Change search
Refine search result
3456789 251 - 300 of 195330
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 251. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    A search for an excited muon decaying to a muon and two jets in pp collisions at root s=8 TeV with the ATLAS detector2016In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 18, 073021403Article in journal (Refereed)
    Abstract [en]

    Anew search signature for excited leptons is explored. Excited muons are sought in the channel pp -> mu mu* -> mu mu jet jet, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb(-1) of pp collision data at a centre-of-mass energy of root s = 8 TeV taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass m(mu)*. For m(mu)* between 1.3 and 3.0 TeV, the upper limit on sigma B(mu* -> mu q (q) over bar) is between 0.6 and 1 fb. Limits on sB are converted to lower bounds on the compositeness scale Lambda. In the limiting case Lambda = m(mu)*, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger mu* masses improve upon previous limits from traditional searches based on the gauge-mediated decay mu* -> mu gamma.

  • 252. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Charged-particle distributions in pp interactions at root s=8TeV measured with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 7, 403Article in journal (Refereed)
    Abstract [en]

    This paper presents measurements of distributions of charged particles which are produced in proton-proton collisions at a centre-of-mass energy of root s = 8TeV and recorded by the ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity of 160 mu b(-1) was used. A minimumbias trigger was utilised to select a data sample of more than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum distributions of charged particles are shown in different regions of kinematics and charged-particle multiplicity, including measurements of final states at high multiplicity. The results are corrected for detector effects and are compared to the predictions of various Monte Carlo event generator models which simulate the full hadronic final state.

  • 253. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Maddocks, H.J.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of event-shape observables in Z -> l(+)l(-) events in pp collisions at root s=7 TeV with the ATLAS detector at the LHC2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 7, 375Article in journal (Refereed)
    Abstract [en]

    Event-shape observables measured using charged particles in inclusive Z-boson events are presented, using the electron and muon decay modes of the Z bosons. The measurements are based on an integrated luminosity of 1.1 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy root s = 7 TeV. Charged-particle distributions, excluding the lepton-antilepton pair from the Z-boson decay, are measured in different ranges of transverse momentum of the Z boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F-parameter, which are in particular sensitive to properties of the underlying event at small values of the Z-boson transverse momentum. The measured observables are compared with predictions from PYTHIA 8, Sherpa, and HERWIG 7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high Z-boson transverse momenta than at low Z-boson transverse momenta, and for the observables that are less sensitive to the number of charged particles in the event.

  • 254. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    A search for prompt lepton-jets in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 2, 062Article in journal (Refereed)
    Abstract [en]

    A search is presented for a new, light boson with a mass of about 1 GeV and decaying promptly to jets of collimated electrons and/or muons (lepton-jets). The analysis is performed with 20.3 fb(-1) of data collected by the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a centre-of-mass energy of 8 TeV. Events are required to contain at least two lepton-jets. This study finds no statistically significant deviation from predictions of the Standard Model and places 95% confidence-level upper limits on the contribution of new phenomena beyond the SM, incuding SUSY-portal and Higgs-portal models, on the number of events with lepton-jets.

  • 255. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    A search for top squarks with R-parity-violating decays to all-hadronic final states with the ATLAS detector in root s=8 TeV proton-proton collisions2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 6, 067Article in journal (Refereed)
    Abstract [en]

    A search for the pair production of top squarks, each with R-parity-violating decays into two Standard Model quarks, is performed using 17.4 fb(-1) of root s = 8 TeV proton-proton collision data recorded by the ATLAS experiment at the LITC. Each top squark is assumed to decay to a b- and an 8-quark, leading to four quarks in the final state. Background discrimination is achieved with the use of b-tagging and selections on the mass and substructure of large-radius jets, providing sensitivity to top squark masses as low as 100 GeV. No evidence of an excess beyond the Standard Model background prediction is observed and top squalls decaying to bs are excluded for top squark masses in the range 100 <= m((t) over tilde) <= 315 GeV at 95% confidence level.

  • 256. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider2015In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 75, no 10, 510Article in journal (Refereed)
  • 257. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Charged-particle distributions in root s=13 TeV pp interactions measured with the ATLAS detector at the LHC2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 758, 67-88 p.Article in journal (Refereed)
    Abstract [en]

    Charged-particle distributions are measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 mu b(-1), recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.

  • 258. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 755, 285-305 p.Article in journal (Refereed)
    Abstract [en]

    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb(-1) of pp collision data at root s = 8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the l nu l'l' (l = mu, e), llq (q) over bar, l nu q (q) over bar and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the llq (q) over bar, l nu q (q) over bar, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension.

  • 259. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector2015In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, 206Article in journal (Refereed)
    Abstract [en]

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb(-1) of pp collision data at root S = 7 TeV and 20.3 fb(-1) at root s = 8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the gamma gamma, ZZ, WW, Z gamma, bb, tau tau, and mu mu decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the gamma gamma and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of m(A) > 370 GeV in the "hMSSM" simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z -> ll, W/Z -> jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. The use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.

  • 260. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H → γγ   decay channel at root s=8 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 753, 69-85 p.Article in journal (Refereed)
    Abstract [en]

    The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H ->gamma gamma decay channel with an integrated luminosity of 20.3fb(-1) at root s= 8TeV. Inorder to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H ->gamma gamma candidate events in the proton-proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.

  • 261. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Dijet production in root s=7 TeV pp collisions with large rapidity gaps at the ATLAS experiment2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 754, 214-234 p.Article in journal (Refereed)
    Abstract [en]

    A 6.8 nb(-1) sample of pp collision data collected under low-luminosity conditions at root s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with p(T) > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in Delta eta(F), the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, (xi) over tilde, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp -> pX). Model comparisons indicate a dominant non-diffractive contribution up to moderately large Delta eta(F) and small (xi) over tilde, with a diffractive contribution which is significant at the highest Delta eta(F) and the lowest (xi) over tilde. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

  • 262. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Evidence for single top-quark production in the s-channel in proton-proton collisions at root s=8 TeV with the ATLAS detector using the Matrix Element Method2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 756, 228-246 p.Article in journal (Refereed)
    Abstract [en]

    This Letter presents evidence for single top-quark production in the s-channel using proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two b-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of 20.3 fb(-1). The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of 3.2 standard deviations and a measured cross-section of sigma s = 4.8 +/- 0.8(stat.)(-1.3)(+1.6)(syst.) pb, which is consistent with the Standard Model expectation. The expected significance for the analysis is 3.9 standard deviations.

  • 263. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of D-*+/-, D-+/- and D-S(+/-) meson production cross sections in pp collisions at root s=7 TeV with the ATLAS detector2016In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 907, 717-763 p.Article in journal (Refereed)
    Abstract [en]

    The production of D*(+/-), D-+/- and D-S(+/-) charmed mesons has been measured with the ATLAS detector in pp collisions at,/7s = 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb(-)1(.) The charmed mesons have been reconstructed in the range of transverse momentum 3.5 < p(T)(D) < 100 GeV and pseudorapidity vertical bar eta(D)vertical bar < 2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D*(+/-) and D-+/- production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness -suppression factor in charm fragmentation, the fraction of charged non -strange D mesons produced in a vector state, and the total cross section of charm production at root s = 7 TeV were derived.

  • 264. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to WW (au)-> e nu mu nu with the ATLAS detector at TeV2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, 104Article in journal (Refereed)
    Abstract [en]

    This paper describes a measurement of fiducial and differential cross sections of gluon-fusion Higgs boson production in the H -> W W (au)-> e nu mu nu channel, using 20.3 fb(-1) of proton-proton collision data. The data were produced at a centre-of-mass energy of TeV at the CERN Large Hadron Collider and recorded by the ATLAS detector in 2012. Cross sections are measured from the observed H -> W W (au)-> e nu mu nu signal yield in categories distinguished by the number of associated jets. The total cross section is measured in a fiducial region defined by the kinematic properties of the charged leptons and neutrinos. Differential cross sections are reported as a function of the number of jets, the Higgs boson transverse momentum, the dilepton rapidity, and the transverse momentum of the leading jet. The jet-veto efficiency, or fraction of events with no jets above a given transverse momentum threshold, is also reported. All measurements are compared to QCD predictions from Monte Carlo generators and fixed-order calculations, and are in agreement with the Standard Model predictions.

  • 265. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of four-jet differential cross sections in root s=8 TeV proton-proton collisions using the ATLAS detector2015In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 12, 105Article in journal (Refereed)
    Abstract [en]

    Differential cross sections for the production of at least four jets have been measured in proton-proton collisions at root s = 8 TeV at the Large Hadron Collider using the ATLAS detector. Events are selected if the four anti-k(t) R = 0.4 jets with the largest transverse momentum (p(T)) within the rapidity range vertical bar y vertical bar < 2 : 8 are well separated (Delta R-4j(min) > 0.65), all have p(T) > 64 GeV, and include at least one jet with p(T) > 100 GeV. The dataset corresponds to an integrated luminosity of 20.3 fb(-1). The cross sections, corrected for detector effects, are compared to leading-order and next-to-leading-order calculations as a function of the jet momenta, invariant masses, minimum and maximum opening angles and other kinematic variables.

  • 266. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of jet charge in dijet events from root s=8 TeV pp collisions with the ATLAS detector2016In: Physical review D, ISSN 2470-0010, Vol. 93, no 5, 052003Article in journal (Refereed)
    Abstract [en]

    The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb(-1) of data recorded with the ATLAS detector at root s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The p(T) dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a pT dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases.

  • 267. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the charge asymmetry in highly boosted top-quark pair production in root s=8 TeV pp collision data collected by the ATLAS experiment2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 756, 52-71 p.Article in journal (Refereed)
    Abstract [en]

    In the pp -> t (t) over bar process the angular distributions of top and anti-top quarks are expected to present a subtle difference, which could be enhanced by processes not included in the Standard Model. This Letter presents a measurement of the charge asymmetry in events where the top-quark pair is produced with a large invariant mass. The analysis is performed on 20.3 fb(-1) of pp collision data at root s=8 TeV collected by the ATLAS experiment at the LHC, using reconstruction techniques specifically designed for the decay topology of highly boosted top quarks. The charge asymmetry in a fiducial region with large invariant mass of the top-quark pair (m(t (t) over bar) > 0.75 TeV) and an absolute rapidity difference of the top and anti-top quark candidates within -2 vertical bar y(t)vertical bar - vertical bar y(<(t) over bar)vertical bar < 2is measured to be 4.2 +/- 3.2%, in agreement with the Standard Model prediction at next-to-leading order. A differential measurement in three <(t)over bar> mass bins is also presented.

  • 268. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the charged-particle multiplicity inside jets from root s=8 TeV pp collisions with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 6, 322Article in journal (Refereed)
    Abstract [en]

    The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with p(T) > 500 MeV inside high-momentum jets in dijet events using 20.3 fb(-1) of data recorded with the ATLAS detector in pp collisions at root s = 8 TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV. The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Furthermore, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.

  • 269. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the dependence of transverse energy production at large pseudorapidity on the hard-scattering kinematics of proton-proton collisions at root s=2.76 TeV with ATLAS2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 756, 10-28 p.Article in journal (Refereed)
    Abstract [en]

    The relationship between jet production in the central region and the underlying-event activity in a pseudorapidity-separated region is studied in 4.0 pb(-1) of root s = 2.76 TeV pp collision data recorded with the ATLAS detector at the LHC. The underlying event is characterised through measurements of the average value of the sum of the transverse energy at large pseudorapidity downstream of one of the protons, which are reported here as a function of hard-scattering kinematic variables. The hard scattering is characterised by the average transverse momentum and pseudorapidity of the two highest transverse momentum jets in the event. The dijet kinematics are used to estimate, on an event-by-event basis, the scaled longitudinal momenta of the hard-scattered partons in the target and projectile beam-protons moving toward and away from the region measuring transverse energy, respectively. Transverse energy production at large pseudorapidity is observed to decrease with a linear dependence on the longitudinal momentum fraction in the target proton and to depend only weakly on that in the projectile proton. The results are compared to the predictions of various Monte Carlo event generators, which qualitatively reproduce the trends observed in data but generally underpredict the overall level of transverse energy at forward pseudorapidity.

  • 270. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in root s=8 TeV proton-proton collisions using the ATLAS detector2016In: Physical review D, ISSN ISSN: 2470-0010, Vol. 93, no 3, 032009Article in journal (Refereed)
    Abstract [en]

    The differential cross-section for pair production of top quarks with high transverse momentum is measured in 20.3 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV. The measurement is performed for t (t) over bar events in the lepton + jets channel. The cross-section is reported as a function of the hadronically decaying top quark transverse momentum for values above 300 GeV. The hadronically decaying top quark is reconstructed as an anti-k(t) jet with radius parameter R = 1.0 and identified with jet substructure techniques. The observed yield is corrected for detector effects to obtain a cross-section at particle level in a fiducial region close to the event selection. A parton-level cross-section extrapolated to the full phase space is also reported for top quarks with transverse momentum above 300 GeV. The predictions of a majority of next-to-leading-order and leading-order matrix-element Monte Carlo generators are found to agree with the measured cross-sections.

  • 271. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the differential cross-sections of prompt and non-prompt production of J/psi and psi(2S) in pp collisions at root s=7 and 8 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 5, 283Article in journal (Refereed)
    Abstract [en]

    The production rates of prompt and non-prompt J/psi and psi(2S) mesons in their dimuon decay modes are measured using 2.1 and 11.4 fb(-1) of data collected with the ATLAS experiment at the Large Hadron Collider, in proton-proton collisions at root s = 7 and 8 respectively. Production cross-sections for prompt as well as non-prompt sources, ratios of psi(2S) to J/psi production, and the fractions of non-prompt production for J/psi and psi(2S) are measured as a function of meson transverse momentum and rapidity. The measurements are compared to theoretical predictions.

  • 272. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the inclusive isolated prompt photon cross section in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 8, 1-42 p., 005Article in journal (Refereed)
    Abstract [en]

    A measurement of the cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of root s = 8 TeV is presented. The measurement covers the pseudorapidity ranges vertical bar eta(gamma)vertical bar < 1.37 and 1.56 aecurrency sign vertical bar eta(gamma)vertical bar < 2.37 in the transverse energy range 25 < E-T(gamma) < 1500 GeV. The results are based on an integrated luminosity of 20.2 fb(-1), recorded by the ATLAS detector at the LHC. Photon candidates are identified by combining information from the calorimeters and the inner tracker. The background is subtracted using a data-driven technique, based on the observed calorimeter shower-shape variables and the deposition of hadronic energy in a narrow cone around the photon candidate. The measured cross sections are compared with leading-order and next-to-leading order perturbative QCD calculations and are found to be in a good agreement over ten orders of magnitude.

  • 273. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 1, 064Article in journal (Refereed)
    Abstract [en]

    The cross-section for the production of a single top quark in association with a W boson in proton-proton collisions at is measured. The dataset corresponds to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in 2012 at the Large Hadron Collider at CERN. Events containing two leptons and one central b-jet are selected. The W t signal is separated from the backgrounds using boosted decision trees, each of which combines a number of discriminating variables into one classifier. Production of W t events is observed with a significance of 7.7 sigma. The cross-section is extracted in a profile likelihood fit to the classifier output distributions. The W t cross-section, inclusive of decay modes, is measured to be 23.0 +/- 1.3(stat.) (-aEuro parts per thousand 3.5) (+ 3.2) (syst.)+/- 1.1(lumi.) pb. The measured cross-section is used to extract a value for the CKM matrix element |V (tb) | of 1.01 +/- 0.10 and a lower limit of 0.80 at the 95% confidence level. The cross-section for the production of a top quark and a W boson is also measured in a fiducial acceptance requiring two leptons with p (T) > 25 GeV and |eta| < 2.5, one jet with p (T) > 20 GeV and |eta| < 2.5, and E (T) (miss) > 20 GeV, including both W t and top-quark pair events as signal. The measured value of the fiducial cross-section is 0.85 +/- A 0.01(stat.) (-aEuro parts per thousand 0.07) (+ 0.07) (syst.)+/- 0.03(lumi.) pb.

  • 274. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the ZZ Production Cross Section in pp Collisions at root s=13 TeV with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 10, 101801Article in journal (Refereed)
    Abstract [en]

    The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb(-1) of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7(-2.0)(+2.2) (stat)(-0.7)(+0.9) (syst)(-0.7)(+1.0) (lumi) pb. The results agree with standard model predictions.

  • 275. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of fiducial cross-sections for t(t)over-bar production with one or two additional b-jets in pp collisions at root s=8 TeV using the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 1, 11Article in journal (Refereed)
    Abstract [en]

    Fiducial cross-sections for t (t) over bar production with one or two additional b-jets are reported, using an integrated luminosity of 20.3 fb(-1) of proton-proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for t (t) over bar events with at least one additional b-jet is measured to be 950 +/- 70 (stat.)(-190)(+240) (syst.) fb in the lepton-plus-jets channel and 50 +/- 10 (stat.)(-10)(+15) (syst.) fb in the e mu channel. The cross-section times branching ratio for events with at least two additional b-jets is measured to be 19.3 +/- 3.5 (stat.) +/- 5.7 (syst.) fb in the dilepton channel (e mu, mu mu, and ee) using a method based on tight selection criteria, and 13.5 +/- 3.3 (stat.) +/- 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 +/- 0.33 (stat.) +/- 0.28 (syst.)% for the ratio of t (t) over bar production with two additional b-jets to t (t) over bar production with any two additional jets. All measurements are in good agreement with recent theory predictions.

  • 276. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of four-lepton production in pp   collisions at root s=8 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 753, 552-572 p.Article in journal (Refereed)
    Abstract [en]

    A search is presented for a high-mass Higgs boson in the , , , and decay modes using the ATLAS detector at the CERN Large Hadron Collider. The search uses proton-proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb. The results of the search are interpreted in the scenario of a heavy Higgs boson with a width that is small compared with the experimental mass resolution. The Higgs boson mass range considered extends up to for all four decay modes and down to as low as 140 , depending on the decay mode. No significant excess of events over the Standard Model prediction is found. A simultaneous fit to the four decay modes yields upper limits on the production cross-section of a heavy Higgs boson times the branching ratio to boson pairs. 95 % confidence level upper limits range from 0.53 pb at GeV to 0.008 pb at GeV for the gluon-fusion production mode and from 0.31 pb at GeV to 0.009 pb at GeV for the vector-boson-fusion production mode. The results are also interpreted in the context of Type-I and Type-II two-Higgs-doublet models.

  • 277. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurements of Z gamma and Z gamma gamma production in pp collisions at root s=8 TeV with the ATLAS detector2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 93, no 11, 112002Article in journal (Refereed)
    Abstract [en]

    The production of Z bosons with one or two isolated high-energy photons is studied using pp collisions at root s = 8 TeV. The analyses use a data sample with an integrated luminosity of 20.3 fb(-1) collected by the ATLAS detector during the 2012 LHC data taking. The Z gamma and Z gamma gamma production cross sections are measured with leptonic (e(+) e(-), mu(+) mu(-), nu(nu) over bar) decays of the Z boson, in extended fiducial regions defined in terms of the lepton and photon acceptance. They are then compared to cross-section predictions from the Standard Model, where the sources of the photons are radiation off initial-state quarks and radiative Z-boson decay to charged leptons, and from fragmentation of final-state quarks and gluons into photons. The yields of events with photon transverse energy E-T > 250 GeV from l(+) l(-) gamma events and with E-T > 400 GeV from nu(nu) over bar gamma events are used to search for anomalous triple gauge-boson couplings ZZ gamma and Z gamma gamma. The yields of events with diphoton invariant mass m(gamma gamma) > 200 GeV from l(+) l(-) gamma gamma events and with m(gamma gamma) > 300 GeV from nu(nu) over bar gamma gamma events are used to search for anomalous quartic gauge-boson couplings ZZ gamma gamma and Z gamma gamma gamma. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

  • 278. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Probing lepton flavour violation via neutrinoless tau -> 3 mu decays with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 5, 232Article in journal (Refereed)
    Abstract [en]

    This article presents the sensitivity of the ATLAS experiment to the lepton-flavour-violating decays of tau -> 3 mu. A method utilising the production of t leptons via W -> tau nu decays is used. This method is applied to the sample of 20.3 fb(-1) of pp collision data at a centre-of-mass energy of 8 TeV collected by the ATLAS experiment at the LHC in 2012. No event is observed passing the selection criteria, and the observed (expected) upper limit on the tau lepton branching fraction into three muons, Br(tau -> 3 mu), is 3.76 x 10(-7) (3.94 x 10(-7)) at 90 % confidence level.

  • 279. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Reconstruction of hadronic decay products of tau leptons with the ATLAS experiment2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 5, 295Article in journal (Refereed)
    Abstract [en]

    This paper presents a new method of reconstructing the individual charged and neutral hadrons in tau decays with the ATLAS detector. The reconstructed hadrons are used to classify the decay mode and to calculate the visible four-momentum of reconstructed tau candidates, significantly improving the resolution with respect to the calibration in the existing tau reconstruction. The performance of the reconstruction algorithm is optimised and evaluated using simulation and validated using samples of Z -> tau tau and Z(-> mu mu)+jets events selected from proton-proton collisions at a centre-of-mass energy root s = 8 TeV, corresponding to an integrated luminosity of 5 fb(-1).

  • 280. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at root s=8TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, 032Article in journal (Refereed)
    Abstract [en]

    A search for a high-mass Higgs boson H is performed in the H -> WW -> l nu l nu and H -> WW -> l nu qq decay channels using pp collision data corresponding to an integrated luminosity of 20.3 fb(-1) collected at root s = 8TeV by the ATLAS detector at the Large Hadron Collider. No evidence of a high-mass Higgs boson is found. Limits on sigma(H) x BR(H -> WW) as a function of the Higgs boson mass m(H) are determined in three different scenarios: one in which the heavy Higgs boson has a narrow width compared to the experimental resolution, one for a width increasing with the boson mass and modeled by the complex-pole scheme following the same behavior as in the Standard Model, and one for intermediate widths. The upper range of the search is m(H) = 1500 GeV for the narrow-width scenario and m(H) = 1000 GeV for the other two scenarios. The lower edge of the search range is 200{300 GeV and depends on the analysis channel and search scenario. For each signal interpretation, individual and combined limits from the two WW decay channels are presented. At m(H) = 1500 GeV, the highest-mass point tested, sigma(H) x BR(H -> WW) for a narrow-width Higgs boson is constrained to be less than 22 fb and 6.6 fb at 95% CL for the gluon fusion and vector-boson fusion production modes, respectively.

  • 281. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 4, 023Article in journal (Refereed)
    Abstract [en]

    The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t-channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f(1) of decays containing transversely polarised W bosons is measured to be 0.37 +/- 0.07 (stat. circle plus syst.). The phase delta_ between amplitudes for transversely and longitudinally polarised W bosons recoiling against lefthanded b-quarks is measured to be -0.014 pi +/- 0.036 pi (stat. circle plus syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g(R) and V-L, yielding R-e[g(R)/V-L] is an element of [-0.36; 0.10] and Im[g(R)/V-L] is an element of [-0.17; 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model.

  • 282. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for direct top squark pair production in final states with two tau leptons in pp collisions at root s=8 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 2, 81Article in journal (Refereed)
    Abstract [en]

    A search for direct pair production of the supersymmetric partner of the top quark, decaying via a scalar tau to a nearly massless gravitino, has been performed using 20 fb(-1) of proton-proton collision data at root s = 8 TeV. The data were collected by the ATLAS experiment at the LHC in 2012. Top squark candidates are searched for in events with either two hadronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two light leptons. No significant excess over the Standard Model expectation is found. Exclusion limits at 95 % confidence level are set as a function of the top squark and scalar tau masses. Depending on the scalar tau mass, ranging from the 87 GeV LEP limit to the top squark mass, lower limits between 490 and 650 GeV are placed on the top squark mass within the model considered.

  • 283. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for flavour-changing neutral current top-quark decays to q Z in pp collision data collected with the ATLAS detector at root s=8 TeV2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 1, 12Article in journal (Refereed)
    Abstract [en]

    A search for the flavour-changing neutral-current decay is presented. Data collected by the ATLAS detector during 2012 from proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of root s = 8 TeV, corresponding to an integrated luminosity of 20.3 fb(-1), are analysed. Top-quark pair-production events with one top quark decaying through the t -> qZ (q = u,c) channel and the other through the dominant Standard Model mode t -> bW are considered as signal. Only the decays of the Z boson to charged leptons and leptonic W boson decays are used. No evidence for a signal is found and an observed (expected) upper limit on the t -> qZ branching ratio of 7 x 10(-4) (8 x 10(-4)) is set at the 95 % confidence level.

  • 284. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, 172Article in journal (Refereed)
    Abstract [en]

    A search for a Higgs boson produced via vector-boson fusion and decaying into invisible particles is presented, using 20.3 fb(-1) of proton-proton collision data at a centre-of-mass energy of 8TeV recorded by the ATLAS detector at the LHC. For a Higgs boson with a mass of 125 GeV, assuming the Standard Model production cross section, an upper bound of 0.28 is set on the branching fraction of H -> invisible at 95% confidence level, where the expected upper limit is 0.31. The results are interpreted in models of Higgs-portal dark matter where the branching fraction limit is converted into upper bounds on the dark-matter-nucleon scattering cross section as a function of the dark-matter particle mass, and compared to results from the direct dark-matter detection experiments.

  • 285. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in dijet mass and angular distributions from pp collisions at root s=13 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 754, 302-322 p.Article in journal (Refereed)
    Abstract [en]

    This Letter describes a model-agnostic search for pairs of jets (dijets) produced by resonant and non-resonant phenomena beyond the Standard Model in 3.6 fb(-1) of proton-proton collisions with a centre-of-mass energy of root s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the smoothly falling prediction of the Standard Model. The data are also compared to a Monte Carlo simulation of Standard Model angular distributions derived from the rapidity of the two jets. No evidence of anomalous phenomena is observed in the data, which are used to exclude, at 95% CL, quantum black holes with threshold masses below 8.3 TeV, 8.1 TeV, or 5.1 TeV in three different benchmark scenarios; resonance masses below 5.2 TeV for excited quarks, 2.6 TeV in a W' model, a range of masses starting from mZ' = 1.5 TeVand couplings from g(q) = 0.2 in a Z' model; and contact interactions with a compositeness scale below 12.0 TeV and 17.5 TeV respectively for destructive and constructive interference between the new interaction and QCD processes. These results significantly extend the ATLAS limits obtained from 8 TeV data. Gaussian-shaped contributions to the mass distribution are also excluded if the effective cross-section exceeds values ranging from approximately 50-300 fb for masses below 2 TeV to 2-20 fb for masses above 4 TeV.

  • 286. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in events with at least three photons collected in pp collisions at √s = 8 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 4, 210Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with at least three photons are reported. Data from proton-proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb(-1), were collected with the ATLAS detector at the LHC. The observed data are well described by the Standard Model. Limits at the 95 % confidence level on new phenomena are presented based on the rate of events in an inclusive signal region and a restricted signal region targeting the rare decay Z -> 3 gamma, as well as di-photon and tri-photon resonance searches. For a Standard Model Higgs boson decaying to four photons via a pair of intermediate pseudoscalar particles (a), limits are found to be sigma x BR(h -> aa) x BR(a -> gamma gamma)(2) < 10(-3) sigma(SM) for 10 GeV < m(a) < 62 GeV. Limits are also presented for Higgs boson-like scalars (H) for m(H) > 125 GeV, and for a Z' decaying to three photons via Z' -> a + gamma -> 3 gamma. Additionally,the observed limit on the branching ratio of the Z boson decay to three photons is found to be BR (Z -> 3 gamma) < 2.2 x 10(-6), a result five times stronger than the previous result from LEP.

  • 287. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for new phenomena in final states with large jet multiplicities and missing transverse momentum with ATLAS using root s=13 TeV proton-proton collisions2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 757, 334-355 p.Article in journal (Refereed)
    Abstract [en]

    Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton-proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton-proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb(-1). The search selected events with various jet multiplicities from >= 7 to >= 10 jets, and with various b-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.

  • 288. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for single production of a vector-like quark via a heavy gluon in the 4b final state with the ATLAS detector in pp collisions at root s=8 TeV2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 758, 249-268 p.Article in journal (Refereed)
    Abstract [en]

    A search is performed for the process pp -> G* -> B-H(b) over bar/(B) over bar (H)b -> Hb (b) over bar -> b (b) over barb (b) over bar, predicted in composite Higgs scenarios, where G* is a heavy colour octet vector resonance and B-H a vector-like quark of charge -1/3. The data were obtained from pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.5 fb(-1), recorded by the ATLAS detector at the LHC. The largest background, multijet production, is estimated using a data-driven method. No significant excess of events with respect to Standard Model predictions is observed, and upper limits on the production cross section times branching ratio are set. Comparisons to the predictions from a specific benchmark model are made, resulting in lower mass limits in the two-dimensional mass plane of m(G*) vs. m(BH).

  • 289. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for single top-quark production via flavour-changing neutral currents at 8TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 2, 55Article in journal (Refereed)
    Abstract [en]

    A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton-proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8TeV and corresponding to an integrated luminosity of 20.3 fb(-1) are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the t -> Wb branching fraction is set. The observed 95% CL limit is sigma(qg -> t) x B(t -> Wb) < 3.4 pb and the expected 95% CL limit is sigma(qg -> t) x B(t -> Wb) < 2.9 pb. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics kappa(ugt)/Lambda < 5.8 x 10(-3) TeV-1 and kappa(cgt)/Lambda < 13x10(-3) TeV and on the branching fractions B(t -> ug) < 4.0 x 10(-5) and B(t -> cg) < 20 x 10(-5).

  • 290. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for single top-quark production via flavour-changing neutral currents at 8TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 3, 154Article in journal (Refereed)
    Abstract [en]

    This paper reports a detailed study of techniques for identifying boosted, hadronically decaying W bosons using 20.3 fb(-1) of proton-proton collision data collected by the ATLAS detector at the LHC at a centre-of-mass energy root s = 8 TeV. A range of techniques for optimising the signal jet mass resolution are combined with various jet substructure variables. The results of these studies in Monte Carlo simulations show that a simple pairwise combination of groomed jet mass and one substructure variable can provide a 50 % efficiency for identifying W bosons with transverse momenta larger than 200 GeV while maintaining multijet background efficiencies of 2-4% for jets with the same transverse momentum. These signal and background efficiencies are confirmed in data for a selection of tagging techniques.

  • 291. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the electroweak production of supersymmetric particles in root s=8 TeV pp collisions with the ATLAS detector2016In: Physical review D, ISSN 2470-0010, Vol. 93, no 5, 052002Article in journal (Refereed)
    Abstract [en]

    The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb(-1) of proton-proton collision data at root s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.

  • 292. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 2, 10Article in journal (Refereed)
    Abstract [en]

    A search for vector-like quarks and excited quarks in events containing a top quark and a W boson in the final state is reported here. The search is based on 20.3 fb(-1) of proton-proton collision data taken at the LHC at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector. Events with one or two leptons, and one, two or three jets are selected with the additional requirement that at least one jet contains a b-quark. Single-lepton events are also required to contain at least one large-radius jet from the hadronic decay of a high-PT W boson or a top quark. No significant excess over the expected background is observed and upper limits on the cross-section times branching ratio for different vector-like quark and excited-quark model masses are derived. For the excited-quark production and decay to Wt with unit couplings, quarks with masses below 1500 GeV are excluded and coupling-dependent limits are set.

  • 293. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for the standard model Higgs boson produced in association with a vector boson and decaying into a tau pair in pp collisions at root s=8 TeV with the ATLAS detector2016In: Physcal review D, ISSN 2470-0010, Vol. 93, no 9, 092005Article in journal (Refereed)
    Abstract [en]

    A search for the standard model Higgs boson produced in association with a vector boson with the decay H -> tau tau is presented. The data correspond to 20.3 fb(-1) of integrated luminosity from proton-proton collisions at root s = 8 TeV recorded by the ATLAS experiment at the LHC during 2012. The data agree with the background expectation, and 95% confidence-level upper limits are placed on the cross section of this process. The observed (expected) limit, expressed in terms of the signal strength mu= sigma/sigma(SM) for m(H) = 125 GeV, is mu < 5.6 (3.7). The measured value of the signal strength is mu = 2.3 +/- 1.6.

  • 294. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Madsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Searches for scalar leptoquarks in pp collisions at root s=8TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 1, 5Article in journal (Refereed)
    Abstract [en]

    Searches for pair-produced scalar leptoquarks are performed using 20 fb(-1) of proton-proton collision data provided by the LHC and recorded by the ATLAS detector at root s = 8 TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to b nu(tau)(b) over bar(nu) over bar (tau) and t nu(tau)(t) over bar(nu) over bar (tau) final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to m(LQ1) < 1050 GeV for first-generation leptoquarks, m(LQ2) < 1000 GeV for second-generation leptoquarks, m(LQ3) 625 GeV for third-generation leptoquarks in the b nu(tau)<(b) over bar(nu) over bar (tau) channel, and 200 < m(LQ3) < 640 GeV in the t nu(tau)(t) over bar(nu) over bar (tau) channel.

  • 295. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Medsen, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for an additional, heavy Higgs boson in the HZZ decay channel at √s = 8 TeV in pp collision data with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 1, 45Article in journal (Refereed)
    Abstract [en]

    A search is presented for a high-mass Higgs boson in the , , , and decay modes using the ATLAS detector at the CERN Large Hadron Collider. The search uses proton-proton collision data at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3 fb. The results of the search are interpreted in the scenario of a heavy Higgs boson with a width that is small compared with the experimental mass resolution. The Higgs boson mass range considered extends up to for all four decay modes and down to as low as 140 , depending on the decay mode. No significant excess of events over the Standard Model prediction is found. A simultaneous fit to the four decay modes yields upper limits on the production cross-section of a heavy Higgs boson times the branching ratio to boson pairs. 95 % confidence level upper limits range from 0.53 pb at GeV to 0.008 pb at GeV for the gluon-fusion production mode and from 0.31 pb at GeV to 0.009 pb at GeV for the vector-boson-fusion production mode. The results are also interpreted in the context of Type-I and Type-II two-Higgs-doublet models.

  • 296. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the correlation between the polar angles of leptons from top quark decays in the helicity basis at root s=7 TeV using the ATLAS detector2016In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 93, no 1, 012002Article in journal (Refereed)
    Abstract [en]

    A measurement of the correlations between the polar angles of leptons from the decay of pair-produced t and (t) over bar quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6 fb(-1) at a center-of-mass energy of root s = 7 TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles theta(1) and theta(2) between the charged leptons and the direction of motion of the parent quarks in the t (t) over bar rest frame are sensitive to the spin information, and the distribution of cos theta(1).cos theta(2) is sensitive to the spin correlation between the t and (t) over bar quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.

  • 297. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Measurement of the transverse momentum and phi(eta)*. distributions of Drell-Yan lepton pairs in proton-proton collisions at root s=8 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, 291Article in journal (Refereed)
    Abstract [en]

    Distributions of transverse momentum p(T)(ll) and the related angular variable phi(eta)*. of Drell-Yan lepton pairs are measured in 20.3 fb(-1) of proton-proton collisions at root s = 8 TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton-proton collisions at root s = 7 TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of phi(eta)*. < 1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of phi(eta)*. this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of p(T)(ll) while the fixed-order prediction of Dynnlo falls below the data at high values of p(T)(ll). ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the phi(eta)*. and p(T)(ll) distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.

  • 298. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Observation of Long-Range Elliptic Azimuthal Anisotropies in √s=13 and 2.76 TeV pp Collisions with the ATLAS Detector2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 17Article in journal (Refereed)
    Abstract [en]

    ATLAS has measured two-particle correlations as a function of the relative azimuthal angle, Delta phi, and pseudorapidity, Delta eta, in root s = 13 and 2.76 TeV pp collisions at the LHC using charged particles measured in the pseudorapidity interval vertical bar eta vertical bar < 2.5. The correlation functions evaluated in different intervals of measured charged-particle multiplicity show a multiplicity-dependent enhancement at Delta phi similar to 0 that extends over a wide range of Delta eta, which has been referred to as the "ridge." Per-trigger-particle yields, Y(Delta phi) are measured over 2 < vertical bar Delta eta vertical bar < 5. For both collision energies, the Y(Delta phi) distribution in all multiplicity intervals is found to be consistent with a linear combination of the per-trigger-particle yields measured in collisions with less than 2 phi reconstructed tracks, and a constant combinatoric contribution modulated by cos (2 Delta phi). The fitted Fourier coefficient, nu(2,2), exhibits factorization, suggesting that the ridge results from per-event cos (2 phi) modulation of the single-particle distribution with Fourier coefficients nu(2). The nu(2) values are presented as a function of multiplicity and transverse momentum. They are found to be approximately constant as a function of multiplicity and to have a p(T) dependence similar to that measured in p + Pb and Pb + Pb collisions. The nu(2) values in the 13 and 2.76 TeV data are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in p + Pb collisions, and that the dynamics responsible for the ridge has no strong root s dependence.

  • 299. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for charged Higgs bosons in the H-+/- -> tb decay channel in pp collisions at root s=8 TeV using the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 3, 127Article in journal (Refereed)
    Abstract [en]

    Charged Higgs bosons heavier than the top quark and decaying via H-+/- -> tb are searched for in proton-proton collisions measured with the ATLAS experiment at root s = 8 TeV corresponding to an integrated luminosity of 20.3 fb(-1). The production of a charged Higgs boson in association with a top quark, gb -> tH(+/-), is explored in the mass range 200 to 600 GeV using multi-jet final states with one electron or muon. In order to separate the signal from the Standard Model background, analysis techniques combining several kinematic variables are employed. An excess of events above the background only hypothesis is observed across a wide mass range, amounting to up to 2.4 standard deviations. Upper limits are set on the gb -> tH(+/-) production cross section times the branching fraction BR(H-+/- -> tb). Additionally, the complementary s-channel production, qq' -> H-+/-, is investigated through a reinterpretation of W' -> tb searches in ATLAS. Final states with one electron or muon are relevant for H-+/- masses from 0.4 to 2.0 TeV, whereas the all-hadronic final state covers the range 1.5 to 3.0 TeV. In these search channels, no significant excesses from the predictions of the Standard Model are observed, and upper limits are placed on the qq' -> H-+/- production cross section times the branching fraction BR(H-+/- -> tb).

  • 300. Aad, G.
    et al.
    Bergeås, Elin Kuutmann
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brenner, Richard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ekelöf, Tord
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ellert, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Ferrari, Arnaud
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Gradin, P. O. Joakim
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Isaksson, Charlie
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Öhman, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Pelikan, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Rangel-Smith, Camilla
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Zwalinski, L.
    Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at root s=8 TeV with the ATLAS detector2016In: Physical Review D, ISSN 2470-0010, Vol. 93, no 7, 072007Article in journal (Refereed)
    Abstract [en]

    This article reports on a search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks, using data from 20.3 fb(-1) of pp collisions at a center-of-mass energy of 8 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum b (b) over bar system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected Standard Model backgrounds. Model-independent upper limits are placed on the visible cross sections for events with a Higgs boson decaying into b (b) over bar and large missing transverse momentum with thresholds ranging from 150 to 400 GeV. Results are interpreted using a simplified model with a Z' gauge boson decaying into different Higgs bosons predicted in a two-Higgs-doublet model, of which the heavy pseudoscalar Higgs decays into a pair of dark matter particles. Exclusion limits are also presented for the mass scales of various effective field theory operators that describe the interaction between dark matter particles and the Higgs boson.

3456789 251 - 300 of 195330
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf