Ändra sökning
Avgränsa sökresultatet
45678910 301 - 350 av 1712
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 301.
    Chang, Yongjun
    et al.
    KTH, Skolan för teknik och hälsa (STH).
    Smedby, Örjan
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.
    Effects of preprocessing in slice-level classification of interstitial lung disease based on deep convolutional networks2018Ingår i: VipIMAGE 2017: Proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017, Springer Netherlands, 2018, Vol. 27, s. 624-629Konferensbidrag (Refereegranskat)
    Abstract [en]

    Several preprocessing methods are applied to the automatic classification of interstitial lung disease (ILD). The proposed methods are used for the inputs to an established convolutional neural network in order to investigate the effect of those preprocessing techniques to slice-level classification accuracy. Experimental results demonstrate that the proposed preprocessing methods and a deep learning approach outperformed the case of the original images input to deep learning without preprocessing.

  • 302.
    Chanussot, Jocelyn
    et al.
    Signal and Image Laboratory (LIS, Grenoble).
    Nyström, Ingela
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Sladoje, Natasa
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Shape signaturs of fuzzy star-shaped sets based on distance from the centroid2005Ingår i: Pattern Recognition Letters, ISSN 0167-8655, Vol. 26, nr 6, s. 735-746Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We extend the shape signature based on the distance of the boundary points from the shape centroid, to the case of fuzzy sets. The analysis of the transition from crisp to fuzzy shape descriptor is first given in the continuous case. This is followed by a study of the specific issues induced by the discrete representation of the objects in a computer.

    We analyze two methods for calculating the signature of a fuzzy shape, derived from two ways of defining a fuzzy set: first, by its membership function, and second, as a stack of its α-cuts. The first approach is based on measuring the length of a fuzzy straight line by integration of the fuzzy membership function, while in the second one we use averaging of the shape signatures obtained for the individual α-cuts of the fuzzy set. The two methods, equivalent in the continuous case for the studied class of fuzzy shapes, produce different results when adjusted to the discrete case. A statistical study, aiming at characterizing the performances of each method in the discrete case, is done. Both methods are shown to provide more precise descriptions than their corresponding crisp versions. The second method (based on averaged Euclidean distance over the α-cuts) outperforms the others.

  • 303.
    Cheddad, Abbas
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Structure Preserving Binary Image Morphing using Delaunay Triangulation2017Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 85, s. 8-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mathematical morphology has been of a great significance to several scientific fields. Dilation, as one of the fundamental operations, has been very much reliant on the common methods based on the set theory and on using specific shaped structuring elements to morph binary blobs. We hypothesised that by performing morphological dilation while exploiting geometry relationship between dot patterns, one can gain some advantages. The Delaunay triangulation was our choice to examine the feasibility of such hypothesis due to its favourable geometric properties. We compared our proposed algorithm to existing methods and it becomes apparent that Delaunay based dilation has the potential to emerge as a powerful tool in preserving objects structure and elucidating the influence of noise. Additionally, defining a structuring element is no longer needed in the proposed method and the dilation is adaptive to the topology of the dot patterns. We assessed the property of object structure preservation by using common measurement metrics. We also demonstrated such property through handwritten digit classification using HOG descriptors extracted from dilated images of different approaches and trained using Support Vector Machines. The confusion matrix shows that our algorithm has the best accuracy estimate in 80% of the cases. In both experiments, our approach shows a consistent improved performance over other methods which advocates for the suitability of the proposed method.

  • 304.
    Christensen, Henrik I.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA (stängd 2012-06-30).
    Session summary2005Ingår i: Robotics Research: The Eleventh International Symposium, Springer Berlin/Heidelberg, 2005, s. 57-59Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    While the current part carries the title “path planning” the contributions in this section cover two topics: mapping and planning. In some sense one might argue that intelligent (autonomous) mapping actually requires path planning. While this is correct the contributions actually have a broader scope as is outlined below. A common theme to all of the presentations in this section is the adoption of hybrid representations to facilitate efficient processing in complex environments. Purely geometric models allow for accurate estimation of position and motion generation, but they scale poorly with environmental complexity while qualitative geometric models have a limited accuracy and are well suited for global estimation of trajectories/locations. Through fusion of qualitative and quantitative models it becomes possible to develop systems that have tractable complexity while maintaining geometric accuracy.

  • 305.
    Christensen, Henrik I.
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Pacchierotti, Elena
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Embodied social interaction for robots2005Ingår i: AISB'05 Convention: Social Intelligence and Interaction in Animals, Robots and Agents: Proceedings of the Symposium on Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction, 2005, s. 40-45Konferensbidrag (Refereegranskat)
    Abstract [en]

    A key aspect of service robotics for everyday use is the motion of systems in close proximity to humans. It is here essential that the robot exhibits a behaviour that signals safe motion and awareness of the other actors in its environment. To facilitate this there is a need to endow the system with facilities for detection and tracking of objects in the vicinity of the platform, and to design a control law that enables motion generation which is considered socially acceptable. We present a system for in-door navigation in which the rules of proxemics are used to define interaction strategies for the platform.

  • 306.
    Chrysostomou, Dimitrios
    et al.
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Nalpantidis, Lazaros
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Gasteratos, Antonios
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Lighting compensating multiview stereo2011Ingår i: 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011 - Proceedings, 2011, s. 176-179Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, a method that performs 3D object reconstruction from multiple views of the same scene is presented. This reconstruction method initially produces a basic model, based on the space carving algorithm, that is further refined in a subsequent step. The algorithm is fast, computationally simple and produces accurate representations of the input scenes. In addition, compared to previously presented works the proposed algorithm is able to cope with non uniformly lighted scenes due to the characteristics of the used voxel dissimilarity measure. The proposed algorithm is assessed and the experimental results are presented and discussed.

  • 307.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Autonomous Question Answering with Mobile Robots in Human-Populated Environments2016Ingår i: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’16), IEEE, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Autonomous mobile robots will soon become ubiquitous in human-populated environments. Besides their typical applications in fetching, delivery, or escorting, such robots present the opportunity to assist human users in their daily tasks by gathering and reporting up-to-date knowledge about the environment. In this paper, we explore this use case and present an end-to-end framework that enables a mobile robot to answer natural language questions about the state of a large-scale, dynamic environment asked by the inhabitants of that environment. The system parses the question and estimates an initial viewpoint that is likely to contain information for answering the question based on prior environment knowledge. Then, it autonomously navigates towards the viewpoint while dynamically adapting to changes and new information. The output of the system is an image of the most relevant part of the environment that allows the user to obtain an answer to their question. We additionally demonstrate the benefits of a continuously operating information gathering robot by showing how the system can answer retrospective questions about the past state of the world using incidentally recorded sensory data. We evaluate our approach with a custom mobile robot deployed in a university building, with questions collected from occupants of the building. We demonstrate our system's ability to respond to these questions in different environmental conditions.

  • 308.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Designing Information Gathering Robots for Human-Populated Environments2015Ingår i: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’15), IEEE, 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Advances in mobile robotics have enabled robots that can autonomously operate in human-populated environments. Although primary tasks for such robots might be fetching, delivery, or escorting, they present an untapped potential as information gathering agents that can answer questions for the community of co-inhabitants. In this paper, we seek to better understand requirements for such information gathering robots (InfoBots) from the perspective of the user requesting the information. We present findings from two studies: (i) a user survey conducted in two office buildings and (ii) a 4-day long deployment in one of the buildings, during which inhabitants of the building could ask questions to an InfoBot through a web-based interface. These studies allow us to characterize the types of information that InfoBots can provide for their users.

  • 309.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Exploring the Potential of Information Gathering Robots2015Ingår i: Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts (HRI’15), ACM Digital Library, 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    Autonomous mobile robots equipped with a number of sensors will soon be ubiquitous in human populated environments. In this paper we present an initial exploration into the potential of using such robots for information gathering. We present findings from a formative user survey and a 4-day long Wizard-of-Oz deployment of a robot that answers questions such as "Is there free food on the kitchen table?" Our studies allow us to characterize the types of information that InfoBots might be most useful for.

  • 310.
    Chunming, Tang
    et al.
    Harbin Engineering University, China.
    Bengtsson, Ewert
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Automatic Tracking of Neural Stem Cells2005Ingår i: WDIC 2005: Workshop Proceedings, 2005, s. 61-66Konferensbidrag (Refereegranskat)
    Abstract [en]

    In order to understand the development of stem-cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. The system is automatic as far as possible but in order to get as complete and correct tracking results as possible the user can interactively verify and correct the crucial starting segmentation of the first frame and inspect the final result and correct errors if nec-

    essary. All cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  • 311.
    Claesson, Kenji
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Implementation and Validation of Independent Vector Analysis2010Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [en]

    This Master’s Thesis was part of the project called Multimodalanalysis at the Depart-ment of Biomedical Engineering and Informatics at the Ume˚ University Hospital inUme˚ Sweden. The aim of the project is to develop multivariate measurement anda,analysis methods of the skeletal muscle physiology. One of the methods used to scanthe muscle is functional ultrasound. In a study performed by the project group datawas aquired, where test subjects were instructed to follow a certain exercise scheme,which was measured. Since there currently is no superior method to analyze the result-ing data (in form of ultrasound video sequences) several methods are being looked at.One considered method is called Independent Vector Analysis (IVA). IVA is a statisticalmethod to find independent components in a mix of components. This Master’s Thesisis about segmenting and analyzing the ultrasound images with help of IVA, to validateif it is a suitable method for this kind of tasks.First the algorithm was tested on generated mixed data to find out how well itperformed. The results were very accurate, considering that the method only usesapproximations. Some expected variation from the true value occured though.When the algorithm was considered performing to satisfactory, it was tested on thedata gathered by the study and the result can very well reflect an approximation of truesolution, since the resulting segmented signals seem to move in a possible way. But themethod has weak sides (which have been tried to be minimized) and all error analysishas been done by human eye, which definitly is a week point. But for the time being itis more important to analyze trends in the signals, rather than analyze exact numbers.So as long as the signals behave in a realistic way the result can not be said to becompletley wrong. So the overall results of the method were deemed adequate for the application at hand.

  • 312.
    Clarke, Emily L.
    et al.
    Univ Leeds, England; Leeds Teaching Hosp NHS Trust, England.
    Revie, Craig
    FFEI Ltd, England.
    Brettle, David
    Leeds Teaching Hosp NHS Trust, England.
    Shires, Michael
    Univ Leeds, England.
    Jackson, Peter
    Leeds Teaching Hosp NHS Trust, England.
    Cochrane, Ravinder
    FFEI Ltd, England.
    Wilson, Robert
    FFEI Ltd, England.
    Mello-Thoms, Claudia
    Univ Sydney, Australia.
    Treanor, Darren
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Univ Leeds, England; Leeds Teaching Hosp NHS Trust, England.
    Development of a novel tissue-mimicking color calibration slide for digital microscopy2018Ingår i: Color Research and Application, ISSN 0361-2317, E-ISSN 1520-6378, Vol. 43, nr 2, s. 184-197Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Digital microscopy produces high resolution digital images of pathology slides. Because no acceptable and effective control of color reproduction exists in this domain, there is significant variability in color reproduction of whole slide images. Guidance from international bodies and regulators highlights the need for color standardization. To address this issue, we systematically measured and analyzed the spectra of histopathological stains. This information was used to design a unique color calibration slide utilizing real stains and a tissue-like substrate, which can be stained to produce the same spectral response as tissue. By closely mimicking the colors in stained tissue, our target can provide more accurate color representation than film-based targets, whilst avoiding the known limitations of using actual tissue. The application of the color calibration slide in the clinical setting was assessed by conducting a pilot user-evaluation experiment with promising results. With the imminent integration of digital pathology into the routine work of the diagnostic pathologist, it is hoped that this color calibration slide will help provide a universal color standard for digital microscopy thereby ensuring better and safer healthcare delivery.

  • 313.
    Clement, Alice M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
    Nysjö, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Strand, Robin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Ahlberg, Per E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
    Brain – Endocast relationship in the Australian lungfish, Neoceratodus forsteri, elucidated from tomographic data (Sarcopterygii: Dipnoi)2015Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, nr 10, artikel-id e0141277Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (mu CT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoceratodus forsteri and compare this to previous accounts. Unexpected characters in this specimen include short olfactory peduncles connecting the olfactory bulbs to the telencephalon, and an oblong telencephalon. Furthermore, we illustrate the endocast (the mould of the internal space of the neurocranial cavity) of Neoceratodus, also describing and quantifying the brain-endocast relationship in a lungfish for the first time. Overall, the brain of the Australian lungfish closely matches the size and shape of the endocast cavity housing it, filling more than four fifths of the total volume. The forebrain and labyrinth regions of the brain correspond very well to the endocast morphology, while the midbrain and hindbrain do not fit so closely. Our results cast light on the gross neural and endocast anatomy in lungfishes, and are likely to have particular significance for palaeoneurologists studying fossil taxa.

  • 314.
    Clement, Alice M.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
    Strand, Robin
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Nysjö, Johan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Long, John A.
    Ahlberg, Per E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
    A new method for reconstructing brain morphology: Applying the brain-neurocranial spatial relationship in an extant lungfish to a fossil endocast2016Ingår i: Royal Society Open Science, E-ISSN 2054-5703, Vol. 3, nr 7, artikel-id 160307Artikel i tidskrift (Refereegranskat)
  • 315.
    Coeurjolly, David
    et al.
    Uppsala universitet, Fakultetsövergripande enheter, Centrum för bildanalys. Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Svensson, Stina
    Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Estimation of Curvature along Curves with Application to Fibres in 3D Images of Paper2003Konferensbidrag (Refereegranskat)
    Abstract [en]

    Space curves can be used to represent elongated objects in 3D images and furthermore to facilitate the computation of shape measures for the represented objects. In our specific application (fibres in 3D images of paper), we want to analyze the fibre net

  • 316.
    Colledanchise, Michele
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Murray, R. M.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Synthesis of correct-by-construction behavior trees2017Ingår i: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 6039-6046, artikel-id 8206502Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we study the problem of synthesizing correct-by-construction Behavior Trees (BTs) controlling agents in adversarial environments. The proposed approach combines the modularity and reactivity of BTs with the formal guarantees of Linear Temporal Logic (LTL) methods. Given a set of admissible environment specifications, an agent model in form of a Finite Transition System and the desired task in form of an LTL formula, we synthesize a BT in polynomial time, that is guaranteed to correctly execute the desired task. To illustrate the approach, we present three examples of increasing complexity.

  • 317.
    Colledanchise, Michele
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    How Behavior Trees Modularize Robustness and Safety in Hybrid Systems2014Ingår i: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE , 2014, s. 1482-1488Konferensbidrag (Refereegranskat)
    Abstract [en]

    Behavior Trees (BTs) have become a popular framework for designing controllers of in-game opponents in the computer gaming industry. In this paper, we formalize and analyze the reasons behind the success of the BTs using standard tools of robot control theory, focusing on how properties such as robustness and safety are addressed in a modular way. In particular, we show how these key properties can be traced back to the ideas of subsumption and sequential compositions of robot behaviors. Thus BTs can be seen as a recent addition to a long research effort towards increasing modularity, robustness and safety of robot control software. To illustrate the use of BTs, we provide a set of solutions to example problems.

  • 318.
    Conrad, Christian
    et al.
    Goethe University, Germany.
    Mester, Rudolf
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Goethe University, Germany.
    LEARNING RANK REDUCED MAPPINGS USING CANONICAL CORRELATION ANALYSIS2016Ingår i: 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), IEEE , 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Correspondence relations between different views of the same scene can be learnt in an unsupervised manner. We address autonomous learning of arbitrary fixed spatial (point-to-point) mappings. Since any such transformation can be represented by a permutation matrix, the signal model is a linear one, whereas the proposed analysis method, mainly based on Canonical Correlation Analysis (CCA) is based on a generalized eigensystem problem, i.e., a nonlinear operation. The learnt transformation is represented implicitly in terms of pairs of learned basis vectors and does neither use nor require an analytic/parametric expression for the latent mapping. We show how the rank of the signal that is shared among views may be determined from canonical correlations and how the overlapping (=shared) dimensions among the views may be inferred.

  • 319.
    Conrad, Christian
    et al.
    Goethe University, Germany.
    Mester, Rudolf
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Goethe University, Germany.
    Learning Relative Photometric Differences of Pairs of Cameras2015Ingår i: 2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), IEEE , 2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present an approach to learn relative photometric differences between pairs of cameras, which have partially overlapping fields of views. This is an important problem, especially in appearance based methods to correspondence estimation or object identification in multi-camera systems where grey values observed by different cameras are processed. We model intensity differences among pairs of cameras by means of a low order polynomial (Gray Value Transfer Function - GVTF) which represents the characteristic curve of the mapping of grey values, s(i) produced by camera C-i to the corresponding grey values s(j) acquired with camera C-j. While the estimation of the GVTF parameters is straightforward once a set of truly corresponding pairs of grey values is available, the non trivial task in the GVTF estimation process solved in this paper is the extraction of corresponding grey value pairs in the presence of geometric and photometric errors. We also present a temporal GVTF update scheme to adapt to gradual global illumination changes, e.g., due to the change of daylight.

  • 320.
    Cooney, Martin
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Bigun, Josef
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    PastVision+: Thermovisual Inference of Recent Medicine Intake by Detecting Heated Objects and Cooled Lips2017Ingår i: Frontiers in Robotics and AI, E-ISSN 2296-9144, Vol. 4, artikel-id 61Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article addresses the problem of how a robot can infer what a person has done recently, with a focus on checking oral medicine intake in dementia patients. We present PastVision+, an approach showing how thermovisual cues in objects and humans can be leveraged to infer recent unobserved human-object interactions. Our expectation is that this approach can provide enhanced speed and robustness compared to existing methods, because our approach can draw inferences from single images without needing to wait to observe ongoing actions and can deal with short-lasting occlusions; when combined, we expect a potential improvement in accuracy due to the extra information from knowing what a person has recently done. To evaluate our approach, we obtained some data in which an experimenter touched medicine packages and a glass of water to simulate intake of oral medicine, for a challenging scenario in which some touches were conducted in front of a warm background. Results were promising, with a detection accuracy of touched objects of 50% at the 15 s mark and 0% at the 60 s mark, and a detection accuracy of cooled lips of about 100 and 60% at the 15 s mark for cold and tepid water, respectively. Furthermore, we conducted a follow-up check for another challenging scenario in which some participants pretended to take medicine or otherwise touched a medicine package: accuracies of inferring object touches, mouth touches, and actions were 72.2, 80.3, and 58.3% initially, and 50.0, 81.7, and 50.0% at the 15 s mark, with a rate of 89.0% for person identification. The results suggested some areas in which further improvements would be possible, toward facilitating robot inference of human actions, in the context of medicine intake monitoring.

  • 321.
    Cooney, Martin
    et al.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Karlsson, Stefan M.
    Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
    Impressions of Size-Changing in a Companion Robot2015Ingår i: PhyCS 2015 – 2nd International Conference on Physiological Computing Systems, Proceedings / [ed] Hugo Plácido da Silva, Pierre Chauvet, Andreas Holzinger, Stephen Fairclough & Dennis Majoe, SciTePress, 2015, s. 118-123Konferensbidrag (Refereegranskat)
    Abstract [en]

    Physiological data such as head movements can be used to intuitively control a companion robot to perform useful tasks. We believe that some tasks such as reaching for high objects or getting out of a person’s way could be accomplished via size changes, but such motions should not seem threatening or bothersome. To gain insight into how size changes are perceived, the Think Aloud Method was used to gather typical impressions of a new robotic prototype which can expand in height or width based on a user’s head movements. The results indicate promise for such systems, also highlighting some potential pitfalls.

  • 322. Corrigan, L.J.
    et al.
    Basedow, C.A.
    Kuster, D.
    Kappas, A.
    Peters, C.
    Castellano, G.
    Perception Matters! Engagement in Task Orientated Social Robotics2015Konferensbidrag (Refereegranskat)
  • 323.
    Cristea, Alexander
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Karlsson Edlund, Patrick
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys.
    Qaisar, Rizwan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Bengtsson, Ewert
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Larsson, Lars
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Klinisk neurofysiologi.
    Effects of ageing and gender on the spatial organization of nuclei in single human skeletal muscle cells2009Ingår i: Neuromuscular Disorders, ISSN 0960-8966, E-ISSN 1873-2364, Vol. 19, s. 605-606Artikel i tidskrift (Refereegranskat)
  • 324.
    Curic, Vladimir
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Landström, Anders
    Thurley, Matthew J.
    Luengo Hendriks, Cris L.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Adaptive Mathematical Morphology: a survey of the field2014Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 47, s. 18-28Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present an up-to-date survey on the topic of adaptive mathematical morphology. A broad review of research performed within the field is provided, as well as an in-depth summary of the theoretical advances within the field. Adaptivity can come in many different ways, based on different attributes, measures, and parameters. Similarities and differences between a few selected methods for adaptive structuring elements are considered, providing perspective on the consequences of different types of adaptivity. We also provide a brief analysis of perspectives and trends within the field, discussing possible directions for future studies.

  • 325.
    Curic, Vladimir
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lefèvre, Sébastien
    Luengo Hendriks, Cris L.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Adaptive hit or miss transform2015Ingår i: Mathematical Morphology and Its Applications to Signal and Image Processing, Springer, 2015, s. 741-752Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Hit or Miss Transform is a fundamental morphological operator, and can be used for template matching. In this paper, we present a framework for adaptive Hit or Miss Transform, where structuring elements are adaptive with respect to the input image itself. We illustrate the difference between the new adaptive Hit or Miss Transform and the classical Hit or Miss Transform. As an example of its usefulness, we show how the new adaptive Hit or Miss Transform can detect particles in single molecule imaging.

  • 326.
    Curic, Vladimir
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
    Sladoje, Natasa
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Faculty of Technical Sciences, University of Novi Sad, Serbia.
    Distance measures between digital fuzzy objects and their applicability in image processing2011Ingår i: Combinatorial Image Analysis / [ed] Jake Aggarwal, Reneta Barneva, Valentin Brimkov, Kostadin Koroutchev, Elka Koroutcheva, Springer Berlin/Heidelberg, 2011, Vol. 6636, s. 385-397Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present two different extensions of the Sum of minimal distances and the Complement weighted sum of minimal distances to distances between fuzzy sets. We evaluate to what extent the proposed distances show monotonic behavior with respect to increasing translation and rotation of digital objects, in noise free, as well as in noisy conditions. Tests show that one of the extension approaches leads to distances exhibiting very good performance. Furthermore, we evaluate distance based classification of crisp and fuzzy representations of objects at a range of resolutions. We conclude that the proposed distances are able to utilize the additional information available in a fuzzy representation, thereby leading to improved performance of related image processing tasks.

  • 327.
    Curic, Vladimir
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Lindblad, Joakim
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Centrum för bildanalys. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Datoriserad bildanalys.
    Sladoje, Natasa
    Centre for Mathematics and Statistics, Faculty of Technical Sciences, University of Novi Sad, Serbia.
    The Sum of minimal distances as a useful distance measure for image registration2010Ingår i: Proceedings SSBA 2010 / [ed] Cris Luengo and Milan Gavrilovic, Uppsala: Centre for Image Analysis , 2010, s. 55-58Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    In this paper we study set distances which are used in image registration related problems. We introduced a new distance as a Sum of minimal distances with added linear weights. Linear weights are added in a way to reduce the impact of single outliers. An evaluation of observed distances with respect to applicability to image object registration is performed. A comparative study of set distances with respect to noise sensitivity as well as with respect to translation and rotation of objects in image is presented. Based on our experiments on synthetic images containing various types of noise, we determine that the proposed weighted sum of minimal distances has a good performances for object registration.

  • 328.
    Dahlqvist, Bengt
    Uppsala universitet.
    Decision Making in Image Analysis1983Ingår i: Notes from the Minisymposium on Algorithms and Programs for Computer-Assisted Pattern Recognition: Internal Report 83-11, 1983Konferensbidrag (Övrigt vetenskapligt)
  • 329.
    Dahlqvist, Bengt
    et al.
    Uppsala universitet.
    Bengtsson, Ewert
    Uppsala universitet.
    Eriksson, Olle
    Uppsala universitet.
    Jarkrans, Torsten
    Uppsala universitet.
    Nordin, Bo
    Uppsala universitet.
    Stenkvist, Björn
    Segmentation of Cell Images by Minimum Error Thresholding1981Ingår i: Proceedings of the 2nd Scandinavian Conference on Image Analysis, 1981Konferensbidrag (Refereegranskat)
  • 330.
    Damghanian, Mitra
    et al.
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
    Olsson, Roger
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
    Sjöström, Mårten
    Mittuniversitetet, Fakulteten för naturvetenskap, teknik och medier, Avdelningen för informations- och kommunikationssystem.
    Depth and Angular Resolution in Plenoptic Cameras2015Ingår i: 2015 IEEE International Conference On Image Processing (ICIP), September 2015, IEEE, 2015, s. 3044-3048, artikel-id 7351362Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a model-based approach to extract the depth and angular resolution in a plenoptic camera. Obtained results for the depth and angular resolution are validated against Zemax ray tracing results. The provided model-based approach gives the location and number of the resolvable depth planes in a plenoptic camera as well as the angular resolution with regards to disparity in pixels. The provided model-based approach is straightforward compared to practical measurements and can reflect on the plenoptic camera parameters such as the microlens f-number in contrast with the principal-ray-model approach. Easy and accurate quantification of different resolution terms forms the basis for designing the capturing setup and choosing a reasonable system configuration for plenoptic cameras. Results from this work will accelerate customization of the plenoptic cameras for particular applications without the need for expensive measurements.

  • 331.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Learning Convolution Operators for Visual Tracking2018Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Visual tracking is one of the fundamental problems in computer vision. Its numerous applications include robotics, autonomous driving, augmented reality and 3D reconstruction. In essence, visual tracking can be described as the problem of estimating the trajectory of a target in a sequence of images. The target can be any image region or object of interest. While humans excel at this task, requiring little effort to perform accurate and robust visual tracking, it has proven difficult to automate. It has therefore remained one of the most active research topics in computer vision.

    In its most general form, no prior knowledge about the object of interest or environment is given, except for the initial target location. This general form of tracking is known as generic visual tracking. The unconstrained nature of this problem makes it particularly difficult, yet applicable to a wider range of scenarios. As no prior knowledge is given, the tracker must learn an appearance model of the target on-the-fly. Cast as a machine learning problem, it imposes several major challenges which are addressed in this thesis.

    The main purpose of this thesis is the study and advancement of the, so called, Discriminative Correlation Filter (DCF) framework, as it has shown to be particularly suitable for the tracking application. By utilizing properties of the Fourier transform, a correlation filter is discriminatively learned by efficiently minimizing a least-squares objective. The resulting filter is then applied to a new image in order to estimate the target location.

    This thesis contributes to the advancement of the DCF methodology in several aspects. The main contribution regards the learning of the appearance model: First, the problem of updating the appearance model with new training samples is covered. Efficient update rules and numerical solvers are investigated for this task. Second, the periodic assumption induced by the circular convolution in DCF is countered by proposing a spatial regularization component. Third, an adaptive model of the training set is proposed to alleviate the impact of corrupted or mislabeled training samples. Fourth, a continuous-space formulation of the DCF is introduced, enabling the fusion of multiresolution features and sub-pixel accurate predictions. Finally, the problems of computational complexity and overfitting are addressed by investigating dimensionality reduction techniques.

    As a second contribution, different feature representations for tracking are investigated. A particular focus is put on the analysis of color features, which had been largely overlooked in prior tracking research. This thesis also studies the use of deep features in DCF-based tracking. While many vision problems have greatly benefited from the advent of deep learning, it has proven difficult to harvest the power of such representations for tracking. In this thesis it is shown that both shallow and deep layers contribute positively. Furthermore, the problem of fusing their complementary properties is investigated.

    The final major contribution of this thesis regards the prediction of the target scale. In many applications, it is essential to track the scale, or size, of the target since it is strongly related to the relative distance. A thorough analysis of how to integrate scale estimation into the DCF framework is performed. A one-dimensional scale filter is proposed, enabling efficient and accurate scale estimation.

  • 332.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Visual Tracking2013Självständigt arbete på avancerad nivå (masterexamen), 300 hpStudentuppsats (Examensarbete)
    Abstract [en]

    Visual tracking is a classical computer vision problem with many important applications in areas such as robotics, surveillance and driver assistance. The task is to follow a target in an image sequence. The target can be any object of interest, for example a human, a car or a football. Humans perform accurate visual tracking with little effort, while it remains a difficult computer vision problem. It imposes major challenges, such as appearance changes, occlusions and background clutter. Visual tracking is thus an open research topic, but significant progress has been made in the last few years.

    The first part of this thesis explores generic tracking, where nothing is known about the target except for its initial location in the sequence. A specific family of generic trackers that exploit the FFT for faster tracking-by-detection is studied. Among these, the CSK tracker have recently shown obtain competitive performance at extraordinary low computational costs. Three contributions are made to this type of trackers. Firstly, a new method for learning the target appearance is proposed and shown to outperform the original method. Secondly, different color descriptors are investigated for the tracking purpose. Evaluations show that the best descriptor greatly improves the tracking performance. Thirdly, an adaptive dimensionality reduction technique is proposed, which adaptively chooses the most important feature combinations to use. This technique significantly reduces the computational cost of the tracking task. Extensive evaluations show that the proposed tracker outperform state-of-the-art methods in literature, while operating at several times higher frame rate.

    In the second part of this thesis, the proposed generic tracking method is applied to human tracking in surveillance applications. A causal framework is constructed, that automatically detects and tracks humans in the scene. The system fuses information from generic tracking and state-of-the-art object detection in a Bayesian filtering framework. In addition, the system incorporates the identification and tracking of specific human parts to achieve better robustness and performance. Tracking results are demonstrated on a real-world benchmark sequence.

  • 333.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Bhat, Goutam
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    ECO: Efficient Convolution Operators for Tracking2017Ingår i: 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), IEEE , 2017, s. 6931-6939Konferensbidrag (Refereegranskat)
    Abstract [en]

    In recent years, Discriminative Correlation Filter (DCF) based methods have significantly advanced the state-of-the-art in tracking. However, in the pursuit of ever increasing tracking performance, their characteristic speed and real-time capability have gradually faded. Further, the increasingly complex models, with massive number of trainable parameters, have introduced the risk of severe over-fitting. In this work, we tackle the key causes behind the problems of computational complexity and over-fitting, with the aim of simultaneously improving both speed and performance. We revisit the core DCF formulation and introduce: (i) a factorized convolution operator, which drastically reduces the number of parameters in the model; (ii) a compact generative model of the training sample distribution, that significantly reduces memory and time complexity, while providing better diversity of samples; (iii) a conservative model update strategy with improved robustness and reduced complexity. We perform comprehensive experiments on four benchmarks: VOT2016, UAV123, OTB-2015, and Temple-Color. When using expensive deep features, our tracker provides a 20-fold speedup and achieves a 13.0% relative gain in Expected Average Overlap compared to the top ranked method [12] in the VOT2016 challenge. Moreover, our fast variant, using hand-crafted features, operates at 60 Hz on a single CPU, while obtaining 65.0% AUC on OTB-2015.

  • 334.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking2016Ingår i: 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CPVR), IEEE , 2016, s. 1430-1438Konferensbidrag (Refereegranskat)
    Abstract [en]

    Tracking-by-detection methods have demonstrated competitive performance in recent years. In these approaches, the tracking model heavily relies on the quality of the training set. Due to the limited amount of labeled training data, additional samples need to be extracted and labeled by the tracker itself. This often leads to the inclusion of corrupted training samples, due to occlusions, misalignments and other perturbations. Existing tracking-by-detection methods either ignore this problem, or employ a separate component for managing the training set. We propose a novel generic approach for alleviating the problem of corrupted training samples in tracking-by-detection frameworks. Our approach dynamically manages the training set by estimating the quality of the samples. Contrary to existing approaches, we propose a unified formulation by minimizing a single loss over both the target appearance model and the sample quality weights. The joint formulation enables corrupted samples to be down-weighted while increasing the impact of correct ones. Experiments are performed on three benchmarks: OTB-2015 with 100 videos, VOT-2015 with 60 videos, and Temple-Color with 128 videos. On the OTB-2015, our unified formulation significantly improves the baseline, with a gain of 3.8% in mean overlap precision. Finally, our method achieves state-of-the-art results on all three datasets.

  • 335.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Discriminative Scale Space Tracking2017Ingår i: IEEE Transaction on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 39, nr 8, s. 1561-1575Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Accurate scale estimation of a target is a challenging research problem in visual object tracking. Most state-of-the-art methods employ an exhaustive scale search to estimate the target size. The exhaustive search strategy is computationally expensive and struggles when encountered with large scale variations. This paper investigates the problem of accurate and robust scale estimation in a tracking-by-detection framework. We propose a novel scale adaptive tracking approach by learning separate discriminative correlation filters for translation and scale estimation. The explicit scale filter is learned online using the target appearance sampled at a set of different scales. Contrary to standard approaches, our method directly learns the appearance change induced by variations in the target scale. Additionally, we investigate strategies to reduce the computational cost of our approach. Extensive experiments are performed on the OTB and the VOT2014 datasets. Compared to the standard exhaustive scale search, our approach achieves a gain of 2.5 percent in average overlap precision on the OTB dataset. Additionally, our method is computationally efficient, operating at a 50 percent higher frame rate compared to the exhaustive scale search. Our method obtains the top rank in performance by outperforming 19 state-of-the-art trackers on OTB and 37 state-of-the-art trackers on VOT2014.

  • 336.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Coloring Channel Representations for Visual Tracking2015Ingår i: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Rasmus R. Paulsen, Kim S. Pedersen, Springer, 2015, Vol. 9127, s. 117-129Konferensbidrag (Refereegranskat)
    Abstract [en]

    Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biologically-inspired channel representations \cite{felsberg06PAMI} have shown to provide promising results in many applications ranging from autonomous driving to visual tracking.

    This paper investigates the problem of coloring channel representations for visual tracking. We evaluate two strategies, channel concatenation and channel product, to construct channel coded color representations. The proposed channel coded color representations are generic and can be used beyond tracking.

    Experiments are performed on 41 challenging benchmark videos. Our experiments clearly suggest that a careful selection of color feature together with an optimal fusion strategy, significantly outperforms the standard luminance based channel representation. Finally, we show promising results compared to state-of-the-art tracking methods in the literature.

  • 337.
    Danelljan, Martin
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Häger, Gustav
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Khan, Fahad Shahbaz
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Felsberg, Michael
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Convolutional Features for Correlation Filter Based Visual Tracking2015Ingår i: Proceedings of the IEEE International Conference on Computer Vision, IEEE conference proceedings, 2015, s. 621-629Konferensbidrag (Refereegranskat)
    Abstract [en]

    Visual object tracking is a challenging computer vision problem with numerous real-world applications. This paper investigates the impact of convolutional features for the visual tracking problem. We propose to use activations from the convolutional layer of a CNN in discriminative correlation filter based tracking frameworks. These activations have several advantages compared to the standard deep features (fully connected layers). Firstly, they mitigate the need of task specific fine-tuning. Secondly, they contain structural information crucial for the tracking problem. Lastly, these activations have low dimensionality. We perform comprehensive experiments on three benchmark datasets: OTB, ALOV300++ and the recently introduced VOT2015. Surprisingly, different to image classification, our results suggest that activations from the first layer provide superior tracking performance compared to the deeper layers. Our results further show that the convolutional features provide improved results compared to standard handcrafted features. Finally, results comparable to state-of-theart trackers are obtained on all three benchmark datasets.

  • 338.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Learning Spatially Regularized Correlation Filters for Visual Tracking2015Ingår i: Proceedings of the International Conference in Computer Vision (ICCV), 2015, IEEE Computer Society, 2015, s. 4310-4318Konferensbidrag (Refereegranskat)
    Abstract [en]

    Robust and accurate visual tracking is one of the most challenging computer vision problems. Due to the inherent lack of training data, a robust approach for constructing a target appearance model is crucial. Recently, discriminatively learned correlation filters (DCF) have been successfully applied to address this problem for tracking. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier on all patches in the target neighborhood. However, the periodic assumption also introduces unwanted boundary effects, which severely degrade the quality of the tracking model.

    We propose Spatially Regularized Discriminative Correlation Filters (SRDCF) for tracking. A spatial regularization component is introduced in the learning to penalize correlation filter coefficients depending on their spatial location. Our SRDCF formulation allows the correlation filters to be learned on a significantly larger set of negative training samples, without corrupting the positive samples. We further propose an optimization strategy, based on the iterative Gauss-Seidel method, for efficient online learning of our SRDCF. Experiments are performed on four benchmark datasets: OTB-2013, ALOV++, OTB-2015, and VOT2014. Our approach achieves state-of-the-art results on all four datasets. On OTB-2013 and OTB-2015, we obtain an absolute gain of 8.0% and 8.2% respectively, in mean overlap precision, compared to the best existing trackers.

  • 339.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Granström, Karl
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Heintz, Fredrik
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska högskolan.
    Rudol, Piotr
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska högskolan.
    Wzorek, Mariusz
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska högskolan.
    Kvarnström, Jonas
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska högskolan.
    Doherty, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska högskolan.
    A Low-Level Active Vision Framework for Collaborative Unmanned Aircraft Systems2015Ingår i: COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I / [ed] Lourdes Agapito, Michael M. Bronstein and Carsten Rother, Springer Publishing Company, 2015, Vol. 8925, s. 223-237Konferensbidrag (Refereegranskat)
    Abstract [en]

    Micro unmanned aerial vehicles are becoming increasingly interesting for aiding and collaborating with human agents in myriads of applications, but in particular they are useful for monitoring inaccessible or dangerous areas. In order to interact with and monitor humans, these systems need robust and real-time computer vision subsystems that allow to detect and follow persons.

    In this work, we propose a low-level active vision framework to accomplish these challenging tasks. Based on the LinkQuad platform, we present a system study that implements the detection and tracking of people under fully autonomous flight conditions, keeping the vehicle within a certain distance of a person. The framework integrates state-of-the-art methods from visual detection and tracking, Bayesian filtering, and AI-based control. The results from our experiments clearly suggest that the proposed framework performs real-time detection and tracking of persons in complex scenarios

  • 340.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Meneghetti, Giulia
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    A Probabilistic Framework for Color-Based Point Set Registration2016Ingår i: 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CPVR), IEEE , 2016, s. 1818-1826Konferensbidrag (Refereegranskat)
    Abstract [en]

    In recent years, sensors capable of measuring both color and depth information have become increasingly popular. Despite the abundance of colored point set data, state-of-the-art probabilistic registration techniques ignore the available color information. In this paper, we propose a probabilistic point set registration framework that exploits available color information associated with the points. Our method is based on a model of the joint distribution of 3D-point observations and their color information. The proposed model captures discriminative color information, while being computationally efficient. We derive an EM algorithm for jointly estimating the model parameters and the relative transformations. Comprehensive experiments are performed on the Stanford Lounge dataset, captured by an RGB-D camera, and two point sets captured by a Lidar sensor. Our results demonstrate a significant gain in robustness and accuracy when incorporating color information. On the Stanford Lounge dataset, our approach achieves a relative reduction of the failure rate by 78% compared to the baseline. Furthermore, our proposed model outperforms standard strategies for combining color and 3D-point information, leading to state-of-the-art results.

  • 341.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Meneghetti, Giulia
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Aligning the Dissimilar: A Probabilistic Feature-Based Point Set Registration Approach2016Ingår i: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR) 2016, IEEE, 2016, s. 247-252Konferensbidrag (Refereegranskat)
    Abstract [en]

    3D-point set registration is an active area of research in computer vision. In recent years, probabilistic registration approaches have demonstrated superior performance for many challenging applications. Generally, these probabilistic approaches rely on the spatial distribution of the 3D-points, and only recently color information has been integrated into such a framework, significantly improving registration accuracy. Other than local color information, high-dimensional 3D shape features have been successfully employed in many applications such as action recognition and 3D object recognition. In this paper, we propose a probabilistic framework to integrate high-dimensional 3D shape features with color information for point set registration. The 3D shape features are distinctive and provide complementary information beneficial for robust registration. We validate our proposed framework by performing comprehensive experiments on the challenging Stanford Lounge dataset, acquired by a RGB-D sensor, and an outdoor dataset captured by a Lidar sensor. The results clearly demonstrate that our approach provides superior results both in terms of robustness and accuracy compared to state-of-the-art probabilistic methods.

  • 342.
    Danelljan, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Robinson, Andreas
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking2016Ingår i: Computer Vision - ECCV 2016, Pt V, SPRINGER INT PUBLISHING AG , 2016, Vol. 9909, s. 472-488Konferensbidrag (Refereegranskat)
    Abstract [en]

    Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data by including all shifted versions of a training sample. However, the underlying DCF formulation is restricted to single-resolution feature maps, significantly limiting its potential. In this paper, we go beyond the conventional DCF framework and introduce a novel formulation for training continuous convolution filters. We employ an implicit interpolation model to pose the learning problem in the continuous spatial domain. Our proposed formulation enables efficient integration of multi-resolution deep feature maps, leading to superior results on three object tracking benchmarks: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate). Additionally, our approach is capable of sub-pixel localization, crucial for the task of accurate feature point tracking. We also demonstrate the effectiveness of our learning formulation in extensive feature point tracking experiments.

  • 343.
    D'Angelo, Mirko
    et al.
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM), Institutionen för datavetenskap (DV).
    Caporuscio, Mauro
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM), Institutionen för datavetenskap (DV).
    Napolitano, Annalisa
    University of Rome 'Tor Vergata', Italy.
    Model-driven Engineering of Decentralized Control in Cyber-Physical Systems2017Ingår i: Proceedings of the 2nd International Workshop on  Foundations and Applications of Self* Systems (FAS*W), IEEE, 2017, s. 7-12Konferensbidrag (Refereegranskat)
    Abstract [en]

    Self-Adaptation is nowadays recognized as an effective approach to manage the complexity and dynamics inherent to cyber-physical systems, which are composed of deeply intertwined physical and software components interacting with each other. A self-Adaptive system typically consists of a managed subsystem and a managing subsystem that implements the adaptation logic by means of the well established MAPE-K control loop. Since in large distributed settings centralized control is hardly adequate to manage the whole system, self-Adaptation should be achieved through collective decentralized control, that is multiple cyber-physical entities must adapt in order to address critical runtime conditions. Developing such systems is challenging, as several dimensions concerning both the cyber-physical system and the decentralized control loop should be considered. To this end, we promote MAPE-K components as first-class modeling abstractions and provide a framework supporting the design, development, and validation of decentralized self-Adaptive cyber-physical systems.

  • 344. Danielsson, Max
    et al.
    Sievert, Thomas
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Grahn, Håkan
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Rasmusson, Jim
    Sony Mobile Communications AB.
    Feature Detection and Description using a Harris-Hessian/FREAK Combination on an Embedded GPU2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    GPUs in embedded platforms are reaching performance levels comparable to desktop hardware, thus it becomes interesting to apply Computer Vision techniques. We propose, implement, and evaluate a novel feature detector and descriptor combination, i.e., we combine the Harris-Hessian detector with the FREAK binary descriptor. The implementation is done in OpenCL, and we evaluate the execution time and classification performance. We compare our approach with two other methods, FAST/BRISK and ORB. Performance data is presented for the mobile device Xperia Z3 and the desktop Nvidia GTX 660. Our results indicate that the execution times on the Xperia Z3 are insufficient for real-time applications while desktop execution shows future potential. Classification performance of Harris-Hessian/FREAK indicates that the solution is sensitive to rotation, but superior in scale variant images.

  • 345.
    Danielsson, Oscar
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Shape-based Representations and Boosting for Visual Object Class Detection: Models and methods for representaion and detection in single and multiple views2011Doktorsavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    Detection of generic visual object classes (i.e. cars, dogs, mugs or people) in images is a task that humans are able to solve with remarkable ease. Unfortunately this has proven a very challenging task for computer vision. Thereason is that different instances of the same class may look very different, i.e. there is a high intra-class variation. There are several causes for intra-class variation; for example (1) the imaging conditions (e.g. lighting and exposure) may change, (2) different objects of the same class typically differ in shape and appearance, (3) the position of the object relative to the camera (i.e. the viewpoint) may change and (4) some objects are articulate and may change pose. In addition the background class, i.e. everything but the target object class, is very large. It is the combination of very high intra-class variation with a large background class that makes generic object class detection difficult.

    This thesis addresses this challenge within the AdaBoost framework. AdaBoost constructs an ensemble of weak classifiers to solve a given classification task and allows great flexibility in the design of these weak classifiers. This thesis proposes several types of weak classifiers that specifically target some of the causes of high intra-class variation. A multi-local classifier is proposed to capture global shape properties for object classes that lack discriminative local features, projectable classifiers are proposed to handle detection from multiple viewpoints and finally gated classifiers are proposed as a generic way to handle high intra-class variation in combination with a large background class.

    All proposed weak classifiers are evaluated on standard datasets to allow performance comparison to other related methods.

  • 346.
    Danielsson, Oscar
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Projectable Classifiers for Multi-View Object Class Recognition2011Ingår i: 3rd International IEEE Workshop on 3D Representation and Recognition, 2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a multi-view object class modeling framework based on a simplified camera model and surfels (defined by a location and normal direction in a normalized 3D coordinate system) that mediate coarse correspondences between different views. Weak classifiers are learnt relative to the reference frames provided by the surfels. We describe a weak classifier that uses contour information when its corresponding surfel projects to a contour element in the image and color information when the face of the surfel is visible in the image. We emphasize that these weak classifiers can possibly take many different forms and use many different image features. Weak classifiers are combined using AdaBoost. We evaluate the method on a public dataset [8], showing promising results on categorization, recognition/detection, pose estimation and image synthesis.

  • 347.
    Danielsson, Oscar Martin
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Category-sensitive hashing and bloom filter based descriptors for online keypoint recognition2015Ingår i: 19th Scandinavian Conference on Image Analysis, SCIA 2015, Springer, 2015, s. 329-340Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we propose a method for learning a categorysensitive hash function (i.e. a hash function that tends to map inputs from the same category to the same hash bucket) and a feature descriptor based on the Bloom filter. Category-sensitive hash functions are robust to intra-category variation. In this paper we use them to produce descriptors that are invariant to transformations caused by for example viewpoint changes, lighting variation and deformation. Since the descriptors are based on Bloom filters, they support a ”union” operation. So descriptors of matched features can be aggregated by taking their union.We thus end up with one descriptor per keypoint instead of one descriptor per feature (By keypoint we refer to a world-space reference point and by feature we refer to an image-space interest point. Features are typically observations of keypoints and matched features are observations of the same keypoint). In short, the proposed descriptor has data-defined invariance properties due to the category-sensitive hashing and is aggregatable due to its Bloom filter inheritance. This is useful whenever we require custom invariance properties (e.g. tracking of deformable objects) and/or when we make multiple observations of each keypoint (e.g. tracking, multi-view stereo or visual SLAM).

  • 348.
    Daoutis, Marios
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Knowledge based perceptual anchoring: grounding percepts to concepts in cognitive robots2013Ingår i: Künstliche Intelligenz, ISSN 0933-1875, E-ISSN 1610-1987, s. 1-4Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perceptual anchoring is the process of creating and maintaining a connection between the sensor data corresponding to a physical object and its symbolic description. It is a subset of the symbol grounding problem, introduced by Harnad (Phys. D, Nonlinear Phenom. 42(1–3):335–346, 1990) and investigated over the past years in several disciplines including robotics. This PhD dissertation focuses on a method for grounding sensor data of physical objects to the corresponding semantic descriptions, in the context of cognitive robots where the challenge is to establish the connection between percepts and concepts referring to objects, their relations and properties. We examine how knowledge representation can be used together with an anchoring framework, so as to complement the meaning of percepts while supporting better linguistic interaction with the use of the corresponding concepts. The proposed method addresses the need to represent and process both perceptual and semantic knowledge, often expressed in different abstraction levels, while originating from different modalities. We then focus on the integration of anchoring with a large scale knowledge base system and with perceptual routines. This integration is applied in a number of studies, where in the context of a smart home, several evaluations spanning from spatial and commonsense reasoning to linguistic interaction and concept acquisition.

  • 349.
    Daoutis, Marios
    et al.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Coradeschi, Silvia
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Loutfi, Amy
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Towards concept anchoring for cognitive robots2012Ingår i: Intelligent Service Robotics, ISSN 1861-2784, Vol. 5, nr 4, s. 213-228Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a model for anchoring categorical conceptual information which originates from physical perception and the web. The model is an extension of the anchoring framework which is used to create and maintain over time semantically grounded sensor information. Using the augmented anchoring framework that employs complex symbolic knowledge from a commonsense knowledge base, we attempt to ground and integrate symbolic and perceptual data that are available on the web. We introduce conceptual anchors which are representations of general, concrete conceptual terms. We show in an example scenario how conceptual anchors can be coherently integrated with perceptual anchors and commonsense information for the acquisition of novel concepts.

  • 350. Darrell, T. J.
    et al.
    Yeh, T.
    Tollmar, Konrad
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikationssystem, CoS. KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, KTH Center för Trådlösa System, Wireless@kth.
    Photo-based mobile deixis system and related techniques2004Patent (Övrig (populärvetenskap, debatt, mm))
45678910 301 - 350 av 1712
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf