vs. the Hg|HgO reference electrode. The detection of the faradaic processes beyond these potentials was possible by lowering of the voltammometric sweep rate. The electrochemical processes occurring at positive and at negative potential were investigated separately.

    Cyclic voltammometric measurements showed that the chemisorption of hydroxyl groups, occurring between 0.1 and 0.3 V, leads to a mild oxidation of the carbon structure, resulting in surface groups containing an oxygen atom at a specific carbon site (e.g., phenolic or quinine type). These oxygen-containing surface groups caused an increase of the specific capacitance, which remained constant throughout a number of voltammometric cycles. The Deff decreased on the other hand with the number of cycles. The Deff decreases also with the positive potential. The evaluation of Deff indicates adsorption of hydroxyl groups and an increase of the effective tortuosity of the pore system.

    The oxidation of the carbon particles, between 0 and 0.5 V, leads to more extensive oxidation and to surface groups containing two oxygen atoms at a single carbon site, followed by formation of carbonate ions. The oxygen-containing surface groups and carbonate ions formed at these potentials do not contribute to the specific capacitance and drastically retard or obstruct the ion transport inside the nanopores.

    At negative potentials the carbon particles show a dominantly capacitive behaviour. The faradaic processes taking place below –0.5 V vs. Hg|HgO reference electrode are generation and adsorption of hydrogen. These processes do not perturb significantly the electrochemical and ion transport properties of the nanoporous carbon particles. It was found that hydrogen generation occurs at –0.5 V vs. Hg|HgO and that two hydrogen oxidation processes take place at positive potentials. The results indicate that the weakly adsorbed hydrogen undergoes oxidation between 0 and 0.1 V and that the strongly adsorbed hydrogen is oxidised at more positive potentials.

    The single particle technique was adapted for the determination of diffusion coefficients of an organic electrolyte. The different size of the anions and cations caused different transport characteristics at negative and positive potentials. Slow cycling was found important for ion penetration inside the nanopores and for the evaluation of the effective diffusion coefficients.

    The effective diffusion coefficients for the nanoporous carbon using aqueous 6M KOH and 0.1M TEABF4 in acetonitrile were estimated to 1.4 (±0.8).10-9 cm2 s-1 and 1.3 (±0.4) 10-8 cm2 s-1, respectively.

  • 4305.
    Zuleta, Marcelo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Björnbom, Pehr
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Lundblad, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Characterization of the electrochemical and ion-transport properties of a nanoporous carbon at negative polarization by the single-particle method2006In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 153, no 1, p. A48-A57Article in journal (Refereed)
    Abstract [en]

    In this work, the electrochemical processes occurring in a nanoporous carbon, obtained from silicon carbide and used as negative electrode material for supercapacitors, have been investigated by means of the single-particle microelectrode method. The processes studied deal with hydrogen adsorption, evolution, and oxidation using 6 M KOH as electrolyte. It was found that adsorption of hydrogen started at -0.5 V, hydrogen evolution at -1.4 V vs Hg vertical bar HgO, and that hydrogen oxidation occurs in two steps. The first oxidation process takes place between 0 and 0.1 V, shown by a well-defined current peak on the voltammograms. The second oxidation stage occurs between 0.1 and 0.5 V, indicated by a successive increase in current with the number of cycles. It was also found that after the first oxidation process, subsequent cycling between -0.5 and -1 V leads to a larger accumulation of hydrogen inside the nanopores and to a decrease of the effective diffusion coefficient (D-eff) of potassium ions. Subsequent oxidation, in a second process, leads to a total consumption of hydrogen and to an increase of D-eff.

  • 4306.
    Zuleta, Marcelo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Björnbom, Pehr
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Lundblad, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Nurk, G.
    Kasuk, H.
    Lust, E.
    Determination of diffusion coefficients of BF4- inside carbon nanopores using the single particle microelectrode technique2006In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 586, no 2, p. 247-259Article in journal (Refereed)
    Abstract [en]

    The electrochemical and mass transport properties of TEABF(4) in a nanoporous (NP) carbon material, obtained from silicon carbide, was studied using single particles and a microelectrode technique. The carbon particles of size 100-200 mu m were studied by cyclic voltammetry and potential step measurements. The effective diffusion coefficients (D-eff) were calculated starting from the asymptotic solutions of Fick's second law for short and long time regions. The results show that cycling at low sweep rates was needed in order for the electrolyte to penetrate the inner porosity of the particles. The carbon material showed different electrochemical and mass transport properties depending on the applied potential. At negative polarisation, the results suggest that TEA(+) was adsorbed on the pore wall, however, being transported very slowly inside the pores. The average D-eff after cycling at both positive and negative potentials was 1.1(+/- 0.4) x 10(-8) cm(2) s(-1), using the Cottrell relation and 1.5(+/- 0.6) x 10(-8) cm(2) s(-1), using the radial diffusion solution. The average value of D-eff after cycling at negative potentials was 1.7(+/- 0.6) x 10(-8) cm(2) s(-1) using both mathematical solutions.

  • 4307.
    Zuleta, Marcelo
    et al.
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Bursell, Martin
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Lundblad, Anders
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Characterization of ion transport in a nanoporous carbon for double layer capacitors2000In: Proceedings of Advances in Science and technology 29: (Mass and Charge Transport in Inorganic Materials: Fundamentals to devices, part A), 2000, p. 439-446Conference paper (Refereed)
  • 4308.
    Álvarez Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Sababi, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Ejnermark, Sebastian
    Ekman, Lars
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. SP Tech Res Inst Sweden, Sweden.
    Role of microstructure on corrosion initiation of an experimental tool alloy: A Quantitative Nanomechanical Property Mapping study2014In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 89, p. 236-241Article in journal (Refereed)
    Abstract [en]

    The adhesion properties of a FeCrVN experimental tool alloy immersed in pure water and sodium chloride solution have been studied by Quantitative Nanomechanical Property Mapping to understand the influence of microstructure on corrosion initiation of this alloy. The approach used here allows early observation and identification of pre-pitting events that may lead to passivity breakdown of the alloy. Adhesion provides a good distinction between the different regions and we ascribe this to their vanadium and nitrogen contents. Finally, the prepitting is characterized by generation of small particles in specific regions of the surface with low chromium content.

  • 4309.
    Åberg, Katarina
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Biomass conversion through syngas-based biorefineries: thermochemical process integration opportunities2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The replacement of fossil resources through renewable alternatives is one way to mitigate global climate change. Biomass is the only renewable source of carbon available for replacing oil as a refining feedstock. Therefore, it needs to be utilized not just as a fuel but for both biochemical and thermochemical conversion through biorefining. Optimizing and combining various conversion processes using a system perspective to maximize the valorization, biomass usage, and environmental benefits is of importance. This thesis work has evaluated the integration opportunities for various thermochemical conversion processes within a biorefinery system.

    The aim for all evaluated concepts were syngas production through gasification or reforming. Two potential residue streams from an existing biorefinery were evaluated as gasification feedstocks, thereby combining biochemical and thermochemical conversion. Torrefaction as a biomass pretreatment for gasification end-use was evaluated based on improved feedstock characteristics, process benefits, and integration aspects. A system concept, “Bio2Fuels”, was suggested and evaluated for low-temperature slow pyrolysis as a way to achieve simultaneous biomass refinement and transport driven CO2 negativity.

    Syngas was identified as a very suitable intermediate product for residue streams from biochemical conversion. Resulting syngas composition and quality showed hydrolysis residue as suitable gasification feedstock, providing some adjustments in the feedstock preparation. Gasification combined with torrefaction pretreatment demonstrated reduced syngas tar content. The co-gasification of biogas and wood in a FBG was successfully demonstrated with increased syngas H2/CO ratio compared to wood gasification, however high temperatures (≥1000°C) were required for efficient CH4 conversion. The demonstrated improved feedstock characteristics for torrefied biomass may facilitate gasification of biomass residue feedstocks in a biorefinery. Also, integration of a torrefaction unit on-site at the biorefinery or off-site with other industries could make use of excess low-value heat for the drying step with improved overall thermal efficiency. The Bio2Fuels concept provides a new application for slow pyrolysis. The experimental evaluation demonstrated significant hydrogen and carbon separation, and no significant volatilization of ash-forming elements (S and Cl excluded)  in low-temperature (<400°C) pyrolysis. The initial reforming test showed high syngas CH4 content, indicating the need for catalytic reforming.

    The collective results from the present work indicate that the application of thermochemical conversion processes into a biorefinery system, making use of by-products from biochemical conversion and biomass residues as feedstocks, has significant potential for energy integration, increased product output, and climate change mitigation.

  • 4310.
    Åberg, Katarina
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Syngas production by integrating thermal conversion processes in an existing biorefinery2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of carbon from fossil-based resources result in changes in the earth’s climate due to emissions of greenhouse gases. Biomass is the only renewable source of carbon that may be converted to transportation fuels and chemicals, markets now fully dominated by traditional oil supply. The biorefinery concept for upgrading and refinement of biomass feedstocks to value-added end-products has the potential to mitigate greenhouse gas emissions and replace fossil products. Most biorefineries use biochemical conversion processes and may have by-product streams suitable as feedstocks for thermal conversion and production of syngas. Further synthesis to value-added products from the syngas could increase the product output from the biorefinery.

    The application of thermal conversion processes integrated into an existing biorefinery concept has been evaluated in this licentiate thesis work. Two by-product streams; hydrolysis (lignin) residue from an ethanol plant and biogas from wastewater treatment, have been investigated as gasification/reforming feedstocks. Also, the pre-treatment method torrefaction has been evaluated for improved gasification fuel characteristics and integration aspects. A new process and system concept (Bio2Fuels) with potential carbon negative benefits has been suggested and evaluated as an alternative route for syngas production by separating biomass into a hydrogen rich gas and a carbon rich char product.

    The evaluation demonstrated that hydrolysis residue proved a suitable feedstock for gasification with respect to syngas composition. Biogas can be further reformed to syngas by combined biomass gasification and methane reforming, with promising results on CH4 conversion rate and increased H2/CO ratio at temperatures ≥1000°C. The pre-treatment method torrefaction was demonstrated to improve fuel qualities and may thus significantly facilitate entrained flow gasification of biomass residue streams. Also, integration of a torrefaction plant at a biorefinery site could make use of excess heat for drying the raw material before torrefaction. The Bio2Fuels concept was evaluated and found feasible for further studies.

    The application of thermal conversion processes into an existing biorefinery, making use of by-products and biomass residues as feedstocks, has significant potential for energy integration, increased product output as well as for climate change mitigation.

  • 4311.
    Åberg, Katarina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Borén, Eleonora
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Hydrogen and carbon separation by low-temperature slow pyrolysis of biomass: experimental validationManuscript (preprint) (Other academic)
    Abstract [en]

    Previous work have indicated that slow pyrolysis may be used to separate hydrogen and carbon in a biomass feedstock into different product fractions. The hydrogen predominantly ends up in the pyrolysis gas fraction, whereas the carbon is mainly retained in the char. A system concept was suggested using low-temperature slow pyrolysis to achieve; a) transportation fuel/chemical production from the volatilized fraction, and b) potential carbon negativity by sequestering the carbon from the biochar fraction after use for electricity and/or heat production. The present work aimed to identify important process parameters, validate the hydrogen and carbon separation potential, and identify a potential process optimum for spruce wood slow pyrolysis. The process temperature was shown as the most important factor influencing the hydrogen and carbon pyrolysis gas yields, whereas the residence time factor only showed significant influence on the product yields for the shorter residence times. All experiments demonstrated significant hydrogen and carbon separation to gas and char respectively, particularly for lower process temperatures. An optimum process operation temperature was not found but from an industrial perspective, the suggested preferable temperature interval lies within the lowtemperature pyrolysis range (350-400°C), just above high temperature torrefaction (~300°C).

  • 4312.
    Åberg, Katarina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Khwaja, Salik
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pilot scale experimental validation of the Bio2fuels low-temperature slow pyrolysis system conceptManuscript (preprint) (Other academic)
    Abstract [en]

    The “Bio2Fuels” concept previously suggested may potentially achieve a transport driven carbon negativity by use of a combination of; low-temperature slow pyrolysis/high-temperature torrefaction; gas reforming; fuel synthesis; coal replacement by the solid bio-coal stream; and CCS of the resulting flue gases. The initial pre-treatment process suggested may potentially exhibit several advantages and may well facilitate an appealing and cost-efficient conversion system. The present work was comprised of pilot-scale pyrolysis experiments on softwood pellets using a continuous auger screw torrefaction/pyrolysis reactor for validation of the process in the temperature range of 300-425°C. All products were analyzed for composition and the pyrolysis gas (permanent gases + bio-oil) was sampled for particulate matter, permanent gas and bio-oil composition. The volatilization propensity of ash-forming elements was analyzed based on alkali deposits on impactor plates with SEM analysis and ICP-AES analysis of the bio-oil. The volatilization of sulfur and chlorine was also evaluated via char retainment. In addition, an initial test run of thermal pyrolysis gas reforming was performed by operating the thermal oxidation burner in gasification/reforming mode. The results showed that the hydrogen and oxygen in the biomass feedstock were volatilized at lower temperatures than the feedstock carbon, with the desired resulting hydrogen/carbon separation into pyrolysis gas and biochar, but also enrichment of oxygen in the pyrolysis gas. The hydrogen pyrolysis gas yield was >75% for pyrolysis temperatures ≥375°C and the corresponding carbon gas yield ranged from 50% to 63%. Most of the hydrogen in the pyrolysis gas was bound in the bio-oil as water and various hydrocarbons. No significant volatilization of alkali elements was observed through either analysis method. The most abundant permanent gas formed was CO2 and with a CH4 concentration of about 9%vol. The thermal reforming experiments also demonstrated a high CH4 syngas concentration, strongly indicating the need for a catalytic reforming process.

  • 4313.
    Åberg, Katarina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lindh, Ingemar
    Bioendev AB.
    Kollberg, Kristoffer
    Sigma Industry.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Torrefaction and gasification of lignocellulosic hydrolysis residue from bio-ethanol productionManuscript (preprint) (Other academic)
    Abstract [en]

    Production of lignocellulosic ethanol through hydrolysis (acid or enzymatic) combined with fermentation generate a large amount of residue consisting of mainly lignin and un-ydrolyzed cellulose. The significant amount of energy retained in this residue require further conversion as a measure to ensure economic viability for the total process. Thermal conversion of the hydrolysis residue through gasification for syngas production would improve the fuel yield in addition to the overall plant efficiency. Also, torrefaction of various biomass feedstocks has been shown to significantly improve biomass fuel characteristics in addition to having substantial positive effect on the energy consumption of the particle size reduction. The present work was an evaluation of hydrolysis residue and torrefied hydrolysis residue as gasification feedstocks in a bench-scale fluidized bed gasifier, based on syngas composition, particle formation, tar production and volatilization behavior. In addition, the effects of torrefaction on hydrolysis residue material characteristics were separately evaluated, including the influence of the process parameters on milling energy consumption and morphology. All torrefaction data was fitted to multiple linear regression models with good reproducibility and fit. The results confirm the previously reported improved feedstock characteristics resulting from torrefaction of biomass, however residence time was proved the most influential process parameter on the torrefaction severity, most likely derived from the lack of hemicellulose in the residue. The resulting syngas composition and quality indicated that both non-torrefied and torrefied hydrolysis residue were suitable gasification feedstocks. The hydrolysis residue product gas had elevated tar concentration but the torrefied residue demonstrated a significant reduction in the tar content (particularly the heavy tar components), compared to both raw hydrolyis residue and the wood reference feedstock. Hence, torrefaction may significantly reduce tar related problems in downstream equipment/processes.

  • 4314.
    Åberg, Katarina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Low-temperature slow pyrolysis of biomass for H2-enriched syngas production and carbon negativityManuscript (preprint) (Other academic)
    Abstract [en]

    To optimally utilize biomass resources as feedstock for fuels and chemicals production as well as for a potential substantial carbon sink, a dedicated process and system concept is suggested. The desired outcome of the process is a hydrogen-enriched pyrolysis gas and a carbon-enriched char, also retaining the ash-forming elements. To obtain a transport-driven large-scale CO2 negative system, the char is suggested as co-firing fuel in a facility with carbon capture and storage technology. In the present work, the basis for this Bio2Fuels separation concept was evaluated by 1) analysis of previously published empirical data for pyrolysis, and 2) chemical equilibrium calculations. The former analysis indicated on the potential for a significant separation of H and C to the pyrolysis gas and char respectively, with ~80% of the hydrogen and 40-60% of the carbon from the raw feedstock present in the pyrolysis gas product. Based on analyzed thermochemical driving forces, most of the ash-forming elements can be expected to be retained in the char, and an ash and alkali-free gas may be achieved at temperatures below 500°C. In addition, chemical equilibrium modelling of the pyrolysis gas reforming demonstrated a significantly increased H2/CO ratio in the syngas compared to gasification of the raw biomass.

  • 4315.
    Åberg, Katarina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Syngas production by combined biomass gasification and in-situ methane reformingManuscript (preprint) (Other academic)
  • 4316.
    Ågren, Joakim
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Utveckling av analysmetoder för en tillämpning inom beredskapsdiagnostik2007Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Bacillus anthracis is a risk class III organism and needs to be handled inside a biosafety level 3-laboratory. A major problem when working with airborne, spore-forming bacteria like B. anthracis are the hazardous aerosols created when using an automated DNA-extraction method to prepare samples suspected to contain the organism. This study has therefore evaluated the possibility of enclosing a DNA-extraction-robot inside an air tight container (glove box). A prototype of a class III safety cabinet (also known as a glove box) was designed and built to enclose a BioRobot EZ1 from Qiagen. The purpose of this prototype was to evaluate the measurements needed to and also the feasibility of working with the robot inside the cabinet. During the manual DNA-extractions, there was some contamination found on the glove box gloves, probably due to the significantly lowered dexterity that was seen with the thick gloves. The enclosing of the robot revealed no obstacles as the machine was very easy to operate. In addition, protocols have been created for the operation of a transportable class III safety cabinet from Germfree available at SVA. The protocols include the different pressure tests that needed before every experiment take place and also decontamination steps before and after each run. Bacillus cereus was used as a model organism for different DNA-extractions, i.e. automated and manual extractions. The extracted DNA was analysed by real-time polymerase chain reaction (PCR). DNA was also extracted and analysed from B. cereus-spores. When using a manual DNA-extraction kit, B. cereus-DNA was detected at the femtogram level, i.e. 10-15 g DNA / PCR. When using the automated BioRobot EZ1, detection level was found to be at 10-16 g DNA / PCR. The PCR-efficiency for the manual kit was 89-90 % for all samples, whereas with the EZ1, efficiency was 99 %, showing the strengths of the magnetic bead separation used by the machine. A novel PCR-machine, the AlphaHelix QuanTyper™, was evaluated and compared to an ABI 7500 with regards to efficiency, speed and consistency. The QuanTyper™ was found to be superior in ramping speeds, performing a 40-cycle real-time PCR-run with melting point analysis in only 14 minutes. The fastest run accomplished on the ABI 7500 took 1 h 40 min. A ready made master mix for PCR was used for most tests (Platinum® SYBR® Green qPCR SuperMix-UDG), but faster and more robust enzymes are available and further studies need to be performed on the QuanTyper™ to fully evaluate the platform. Three target genes in Bacillus anthracis-DNA were analysed in only 38 minutes with efficiencies between 96-104 % for the virulence plasmids and detection at femtogram amount of DNA. This master thesis has addressed rapid pathogen-detection with automated DNA-extraction and novel PCR-technology, coupled with a strong biosafety aspect. The thesis will hopefully contribute to the surprisingly small area of biosafety and safety cabinet research.

  • 4317.
    Ågren, Niklas
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Advanced Gas Turbine Cycles with Water-Air Mixtures as Working Fluid2000Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Since the early 80's, the worldwide utilization of gas turbines for thermal power generation has increased rapidly. They have less pollution than any other major combustion energy converters. One important development trend in gas turbine technology is new processes for better flue gas heat recovery (gaining better efficiency, power density and environmental impact), so called advanced cycles. The purpose of this work has been to evaluate the performance and process system and subsystems of advanced gas turbine cycles with air/water mixture as working medium. The focus of the thesis is on the evaporative gas turbine cycle. This cycle has extraordinary heat recovery possibilities. An increased understanding of the interaction of the different process components is sought, with an emphasis on modeling the high pressure humidification column. Efforts have been made to synthesize innovative strategies for EvGT humidification. Theoretical and experimental work concerning the water recovery and purification issues are also presented.

    Some important results are that the flow of air through the humidifier should be optimized. For the different cases presented in this thesis, the optimal fraction (with regard to efficiency) varies from about 12% to 40% of the compressor inlet air. Savings in heat exchanger area and reduced pressure work for booster fan are advantages of using only a part of the compressor air in the humidifier. For obtaining best efficiency of the evaporative cycle, the heat flows above the boiling point should preferably be taken care of by conventional boilers for steam injection or by a separate humidifier section working only slightly below boiling temperature. This is particularly important in gas turbines without intercooling or without recuperation due to high temperatures in exit streams. The unique nature of the humidifier is its ability to evaporate water below the boiling point, by the use of air dilution. However, the best temperature performance (lowest temperature of outlet water from humidifier) is reached if the thermal loading on the humidifier is not excessive.

    The need for large quantities of demineralized water has previously been identified as a possible drawback for the EvGT cycle. In favor of the EvGT-technology, the first water testing experiments on a pilot EvGT-plant, presented in this work, contradict this notion. It is theoretically and experimentally shown that an EvGT-plant can be run with no external water feed at all, by means off lue gas condensation and condensate recovery. After internal condensate treatment, the recycled condensate was of equal quality or better than the deionized fresh feed used for initial system fill-up.

  • 4318.
    Åhlander, Åsa
    KTH, School of Chemical Science and Engineering (CHE).
    Defense activation in strawberries: Terpenes and other volatile compounds2016Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
  • 4319.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Bourmaud, Alain
    Beaugrand, Johnny
    Le Duigou, Antoine
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Baley, Christophe
    Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite2016In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 128, p. 77-88Article in journal (Refereed)
    Abstract [en]

    The development of new plant fibre composites is a key point in the development of semi-structural biodegradable or biobased parts, especially for automotive applications. The aim of this original and innovating work is to study, at different scales, the recycling ability of a fully biodegradable L-Poly-(lactide)-Poly-(butylene-succinate)-flax (PLLA-PBS-flax) biocomposite. The biocomposites were manufactured by twin-screw extrusion followed by injection moulding, then the recycling behaviour was studied during successive injection moulding cycles. Firstly, we investigated the length of the flax fibre after compounding and injection, as well as the cell wall stiffness and hardness, by in-situ nanoindentation tests. Secondly, we focused on the effects of recycling on thermal, rheological and tensile properties. We highlighted a severe evolution of the cell wall properties, especially concerning the polysaccharidic matrix after the first thermal cycle, nanoindentation properties remaining quasi-stable after this first drop. Furthermore, the biocomposites did not show any significant evolution of their mechanical performances during cycle three or four of the first injection cycles; after this plateau, the tensile strength and strain as well as impact energy were significantly altered due to the conjugated fibre length decrease and degradation of the PLLA, the latter being emphasized when the flax fibre is embedded. Nevertheless, this fully biodegradable composite exhibits a suitable recycling behaviour for 3 or 4 cycles, which is sufficient for industrial applications.

  • 4320.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Fazelinejad, Samaneh
    Skrifvars, Ville-Viktor
    University of Borås, Faculty of Textiles, Engineering and Business.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mechanical recycling of polylactic acid composites reinforced with wood fibres by multiple extrusion and hydrothermal ageing2016In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 35, no 16, p. 1248-1259Article in journal (Refereed)
  • 4321.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Foltynowicz, Zenon
    Christéen, Jonas
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines2012In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 31, no 17, p. 1136-1142Article in journal (Refereed)
    Abstract [en]

    The possibility of recycling glass fibre-reinforced composites by using microwave pyrolysis was examined. A scrap blade from a wind turbine was fragmented and microwave-pyrolysed. The glass fibre recovered after pyrolysis represented 70% of the initial mass of glass fibre-reinforced composites. The tensile strength of the glass fibre recovered was measured after pyrolysis and compared to the tensile strength of untreated glass fibre. The test showed that the fibres lost about 25% of their tenacity. Non-woven fibre mats were prepared from the recovered fibres. Laminates were then prepared from the non-woven mats obtained, together with virgin glass fibre mats. Mechanical testing of the laminates showed that it is possible to prepare composites using 25 wt% of recycled fibres, with relatively good mechanical properties.

  • 4322.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Fuchs, Torsten
    Stöss, Michael
    Root, Andrew
    MagSol, Helsinki, Finland.
    Stenvall, Erik
    Chalmers tekniska högskola.
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Recycling of wood fiber-reinforced HDPE by multiple reprocessing2016In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 133, no 35Article in journal (Refereed)
    Abstract [en]

    The mechanical recycling of high-density polyethylene (HDPE) reinforced with wood fiber was studied by means of repeated injection moulding. The change in properties during the recycling was monitored by tensile and flexural tests, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), FTIR spectroscopy, and by measuring the fiber lengths. Tests were also done where injection moulding was combined with subsequent accelerated thermo-oxidative ageing and thereafter repeated numerous times. The results showed that the HDPE composites were relatively stable toward both the ageing conditions and the repeated injection moulding. The change of the mechanical properties was mainly observed as an increased elongation at max. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43877. © 2016 Wiley Periodicals, Inc.

  • 4323.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Recycling of glass fibre reinforce plastics using microwave pyrolysis2012Conference paper (Other academic)
  • 4324.
    Åkesson, Dan
    et al.
    University of Borås, School of Engineering.
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Seppälä, Jukka
    Turunen, Minna
    Thermoset lactic acid-based resin as a matrix for flax fibers2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 119, no 5, p. 3004-3009Article in journal (Refereed)
    Abstract [en]

    Abstract Thermoset composites were produced from flax fibers and a novel lactic acid (LA)-based thermoset resin. This resin is based on methacrylated, star-shaped oligomers of LA. The main purpose of this work was to evaluate whether this resin can be used to produce structural composites from flax fibers. Composites were prepared by spray impregnation followed by compression molding at elevated temperature. The tests showed that composites can be produced with as much as 70 wt% fiber. The composites were evaluated by tensile testing, flexural testing, charpy impact test, dynamic mechanical thermal analysis (DMTA), and low-vacuum scanning electron microscopy. The ageing properties in high humid conditions were evaluated, the Young's modulus ranged from 3 GPa to 9 GPa in the best case. This work shows that structural composites can be produced from renewable material. It is clear from the results that these composites have properties that make them suitable for furniture, panels, or automotive parts.

  • 4325.
    Åkesson, Dan
    et al.
    University of Borås, Faculty of Textiles, Engineering and Business.
    Vrignaud, Thomas
    Tissot, Clément
    Skrifvars, Mikael
    University of Borås, Faculty of Textiles, Engineering and Business.
    Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres2016In: Journal of polymers and the environment, ISSN 1566-2543, E-ISSN 1572-8919, Vol. 25, no 3, p. 185-195Article in journal (Refereed)
    Abstract [en]

    Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.

  • 4326.
    Ålander, Eva
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Influence of Solvent Composition on Crystal Agglomeration of Paracetamol2005Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Agglomeration is an important phenomenon which often controls the particle size distribution and morphology in the crystallization of organic compounds. In this thesis the influence of solvent composition on crystal agglomeration of paracetamol is investigated.

    Particles from (i) isothermal desupersaturation experiments with initiated nucleation and (ii) fully seeded isothermal crystallization experiments operating at constant supersaturation have been characterized. The number of crystals in each particle has been determined by image analysis using multivariate data evaluation and a set of calibration particles. A parameter defining the degree of agglomeration is extracted from the number distribution of crystals per particle. In addition, the agglomerate strength determined by the crushing of single agglomerates has been measured.

    The results clearly show that the solvent composition has an influence on the crystal agglomeration. This observed influence cannot be explained by differences in the solution viscosity (fluid mechanics), or by differences in the overall crystal growth rate. The product is less agglomerated and the agglomerates are weaker when the crystallization is carried out in a more polar solvent, e.g. water. In the systems studied, a high solvent polarity coincides with hydrogen-bond-donating and hydrogen-bond-accepting capabilities. These solvents can interact strongly with paracetamol crystal surfaces which exhibit both donating and accepting sites. In less polar solvents like acetone, only donating sites on the surfaces can be occupied.

    Surfaces of large, well-grown paracetamol crystals have been characterized by contact angle measurements according to the Lifshitz-van der Waals acid-base theory. The surface free energy varies between 50-57 mJ/m2, and all faces indicate a strong hydrogen-bond acceptance.

    The free energy of adhesion between crystal faces in different solvents has been calculated from the surface free energy components. The findings in this thesis strongly support the hypothesis that the mechanism by which the solvent influences on the agglomeration relates to the molecular interaction at the crystal-solvent interface and the physico-chemical adhesion forces between crystal faces in the solution.

  • 4327.
    Ålander, Eva M.
    et al.
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Uusi-Penttila, Marketta S.
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Rasmuson, Åke C.
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Agglomeration of paracetamol during crystallization in pure and mixed solvents2004In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 43, no 2, p. 629-637Article in journal (Refereed)
    Abstract [en]

    The agglomeration of paracetamol during crystallization has been investigated. It is shown that the agglomeration behavior depends on the solvent composition. The following solvent systems were used in isothermal desupersaturation experiments: five different acetone-toluene-water mixtures and the pure solvents acetone, 2-propanol, acetic acid, and ethylene glycol. Sieving, image analysis processed by principal component analysis, and agglomerate strength measurements were used to characterize the product particles. Mixtures with a high concentration of acetone were found to produce a highly agglomerated product with strong agglomerates. In contrast, products from crystallization in ethylene glycol, 2-propanol, acetic acid, and acetone-toluene-water mixtures having a high concentration of water contained not only agglomerates but also a significant fraction of single crystals. Furthermore, the agglomerates formed in these solvents were much weaker than those produced in mixtures with a high content of acetone. The results were correlated with the polarity and the viscosity of the solvents.

  • 4328.
    Ålander, Eva
    et al.
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Rasmuson, Åke Christoffer
    KTH, Superseded Departments, Chemical Engineering and Technology.
    Agglomeration of paracetamol in the acetone-water system Int. Conf. on Particle Technology, paper 14.3 CD Proceedings of PARTEC 20042004In: / [ed] S.E. Pratsinis, H. Schulz and R. Strobel, 2004Conference paper (Refereed)
  • 4329.
    Ålander, Eva
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Rasmuson, Åke Christoffer
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Crystal-solvent interaction in agglomeration of paracetamol2005In: the 16’th International Symposium on Industrial Crystallization / [ed] J Ulrich, VDI verlag Dusselsdrorf , 2005, p. 511-516Conference paper (Refereed)
  • 4330.
    Ån, Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Mickelsson, Lovisa
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Sanderyd, Viktor
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Sedvall, Emelie
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Posluk, Patrik
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Sener, Kerime
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences.
    Processutrustning och laboratorieplanering2016Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 4331. Åsberg, Dennis
    Modeling of Overloaded Gradient Elution in Reversed-Phase Liquid Chromatography2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 4332.
    Åsberg, Dennis
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Karlsson, Anders
    AstraZeneca R and D, Mölndal, Sweden.
    Samuelsson, Jörgen
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Kaczmarski, Krzysztof
    Poland.
    Fornstedt, Torgny
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Analytical method development in the quality by design framework2015In: American Pharmaceutical Review, ISSN 1099-8012, Vol. 18, no 2Article in journal (Refereed)
    Abstract [en]

    The development of analytical methods in the Quality by Design (QbD) framework is currently gaining great momentum in the pharmaceutical industry. Presented here is a case study in which a pharmaceutical Quality Control (QC) method was developed using HPLC. The possibilities of continuous improvements during the method’s lifetime are demonstrated by switching to ultrahigh performance liquid chromatography (UHPLC).

  • 4333.
    Åsberg, Dennis
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Leśko, Marek
    Department of Chemical and Process Engineering, Rzeszów University of Technology.
    Enmark, Martin
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Samuelsson, Jörgen
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Kaczmarski, Krzysztof
    Department of Chemical and Process Engineering, Rzeszów University of Technology.
    Fornstedt, Torgny
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography. II: The competitive case2013In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1314, no Nov, p. 70-76Article in journal (Refereed)
    Abstract [en]

    Abstract Experimental competitive adsorption isotherms were successfully determined directly from overloaded elution profiles in gradient elution mode using an extended inverse method. This approach differs from the existing methods in one important aspect – no isocratic experiments are necessary which makes it possible to study adsorption of substances whose retention factors vary strongly with the mobile-phase composition. The approach was verified with simulated binary data and with experimental data from gradient separations of a cyclohexanone/cycloheptanone mixture. For the synthetic data, the original adsorption isotherm parameters were found using a two-step estimation procedure. In the first step analytical peaks were used to estimate the “analytical” part of the Langmuir equation and in the second step the association equilibrium parameters were estimated from two simulated overloaded elution profiles. For the experimental data, a three-step approach was used. The two first steps were used to reduce the calculation time so that parameter estimation could be performed on an ordinary computer. In the first step, analytical peaks were used to estimate the “analytical” part of the bi-Langmuir equation. In the second step, initial guesses for all other parameters were determined separately for each solute using the faster Rouchon algorithm. In the final and third step, the more accurate orthogonal collocation on finite elements algorithm, was used to fine-tune the isotherm parameters. The model could accurately predict the shape of overloaded elution profiles. The shape of the adsorption isotherms agreed well with those determined with the standard isocratic method, although the numerical values were not the same. The extended inverse method is well suited for process optimization where few experiments and accurate predictions are important.

  • 4334.
    Åsberg, Dennis
    et al.
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Samuelsson, Jörgen
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Lesko, Marek
    Department of Chemical and Process Engineering, Rzeszów University of Technology, PL-35 959 Rzeszów, Poland.
    Cavazzini, Alberto
    Department of Chemical and Pharmaceutical Sciences, University of Ferrara, IT-44 121 Ferrara, Italy.
    Kaczmarski, Krzysztof
    Department of Chemical and Process Engineering, Rzeszów University of Technology, PL-35 959 Rzeszów, Poland.
    Fornstedt, Torgny
    Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
    Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects2015In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1401, p. 52-59Article in journal (Refereed)
    Abstract [en]

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 degrees C and a difference of 2 degrees C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (tau(s)) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in tau(s) which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. (C) 2015 Elsevier B.V. All rights reserved.

  • 4335. Åvitsland, Grete
    et al.
    Sterner, Mirjam
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ödberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    AKD sizing of TCF and ECF bleached birch pulp characterized by peroxide edge wicking2006In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 21, no 2, p. 237-241Article in journal (Refereed)
    Abstract [en]

    To study the impact of extractable materials and xylan on the sizing efficiency of totally chlorine-free (TCF) bleached birch pulp and elemental-chlorine-free (ECF) bleached birch pulp, several pulps with different amounts of extractable material were studied. The content of extractable material in the pulp was shown to be detrimental for sizing efficiency, measured both as Cobb. values and edge penetration in a model liquid packaging board, and a higher content of extractable material causes a reduced sizing efficiency for a given pulp. No significant difference was observed between extracted TCF and ECF bleached birch pulps, while unextracted pulps containing the same amount of extractable material yielded different sizing efficiencies. The TCF bleached birch pulp had a lower sizing efficiency than did the ECF bleached birch, probably because of differences in the fatty acid composition. A greater amount of extractable material also resulted in a smaller fraction of non-extractable alkyl ketene dimers (AKD) relative to the total amount of AKD in the sheet. Enzymatic removal of xylan and thus the reduction of the surface charge had no measurable effect on sizing efficiency. Extracted TCF and ECF bleached pulps only need a content of 0.05 kg/ton non-extractable AKD or 0.08 kg/ton total AKD in the sheets produced to achieve a good sizing effect.

  • 4336. Çakir, S.
    et al.
    Eriksson, Magnus
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Martinelle, Mats
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Koning, C. E.
    Multiblock copolymers of polyamide 6 and diepoxy propylene adipate obtained by solid state polymerization2016In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 79, p. 13-22Article in journal (Refereed)
    Abstract [en]

    Polyesteramide multiblock copolymers based on polyamide 6 and diepoxy propylene adipate blocks were synthesized. For this purpose a carboxyl-terminated polyamide 6 (Mn = 2400 g/mol, Tm = 205.5 °C) and diepoxy propylene adipate (Mn = 450 g/mol) were separately synthesized and characterized. The incorporation of the oligoester into the polyamide 6 backbone was performed by solid state polymerization (SSP) well below the melting temperature of the polyamide (80-140 °C) so that the physical and thermal properties of the original polyamide 6 block were retained. Formation of the multiblock structure was confirmed by following the increase in molecular weight by SEC, reaction of the end groups by 1H NMR and by following the maintained melting temperature after the copolymerization. These segmented copolymers have molecular weights up to 10 kg/mol, thermal stability of 325 °C at 5% weight loss and a melting temperature of 205 °C.

  • 4337.
    Öberg, Emma
    KTH, School of Chemical Science and Engineering (CHE).
    Investigation of mineral oils as a compatibilizer between metallocene polyolefins and rosin resins in hot melt adhesives2016Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [sv]

    Limning är en gammal fogningsteknik som har många olika användningsområden. Marknaden för limmer växer, smältlim förväntas ha stor tillväxt även med hårdare miljölagstiftning då appliceringen av limmet sker utan lösningsmedel.

    För att ta fram och tillverka lim används idag polymerer i stor utsträckning. Metallocen polyolefin (mPO) är en typ av polymer som används i limmer på grund av dess utmärkta prestanda som uppnås genom en smal molekylviktsdistribution (MWD). Detta gör det lätt att tillverka limmer med önskade egenskaper. Den här typen av polymerer tenderar dock att vara opolära vilket gör att de är inkompatibla med tallhartser, som ger klibbighet till limmet, eftersom tallhartserna har en högre poläritet.

    Mineraloljor används i limmer som mjukgörare, men används också i vissa fall för att öka kompabiliteten i olika typer av limmer. Därför har det undersökts om de kan användas i limmer med mPO och tallharts för att öka kompabiliteten.

    ”Cloud point”-tester och reologistudier har utförts för att undersöka om kompabiliteten påverkades av tillsatt mineral olja. Peel tester har också utförts för att mäta limegenskaperna för formuleringarna av smältlim.

    Resultaten visar att även om formuleringarna av smältlim har relativt låg peel styrka, så ökade kompabiliteten signifikant mellan mPO och tallhartser vid användning av mineraloljor.

  • 4338.
    Öberg Hed, Kim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Advanced polymeric scaffolds for functional materials in biomedical applications2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Advancements in the biomedical field are driven by the design of novel materials with controlled physical and bio-interactive properties. To develop such materials, researchers rely on the use of highly efficient reactions for the assembly of advanced polymeric scaffolds that meet the demands of a functional biomaterial. In this thesis two main strategies for such materials have been explored; these include the use of off-stoichiometric thiol-ene networks and dendritic polymer scaffolds. In the first case, the highly efficient UV-induced thiol-ene coupling (TEC) reaction was used to create crosslinked polymeric networks with a predetermined and tunable excess of thiol or ene functionality. These materials rely on the use of readily available commercial monomers. By adopting standard molding techniques and simple TEC surface modifications, patterned surfaces with tunable hydrophobicity could be obtained. Moreover, these materials are shown to have great potential for rapid prototyping of microfluidic devices. In the second case, dendritic polymer scaffolds were evaluated for their ability to increase surface interactions and produce functional 3D networks. More specifically, a self-assembled dendritic monolayer approach was explored for producing highly functional dendronized surfaces with specific interactions towards pathogenic E. coli bacteria. Furthermore, a library of heterofunctional dendritic scaffolds, with a controllable and exact number of dual-purpose azide and ene functional groups, has been synthesized. These scaffolds were explored for the production of cell interactive hydrogels and primers for bone adhesive implants. Dendritic hydrogels decorated with a selection of bio-relevant moieties and with Young’s moduli in the same range as several body tissues could be produced by facile UV-induced TEC crosslinking. These gels showed low cytotoxic response and relatively rapid rates of degradation when cultured with normal human dermal fibroblast cells. When used as primers for bone adhesive patches, heterofunctional dendrimers with high azide-group content led to a significant increase in the adhesion between a UV-cured hydrophobic matrix and the wet bone surface (compared to patches without primers).

  • 4339.
    Öberg, Viktor
    KTH, School of Chemical Science and Engineering (CHE).
    Macroalgae as a renewable resource: Extraction and Characterization of the Major Components in Saccharina Latissima2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A fractionation strategy was developed that made it possible to extract alginate, mannitol, laminarin and cellulose under various conditions from the brown algae Saccharina Latissima (previously known as Laminara Saccharina). The algae were harvested on the west coast of Sweden in the late summer of 2013. After extraction, the alginate and mannitol samples were identified and characterized using 1H nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The yield of alginate (in its sodium salt form) was estimated to be around 18,5 %, and the yield of mannitol was around 9 %. Mild hydrolysis and 1H NMR was performed on the alginate to estimate the ratio of mannuronic and guluronic acids, i.e. the M/G-ratio. The M/G-ratio was calculated to be around 1 for neutral batches and around 1,1 for batches extracted at low or high pH. Laminarin was identified and characterized by 1H NMR, FT-IR, TGA, size exclusion chromatography (SEC) and ion chromatography (IC). Approximately 12 % laminarin was extracted. Cellulose was identified and characterized by FT-IR and IC, and the yield was approximately 2,5 to 3,5 %.

    A three-level statistical factorial screening of the parameters temperature and pH was also performed using multiple linear regression (MLR) from 6 responses: the alginate, laminarin, cellulose, mannitol and total yield as well as the M/G-ratio. However, the yields of alginate, cellulose and mannitol were not possible to assess due to divergent data points. High temperature (75 °C) and pH 2 or 12 degrades alginate, thus decreasing the yield. The screening of laminarin yield showed that a decrease in pH had a significant positive effect. The screening of total yield indicated a negative effect when temperature was increased from 40 °C to 75 °C. At 3 or 40 °C, the M/G-ratio was significantly lower at neutral pH compared to those at pH 2 or 12. At 75 °C and pH 12, a degradation decreased the M/G-ratio to 0,83.

  • 4340. Ögren, Yngve
    et al.
    Sepman, Alexey
    Qu, Zhechao
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Wiinikka, Henrik
    Comparison of measurement techniques for temperature and soot concentration in premixed, small-scale burner flames2017In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 31, no 10, p. 11328-11336Article in journal (Refereed)
    Abstract [en]

    Optical and intrusive measurement techniques for temperature and soot concentration in hot reacting flows were tested on a small-scale burner in fuel-rich, oxygen-enriched atmospheric flat flames produced to simulate the environment inside an entrained flow reactor. The optical techniques comprised two-color pyrometry (2C-PYR), laser extinction (LE), and tunable diode laser absorption spectroscopy (TDLAS), and the intrusive methods included fine-wire thermocouple thermometry (TC) and electrical low pressure impactor (ELPI) particle analysis. Vertical profiles of temperature and soot concentration were recorded in flames with different equivalence and O2/N2 ratios. The 2C-PYR and LE data were derived assuming mature soot. Gas temperatures up to 2200 K and soot concentrations up to 3 ppmv were measured. Close to the burner surface, the temperatures obtained with the pyrometer were up to 300 K higher than those measured by TDLAS. Further away from the burner, the difference was within 100 K. The TC-derived temperatures were within 100 K from the TDLAS results for most of the flames. At high signal-to-noise ratio and in flame regions with mature soot, the temperatures measured by 2C-PYR and TDLAS were similar. The soot concentrations determined with 2C-PYR were close to those obtained with LE but lower than the ELPI results. It is concluded that the three optical techniques have good potential for process control applications in combustion and gasification processes. 2C-PYR offers simpler installation and 2D imaging, whereas TDLAS and LE provide better accuracy and dynamic range without calibration procedures.

  • 4341. Öhman, Fredrik
    et al.
    Theliander, Hans
    Norgren, Magnus
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Tomani, Per
    Axegård, Peter
    Method for separating lignin from a lignin containing liquid/slurry (Patent application WO2006038863)2011Patent (Other (popular scientific, debate etc.))
  • 4342. Öhman, Marcus
    et al.
    Boström, Dan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Grimm, Alejandro
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Kofod-Hansen, Marie
    Minskade askrelaterade driftsproblem genom inblandning av torv i åkerbränslen2010Report (Other academic)
    Abstract [sv]

    Resultaten visar att inblandning av typisk starrbaserad bränntorv i salix och rörflen med låg askhalt ger positiva effekter vad avser bäddagglomerering och beläggningsbildning/(korrosion) i pannors konvektionsdelar redan vid relativt låga inblandningsgrader (15 vikts-% på TS basis). En starrbaserad bränntorv med relativt högt Ca/Si förhållande bör väljas för sameldning med salix i rosteranläggningar för att inte öka slaggningsrisken. Samma torvtyp kan också i rosteranläggningar nyttjas i sameldning med rörflen med låg askhalt (relativt låga inblandningsgrader räcker) och vetehalm (höga inblandningsgrader krävs) för att reducera slaggningsrisken. Vid val av torvslag för att maximera de ovanstående positiva effekterna vid förbränning kan därför en allmän rekommendation göras att torvar med hög askhalt (starrinnehållande torv), och gärna med högt inslag av svavel, ger de bästa sameldningsegenskaperna med det tilläget att vid rostereldning bör en torv med relativt högt Ca/Si förhållande väljas (gärna upp mot 1 på vikts-% basis).

  • 4343.
    Öhman, Sebastian
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Wear on Alumina Coated Tools and the Influence of Inclusions when Turning Low-Alloy Steels: Master Thesis - Chemical Engineering2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In this master thesis, performed at Sandvik Coromant Västberga (Stockholm), a comprehensive study has been made to investigate the wear on textured alumina (Inveio™) coated cutting tools when turning low-alloy steels. Specifically, wear studies have been made on tools’ rake faces when turning two separate batches of SS2541, after an initial turning time of 4 min. A particular focus has been given to elucidate what particular role the inclusions might have for the wear of the alumina coating onthe tools. Evaluation of tool wear has been made by employing several different analytical techniques, such as LOM, SEM, Wyko, Auger-spectrometry (AES), EPMA and XRD.

    The results shows that the arisen wear marks on both tested tool types may be divided into three separate and highly distinguishable wear zones, denoted here in thiswork as “wear bands”. Largest amount of wear tended to occur initially at the topmost part of the 3rd wear band. This was true for both tested tool types. This area demonstrated a characteristic 'lamellar' wear pattern, composed of narrow andstructured ridges.

    All the tools tested demonstrated the adhesion of workpiece materials of various composition that formed into smeared layers in these formed ridges. Depth-profiling Auger-spectrometry revealed that a significant amount of calcium was present in the machined alumina coating layers. This suggests that a reaction between the calcium-containing inclusions found in the steel and the aluminacoating layer had occurred during the performed turning tests.These results arecontradictory to the general belief that alumina is chemical inert during machiningand has previously, to the authors knowledge, not yet been published.

    Based on the results from this thesis and from a literature review concerning thebehavior of α-alumina during deformation, a new theoretical wear model has been developed. In this model, it is emphasised that the sliding of hard inclusions from the steel may activate pyramidal slip systems in the textured alumina coating. This causes a nano-crystallisation and/or amorphisation in the topmost part of the coating, which facilitates the further wear of these coated tools.

  • 4344. Öhrman, Olov
    Molecular sieve film catalysts2003Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this study, well defined ZSM-5 films were prepared on monoliths, ceramic foams, alumina beads, glass beads and crushed quartz glass by further refinement of a method originally developed at the division of Chemical Technology, Luleå University of Technology. The supports were seeded with silicalite-1 seeds and hydrothermally treated, either at 75 °C or at 150 °C in a single or several steps. By adding sodium to the solution the aluminum concentration increased in the zeolite, which is beneficial for catalytic activity. Consequently, films with different Si/Al ratios could be prepared. The film thickness could be controlled from 110 nm to 9000 nm. Short hydrothermal treatments and use of multi-step synthesis was utilized to prevent excessive bulk crystallization and ultrasound treatment was beneficial in order to remove sedimented crystals on top of the zeolite films. The choice of support material and its influence on the performance of thin ZSM-5 film catalysts was examined by testing the reactivity of the zeolite- coated materials in two reactions; para-xylene isomerization and triisopropylbenzene cracking. ZSM-5 films with a thickness of 150, 350, 800 and 2300 nm, respectively, were prepared on alumina beads and quartz glass. Based upon the zeolite content, the films on quartz glass were much more active for para-xylene isomerization and for cracking of triisopropylbenzene, which is attributed to poisoning of the films on alumina due to impurities in the support. Model parameters were fitted to experimental results. The simulations indicated that thicker films contained a higher fraction of defects, which may be caused by open grain boundaries and cracks. These defects explain higher xylene diffusivities and higher triisopropylbenzene cracking activity for thicker films. As expected, thicker films possessed higher diffusion resistance than thin films despite the higher fraction of defects. The present work has given substantial and valuable fundamental understanding of the performance of thin molecular sieve film catalysts. These findings will be beneficial for development of materials that may be used in novel industrial applications.

  • 4345. Öhrman, Olov
    Structured MFI film catalysts and adsorbents2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A method originally developed at the division of Chemical Technology, Luleå University of Technology was tailored for the preparation of well-defined ZSM-5 films and zoned MFI films on supports suitable for catalysis and adsorption applications. Films were grown on monoliths, ceramic foams, alumina beads, soda glass beads and quartz glass. The supports were seeded with silicalite-1 crystals and hydrothermally treated in a single or several steps. The materials were evaluated by scanning electron microscopy, x-ray diffraction, N2 and NO2 sorption, x-ray photoelectron spectroscopy, ICP-AES, p-xylene isomerization and cracking of 1,3,5-tri-isopropylbenzene. The thickness of the continuous films could be controlled from 110 nm to 9 µm. Zoned MFI films were prepared from precursor ZSM-5 films by overgrowth with silicalite-1. A multi-step synthesis protocol was used to prevent excessive bulk crystallization. Ultrasound treatment was beneficial for removal of loosely attached crystals on top of the zeolite films. Defects such as cracks and open grain boundaries were observed by SEM and in concert, mesopores were observed by N2 sorption. Model parameters were fitted to experimental data from catalytic test reactions and these parameters indicated that thicker films contained more defects, probably in the form of open grain boundaries and cracks (mesopores) as observed by SEM and N2 sorption. Films supported on quartz were more catalytically active than films on alumina and soda glass. This was attributed to partial poisoning of the acid sites in the films on the latter two substrates, probably due to solid-state ion exchange of impurities such as alkali metals from the alumina and soda glass support to the film. As expected, thicker films possessed higher diffusion resistance than thin films. Surprisingly, a higher external activity was observed after zoning. This was attributed to formation of mesopores, migration of aluminum from the precursor ZSM-5 film to the external surface, and increased surface roughness upon zoning. ZSM-5 films supported on monoliths were successfully tested for NO2 sorption. As expected, the adsorption capacity per g zeolite was independent of film thickness. Formation of NO was observed as a result of NO2 adsorption on strong sites. Thicker films resulted in higher diffusion resistance as expected. The present work has resulted in substantial and valuable new fundamental understanding of the performance of thin molecular sieve film catalysts and adsorbents. These findings may facilitate development of novel materials for industrial applications.

  • 4346. Öhrman, Olov
    et al.
    Hedlund, Jonas
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Synthesis and catalytic evaluation of zoned MFI films2006In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 91, no 1-3, p. 312-320Article in journal (Refereed)
    Abstract [en]

    Alumina and quartz supports were coated with well-defined precursor ZSM-5 films ranging from 350 nm to 2300 nm in thickness. The precursor samples were subsequently treated with hydrochloric acid and hydrothermally treated in a silicalite-1 synthesis solution in order to obtain zoned MFI films. A dense, but rougher, silicalite-1 film was formed on top of the smooth precursor ZSM-5 film after two hydrothermal treatments. Defects such as open grain boundaries and cracks were observed by SEM and in concert, mesopores were detected by gas adsorption in the precursor and zoned films. The mesopore volume per gram film increased after acid treatment and zoning, probably due to that a small fraction of the zeolite film dissolved in this process. As expected, the aluminum concentration at the surface of the un-calcined zoned film was lower compared to that at the surface of the calcined precursor ZSM-5 film. However, after calcination of the zoned film, the concentration of aluminum at the surface increased, probably due to aluminum migration from the precursor film to the surface of the zoned film during calcination. The aluminum concentration at the surface of the calcined zoned film was even higher than at the surface of the calcined precursor ZSM-5 film. Consequently, the triisopropylbenzene cracking rate constant did not decrease as expected after zoning, probably due to the increased amount of defects and/or aluminum migration. The p-xylene diffusivity increased after zoning, probably due to the formation of defects, whereas the xylene isomerization rate constants were unaffected, as expected.

  • 4347. Öhrman, Olov
    et al.
    Hedlund, Jonas
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Msimang, V.
    Catalysis Research Unit, Department of Chemical Engineering, University of Cape Town.
    Möller, V.
    Catalysis Research Unit, Department of Chemical Engineering, University of Cape Town.
    Sterte, Johan
    ZSM-5 structured catalysts coated with silicalite-12004In: Recent advances in the science and technology of zeolites and related materials. Part A: proceedings of the 14th International Zeolite Conference, Amsterdam: Elsevier, 2004, p. 677-684Conference paper (Refereed)
    Abstract [en]

    Alumina beads were coated with ZSM-5 films ranging from 150 nm to 2300 nm ill thickness. The ZSM-5 boated alumina beads were Subsequently hydrothermally treated in a silicalite-1 synthesis solution ill two steps Whereupon a dense silicalite-1 film was formed oil top of the ZSM-5 film. The materials were tested with two probe reactions and the reactivity was compared before and after coating with silicalite-1. As expected, the para-xylene (pX) isomerization reactivity showed no change for samples with and without the top layer of silicalite-1 for equal amounts Of zeolite. Surprisingly, the triisopropylbenzene (TIPB) conversion did not decrease after the silicalite-1 film was introduced. As measured by XPS, the aluminum concentration at the Surface of the uncalcined silicalite-1 film surface was lower compared to that at the Surface of the calcined ZSM-5 film. However, after calcination the concentration of aluminum was higher at the silicalite-1 film surface than at the ZSM-5 film Surface. These results Suggest that aluminum migrates from the ZSM-5 film into the silicalite-1 film during calcination and testing which results in all active top layer.

  • 4348. Öhrman, Olov
    et al.
    Hedlund, Jonas
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Msimang, Velaphi
    Department of Chemical Engineering, Catalysis Research Unit, University of Cape Town.
    Möller, Klas
    Department of Chemical Engineering, Catalysis Research Unit, University of Cape Town.
    Thin ZSM-5 film catalysts on quartz and alumina supports2005In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 78, no 2-3, p. 199-208Article in journal (Refereed)
    Abstract [en]

    Alumina beads, quartz and soda glass were coated with ZSM-5 films using a seeding method. Films with a thickness of 150, 350, 800 and 2300 nm were prepared. The catalysts were tested by para-xylene (pX) isomerization and triisopropylbenzene (TiPB) cracking. Model parameters, i.e. rate constants and diffusivities, were fitted to experimental results. The films on quartz glass were much more active for pX isomerization and for cracking of TiPB, which was also reflected by the model parameters. Low and zero rate constants for alumina and soda glass supported catalysts, respectively, were attributed to poisoning of the ZSM-5 film due to impurities in these supports. Larger diffusivity in quartz supported catalysts and thick films was attributed to more defects in the film.

  • 4349. Öhrman, Olov
    et al.
    Hedlund, Jonas
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Sterte, Johan
    Synthesis and evaluation of ZSM-5 films on cordierite monoliths2004In: Applied Catalysis A: General, ISSN 0926-860X, E-ISSN 1873-3875, Vol. 270, no 1-2, p. 193-199Article in journal (Refereed)
    Abstract [en]

    Well-defined ZSM-5 films were prepared on cordierite monoliths using the seed film method. The monoliths were seeded with silicalite-1 seeds and hydrothermally treated either at 75 or at 150 °C in a single or several steps. By adding sodium hydroxide to the solution, the aluminum concentration in the zeolite increased. Consequently, films with different Si/Al ratios were prepared. The film thickness could be controlled from 110 nm to 9 μm. Multi-step synthesis was used to prevent bulk crystallization and ultrasound treatment was found to be beneficial (in order) to remove sedimented crystals on the top of the coatings. The zeolite-coated monoliths were active for p-xylene isomerization, and the test results indicated that the films became less deactivated than the films prepared on alumina beads.

  • 4350. Öhrman, Olov
    et al.
    Häggström, Caroline
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Wiinikka, Henrik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Hedlund, Jonas
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.
    Gebart, Rikard
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Analysis of trace components in synthesis gas generated by black liquor gasification2012In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 102, p. 173-179Article in journal (Refereed)
    Abstract [en]

    The only pressurized black liquor gasifier currently in operation is located in Sweden. The composition of the main components in the gas has been reported previously. The main components are H2, CO, CO2, N2, CH4, and H2S. In the present work, trace components in the gas have been characterized and the results are hereby reported for the first time. Samples were taken at two occasions during a one year period. The benzene concentration in the gas varied only slightly and the average concentration was 158 ppm. Benzene is formed by thermal cracking of the biomass. The COS concentration varied substantially and the average concentration was 47 ppm. The variations may be related to how the quench is operated. A few ppm of C2-hydrocarbons were also observed in the gas and the variation was probably a result of varying oxygen to black liquor ratio. No tars were observed in the gas. However, tar compounds, such as phenanthrene, pyrene, fluoranthene and fluorene were detected in deposits found on the pipe walls after the gas cooler. The concentration of particles in the synthesis gas was very low; <0.1 mg/N m3, which is comparable to the particulate matter in ambient air. Submicron particles were comprised of elements such as C, O, Na, Si, S, Cl, K, and Ca, and these particles probably originated from the black liquor. Larger particles were comprised mainly of Fe, S and Ni and these particles probably resulted from corrosion of steel in the plant pipe-work. In summary, the concentrations of trace components and particles in the gas are quite low.

8485868788 4301 - 4350 of 4373
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf