Change search
Refine search result
2345678 201 - 250 of 390
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201. Lennholm, M.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Real time control developments at JET in preparation for deuterium-tritium operation2017In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, p. 535-540Article in journal (Refereed)
    Abstract [en]

    Robust high performance plasma scenarios are being developed to exploit the unique capability of JET to operate with Tritium and Deuterium. In this context, real time control schemes are used to guide the plasma into the desired state and maintain it there. Other real time schemes detect undesirable behaviour and trigger appropriate actions to assure the best experimental results without unnecessary use of the limited neutron and Tritium budget. This paper discusses continuously active controllers and event/threshold detection algorithms triggering a variety of actions. Recent advances include: (i) Control of the degree of plasma detachment via impurity injection; (ii) ELM frequency control via gas/Pellet injection; (iii) Sawtooth pacing using ICRH modulation, (iv) control of the Hydrogen to Deuterium isotope ratio through gas injection and (v) the determination that a discharge is not evolving as desired, triggering a cascade of actions attempting to stop the plasma rapidly and safely, eventually triggering massive gas injection if a disruption is deemed unavoidable. For high power Deuterium-Tritium operation these control schemes need to be integrated into the plasma scenarios ensuring that they are mutually compatible. 

  • 202. Lennholm, M.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Real-time control of ELM and sawtooth frequencies: similarities and differences2016In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 1, article id 016008Article in journal (Refereed)
    Abstract [en]

    ELMs and Sawteeth, located in different parts of the plasma, are similar from a control engineering point of view. Both manifest themselves through quiescent periods interrupted by periodic collapses. For both, large collapses, following long quiescent periods, have detrimental effects while short periods are associated with decreased confinement. Following the installation of the all metal 'ITER like wall' on JET, sawteeth and ELMs also play an important role by expelling tungsten from the core and edge of the plasma respectively. Control of tungsten has therefore been added to divertor heat load reduction, NTM avoidance and helium ash removal as reasons for requiring ELM and sawtooth control. It is therefore of interest to implement control systems to maintain the sawtooth and ELM frequencies in the desired ranges. On JET, ELM frequency control uses radial field 'kicks' and pellet and gas injection as actuators, while sawtooth control uses ion cyclotron resonance heating (ICRH). JET experiments have, for the first time, established feedback control of the ELM frequency, via real time variation of the injected gas flow [1]. Using this controller in conjunction with pellet injection allows the ELM frequency to be kept as required despite variations in pellet ELM triggering efficiency. JET Sawtooth control experiments have, for the first time, demonstrated that low field side ICRH, as foreseen for ITER, can shorten sawteeth lengthened by central fast ions [2]. The development of ELM and sawtooth control could be key to achieve stable high performance JET discharges with minimal tungsten content. Integrating such schemes into an overall control strategy will be required in future tokamaks and gaining experience on current tokamaks is essential.

  • 203. Lerche, E.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Sawtooth pacing with on-axis ICRH modulation in JET-ILW2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 3, article id 036027Article in journal (Refereed)
    Abstract [en]

    A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented.

  • 204. Lerche, E.
    et al.
    Van Eester, D.
    Johnson, T. J.
    Hellsten, T.
    Ongena, J.
    Mayoral, M-L
    Frigione, D.
    Sozzi, C.
    Calabro, G.
    Lennholm, M.
    Beaumont, P.
    Blackman, T.
    Brennan, D.
    Brett, A.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Coffey, I.
    Coyne, A.
    Crombe, K.
    Czarnecka, A.
    Felton, R.
    Giroud, C.
    Gorini, G.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Jacquet, P.
    Kiptily, V.
    Knipe, S.
    Krasilnikov, A.
    Maslov, M.
    Monakhov, I.
    Noble, C.
    Nocente, M.
    Pangioni, L.
    Proverbio, I.
    Sergienko, G.
    Stamp, M.
    Studholme, W.
    Tardocchi, M.
    Vdovin, V.
    Versloot, T.
    Voitsekhovitch, I.
    Whitehurst, A.
    Wooldridge, E.
    Zoita, V.
    Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET2012In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 54, no 7, p. 074008-Article in journal (Refereed)
    Abstract [en]

    Two ion cyclotron range of frequencies ( ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas-fundamental H majority and second harmonic He-3 ICRF heating-were recently investigated in JET. Although the same magnetic field and RF frequencies (f approximate to 42 MHz and f approximate to 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in He-4 plasmas, modest heating efficiencies (n = P-absorbed/P-launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma-wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the He-3 ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as similar to 20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3He ions reached about 260 keV in the second harmonic He-3 heating experiments when 5MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the He-3 heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with He-4) were confirmed in the H majority case, the He-3 concentration was the main handle on the heating efficiency in the second harmonic He-3 heating scenario.

  • 205. Lerche, E.
    et al.
    Van Eester, D.
    Ongena, J.
    Mayoral, M-L
    Laxaback, M.
    Rimini, F.
    Argouarch, A.
    Beaumont, P.
    Blackman, T.
    Bobkov, V.
    Brennan, D.
    Brett, A.
    Calabro, G.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Coffey, I.
    Colas, L.
    Coyne, A.
    Crombe, K.
    Czarnecka, A.
    Dumont, R.
    Durodie, F.
    Felton, R.
    Frigione, D.
    Gatu Johnson, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giroud, C.
    Gorini, G.
    Graham, M.
    Hellesen, C.
    Hellsten, T.
    Huygen, S.
    Jacquet, P.
    Johnson, T.
    Kiptily, V.
    Knipe, S.
    Krasilnikov, A.
    Lamalle, P.
    Lennholm, M.
    Loarte, A.
    Maggiora, R.
    Maslov, M.
    Messiaen, A.
    Milanesio, D.
    Monakhov, I.
    Nightingale, M.
    Noble, C.
    Nocente, M.
    Pangioni, L.
    Proverbio, I.
    Sozzi, C.
    Stamp, M.
    Studholme, W.
    Tardocchi, M.
    Versloot, T. W.
    Vdovin, V.
    Vrancken, M.
    Whitehurst, A.
    Wooldridge, E.
    Zoita, V.
    Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments2011In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 53, no 12, p. 124019-Article in journal (Refereed)
    Abstract [en]

    In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

  • 206. Lerche, E.
    et al.
    Van Eester, D.
    Ongena, J.
    Mayoral, M-L
    Laxaback, M.
    Rimini, F.
    Argouarch, A.
    Beaumont, P.
    Blackman, T.
    Bobkov, V.
    Brennan, D.
    Brett, A.
    Calabro, G.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Coffey, I.
    Colas, L.
    Coyne, A.
    Crombe, K.
    Czarnecka, A.
    Dumont, R.
    Durodie, F.
    Felton, R.
    Frigione, D.
    Gatu Johnson, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Giroud, C.
    Gorini, G.
    Graham, M.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellsten, T.
    Huygen, S.
    Jacquet, P.
    Johnson, T.
    Kiptily, V.
    Knipe, S.
    Krasilnikov, A.
    Lamalle, P.
    Lennholm, M.
    Loarte, A.
    Maggiora, R.
    Maslov, M.
    Messiaen, A.
    Milanesio, D.
    Monakhov, I.
    Nightingale, M.
    Noble, C.
    Nocente, M.
    Pangioni, L.
    Proverbio, I.
    Sozzi, C.
    Stamp, M.
    Studholme, W.
    Tardocchi, M.
    Versloot, T. W.
    Vdovin, V.
    Vrancken, M.
    Whitehurst, A.
    Wooldridge, E.
    Zoita, V.
    Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments (vol 53, 124019, 2011)2012In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 54, no 6, article id 069601Article in journal (Refereed)
  • 207. Leyland, M. J.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 1, article id 013507Article in journal (Refereed)
    Abstract [en]

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  • 208. Likonen, J.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Deuterium trapping and release in JET ITER-like wall divertor tiles2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014074Article in journal (Refereed)
    Abstract [en]

    A selected set of samples from JET-ILW divertor tiles exposed in 2011-2012 has been analysed using thermal desorption spectrometry (TDS). The highest amount of deuterium was found on the regions with the thickest deposited layers, i.e. on the horizontal (apron) part and on the top part of Tile 1, which resides deep in the scrape-off layer. Outer divertor Tiles 6, 7 and 8 had nearly an order of magnitude less deuterium. The co-deposited layers on the JET tiles and the W coatings contain C, O and Ni impurities which may change the desorption properties. The D-2 signals in the TDS spectra were convoluted and the positions of the peaks were compared with the Be and C amounts but no correlations between them were found. The remaining fractions of D in the analysed samples at ITER baking temperature 350 degrees C are rather high implying that co-deposited films may be difficult to be de-tritiated.

  • 209. Likonen, J.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, Disciplinary Domain of Science and Technology, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandem Laboratory.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 300-306Article in journal (Refereed)
    Abstract [en]

    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed in 2015-2016 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Nuclear Reaction Analysis (NRA). The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers as for divertor tiles removed in 2014. This area resides deep in the scrape-off layer and plasma configurations for the second (ILW-2, 2013-2014) and the third (ILW-3, 2015-2016) JET-ILW campaigns were similar. Agreement between TDS and NRA is good on the apron of Tile 1 and on the upper vertical region whereas on the lower vertical region of Tile 1 the NRA results are clearly smaller than the TDS results. Inner divertor Tile 3 has somewhat less D than Tiles 0 and 1, and the D amount decreases towards the lower part of the tile. The D retention at the divertor inner and outer corner regions is not symmetric as there is more D retention poloidally at the inner than at the outer divertor corner. In most cases the TDS spectra for the ILW-3 samples are different from the corresponding ILW-2 spectra because HD and D-2 release occurs at higher temperatures than from the ILW-2 samples indicating that the low energy traps have been emptied during the plasma operations and that D is either in the energetically deep traps or located deeper in the sample.

  • 210. Likonen, J.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, Disciplinary Domain of Science and Technology, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandem Laboratory.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Investigation of deuterium trapping and release in the JET ITER-like wall divertor using TDS and TMAP2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 166-178Article in journal (Refereed)
    Abstract [en]

    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed both in 2013-2014 and 2011-2014 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Ion Beam Analysis (IBA) and Secondary Ion Mass Spectrometry (SIMS) data. The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers. This area resides deep in the scrape-off layer. Changes in plasma configurations between the first (2011-2012) and the second (2013-2014) JET-ILW campaign altered the material migration towards the inner and the outer divertor corner increasing the amount of deposition in the shadowed areas of the divertor base tiles. D retention on the outer divertor tiles is clearly smaller than on the inner divertor tiles. Experimental TDS spectra for samples from the top part of inner divertor and from the outer strike point region were modelled using TMAP program. Experimental deuterium profiles obtained with SIMS have been used and the detrapping and the activation energies have been adjusted. Analysis of the results of the TMAP simulations enabled to determine the nature of traps in different samples.

  • 211.
    Litaudon, X.
    et al.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Abduallev, S.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Abhangi, M.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Abreu, P.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Afzal, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Aggarwal, K. M.
    Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland..
    Ahlgren, T.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Ahn, J. H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Aho-Mantila, L.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Aiba, N.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Airila, M.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Albanese, R.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Aldred, V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Alegre, D.
    Univ Nacl Educ Distancia, Madrid, Spain..
    Alessi, E.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Aleynikov, P.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Alfier, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Alkseev, A.
    NRC Kurchatov Inst, 1 Kurchatov Sq, Moscow 123182, Russia..
    Allinson, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Alper, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Alves, E.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Ambrosino, G.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Ambrosino, R.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Amicucci, L.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Amosov, V.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Angelone, M.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Anghel, M.
    Natl Inst Cryogen & Isotop Technol, Ramnicu Valcea, Romania..
    Angioni, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Appel, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Appelbee, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Arena, P.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Ariola, M.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Arnichand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Arshad, S.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Ash, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ashikawa, N.
    Natl Inst Fus Sci, Toki, Gifu 5095292, Japan..
    Aslanyan, V.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Asunta, O.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Auriemma, F.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Austin, Y.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Avotina, L.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Axton, M. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ayres, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bacharis, M.
    Imperial Coll London, Dept Phys, London SW7 2AZ, England..
    Baciero, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Baiao, D.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Bailey, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Baker, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Balboa, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Balden, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Balshaw, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bament, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Banks, J. W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Baranov, Y. F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Barnard, M. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Barnes, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Barnes, M.
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England..
    Barnsley, R.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Wiechec, A. Baron
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Orte, L. Barrera
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Baruzzo, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Basiuk, V.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bassan, M.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Bastow, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Batista, A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Batistoni, P.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Baughan, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bauvir, B.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Baylor, L.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Bazylev, B.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Beal, J.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Beaumont, P. S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Beckers, M.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Beckett, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Becoulet, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bekris, N.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Beldishevski, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bell, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Belli, F.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bellinger, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Belonohy, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Ben Ayed, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Benterman, N. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsaker, H.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Bernardo, J.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Bernert, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Berry, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bertalot, L.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Besliu, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Beurskens, M.
    Max Planck Inst Plasma Phys, Teilinsitut Greifswald, D-17491 Greifswald, Germany..
    Bieg, B.
    Maritime Univ Szczecin, Waly Chrobrego 1-2, PL-70500 Szczecin, Poland..
    Bielecki, J.
    Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland..
    Biewer, T.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Bigi, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bilkova, P.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Bisoffi, A.
    Univ Trento, Dipartimento Ingn Ind, Trento, Italy..
    Bizarro, J. P. S.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Bjorkas, C.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Blackburn, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Blackman, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Blackman, T. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Blanchard, P.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Blatchford, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bobkov, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Boboc, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bodnar, G.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Bogar, O.
    Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia..
    Bolshakova, I.
    Lviv Polytech Natl Univ, Magnet Sensor Lab, Lvov, Ukraine..
    Bolzonella, T.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bonanomi, N.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Bonelli, F.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Boom, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Booth, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Borba, D.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England.;Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Borodin, D.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Borodkina, I.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Botrugno, A.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bottereau, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Boulting, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bourdelle, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bowden, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bower, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bowman, C.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Boyce, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Boyd, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Boyer, H. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bradshaw, J. M. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Braic, V.
    Natl Inst Optoelect, Magurele, Romania..
    Bravanec, R.
    Fourth State Res, 503 Lockhart Dr, Austin, TX USA..
    Breizman, B.
    Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA..
    Bremond, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Brennan, P. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Breton, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Brett, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Brezinsek, S.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Bright, M. D. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Brix, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Broeckx, W.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    Brombin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Broslawski, A.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Brown, D. P. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Brown, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bruno, E.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Bucalossi, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Buch, J.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Buchanan, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Buckley, M. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Budny, R.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Bufferand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bulman, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bulmer, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bunting, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Buratti, P.
    Burckhart, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Buscarino, A.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Busse, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Butler, N. K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bykov, I.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Byrne, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cahyna, P.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Calabro, G.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Calvo, I.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Camenen, Y.
    Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France..
    Camp, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Campling, D. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cane, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cannas, B.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy..
    Capel, A. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Card, P. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cardinali, A.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Carman, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Carr, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Carralero, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Carraro, L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Carvalho, B. B.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Carvalho, I.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Carvalho, P.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Casson, F. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Castaldo, C.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Catarino, N.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Caumont, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Causa, F.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cavazzana, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cave-Ayland, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cavinato, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ceccuzzi, S.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cecil, E.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Cenedese, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cesario, R.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Challis, C. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Chandler, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Chandra, D.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Chang, C. S.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Chankin, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Chapman, I. T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Chapman, S. C.
    Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England..
    Chernyshova, M.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Chitarin, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Ciraolo, G.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ciric, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Citrin, J.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Clairet, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Clark, E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Clark, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Clarkson, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Clatworthy, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Clements, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cleverly, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coad, J. P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coates, P. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cobalt, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coccorese, V.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Cocilovo, V.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Coda, S.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Coelho, R.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Coenen, J. W.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Coffey, I.
    Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland..
    Colas, L.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Collins, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Conka, D.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conway, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coombs, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cooper, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cooper, S. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Corradino, C.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Corre, Y.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Corrigan, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cortes, S.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Coster, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Couchman, A. S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cox, M. P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Craciunescu, T.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Cramp, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Craven, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Crisanti, F.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Croci, G.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Croft, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Crombe, K.
    Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Crowe, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cruz, N.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Cseh, G.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Cufar, A.
    Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Cullen, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Curuia, M.
    Natl Inst Cryogen & Isotop Technol, Ramnicu Valcea, Romania..
    Czarnecka, A.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Dabirikhah, H.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Dalgliesh, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Dalley, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Dankowski, J.
    Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland..
    Darrow, D.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Davies, O.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Davis, W.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France.;Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Day, C.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Day, I. E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    De Bock, M.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    de Castro, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    de la Cal, E.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    de la Luna, E.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    De Masi, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    de Pablos, J. L.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    De Temmerman, G.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    De Tommasi, G.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    de Vries, P.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Deakin, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Deane, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Agostini, F. Degli
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Dejarnac, R.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Delabie, E.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    den Harder, N.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Dendy, R. O.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Denis, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Denner, P.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Devaux, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Univ Lorraine, CNRS, UMR7198, YIJL, Nancy, France..
    Devynck, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Di Maio, F.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Di Siena, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Di Troia, C.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Dinca, P.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    D'Inca, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Ding, B.
    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China..
    Dittmar, T.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Doerk, H.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Doerner, R. P.
    Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA..
    Donne, T.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Dorling, S. E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Dormido-Canto, S.
    Univ Nacl Educ Distancia, Madrid, Spain..
    Doswon, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Douai, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Doyle, P. T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Drenik, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Drewelow, P.
    Max Planck Inst Plasma Phys, Teilinsitut Greifswald, D-17491 Greifswald, Germany..
    Drews, P.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Duckworth, Ph.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Dumont, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Dumortier, P.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Dunai, D.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Dunne, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Duran, I.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Durodie, F.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Dutta, P.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Duval, B. P.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Dux, R.
    Dylst, K.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    Dzysiuk, Natalia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Edappala, P. V.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Edmond, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Edwards, A. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Edwards, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Eich, Th.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Ekedahl, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    El-Jorf, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Elsmore, C. G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Enachescu, M.
    Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania..
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, F.
    Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, L. G.
    European Commiss, B-1049 Brussels, Belgium..
    Esposito, B.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Esquembri, S.
    Univ Politecn Madrid, Grupo I2A2, Madrid, Spain..
    Esser, H. G.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Esteve, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Evans, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Evans, G. E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Evison, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ewart, G. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fagan, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Faitsch, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Falie, D.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Fanni, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy..
    Fasoli, A.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Faustin, J. M.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Fawlk, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fazendeiro, L.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Fedorczak, N.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Felton, R. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fenton, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fernades, A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Fernandes, H.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Ferreira, J.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Fessey, J. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fevrier, O.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ficker, O.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Field, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fietz, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Figueiredo, A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Figueiredo, J.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England.;Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Fil, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Finburg, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Firdaouss, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Fischer, U.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Fittill, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fitzgerald, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Flammini, D.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Flanagan, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fleming, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Flinders, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fonnesu, N.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fontdecaba, J. M.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Formisano, A.
    Second Univ Napoli, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Forsythe, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Fortuna, L.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Fortuna-Zalesna, E.
    Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland..
    Fortune, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Foster, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Franke, T.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Franklin, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Frasca, M.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Frassinetti, L.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Freisinger, M.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Fresa, R.
    Univ Basilicata, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Frigione, D.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fuchs, V.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Fuller, D.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Futatani, S.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Fyvie, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gal, K.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Galassi, D.
    Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France..
    Galazka, K.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Galdon-Quiroga, J.
    Univ Seville, Seville, Spain..
    Gallagher, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gallart, D.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Galvao, R.
    Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil..
    Gao, X.
    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China..
    Gao, Y.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Garcia, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Garcia-Carrasco, A.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Garcia-Munoz, M.
    Univ Seville, Seville, Spain..
    Gardarein, J. -L
    Garzotti, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gaudio, P.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Gauthier, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gear, D. F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gee, S. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Geiger, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Gelfusa, M.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Gerasimov, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gervasini, G.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Gethins, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ghani, Z.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ghate, M.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Gherendi, M.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Giacalone, J. C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Giacomelli, L.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Gibson, C. S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Giegerich, T.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Gil, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gil, L.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Gilligan, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gin, D.
    Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia..
    Giovannozzi, E.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Girardo, J. B.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Giroud, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Giruzzi, G.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gloeggler, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Godwin, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Goff, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gohil, P.
    Gen Atom, POB 85608, San Diego, CA 92186 USA..
    Goloborod'ko, V.
    Univ Innsbruck, Fus Osterreich Akad Wissensch OAW, Innsbruck, Austria..
    Gomes, R.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Goncalves, B.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Goniche, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Goodliffe, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Goodyear, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Gorini, G.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Gosk, M.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Goulding, R.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Goussarov, A.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    Gowland, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Graham, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Graham, M. E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Graves, J. P.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Grazier, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Grazier, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Green, N. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Greuner, H.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Grierson, B.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Griph, F. S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Grisolia, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Grist, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Groth, M.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Grove, R.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Grundy, C. N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Grzonka, J.
    Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland..
    Guard, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Guerard, C.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Guillemaut, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Guirlet, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gurl, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Utoh, H. H.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Hackett, L. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hacquin, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Hagar, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hager, R.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Hakola, A.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Halitovs, M.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Hall, S. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Cook, S. P. Hallworth
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hamlyn-Harris, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hammond, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Harrington, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Harrison, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Harting, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hasenbeck, F.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Hatano, Y.
    Univ Toyama, Toyama 9308555, Japan..
    Hatch, D. R.
    Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA..
    Haupt, T. D. V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hawes, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hawkes, N. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hawkins, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hawkins, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Haydon, P. W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hayter, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hazel, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Heesterman, P. J. L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Heinola, K.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellsten, T.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Helou, W.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hemming, O. N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hender, T. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Henderson, M.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Henderson, S. S.
    Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland..
    Henriques, R.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Hepple, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hermon, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hertout, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hidalgo, C.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Highcock, E. G.
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England..
    Hill, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hillairet, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hillesheim, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hillis, D.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Hizanidis, K.
    Natl Tech Univ Athens, Iroon Politechniou 9, Athens 15773, Greece..
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hobirk, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Hodille, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hogben, C. H. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hogeweij, G. M. D.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Hollingsworth, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hollis, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Homfray, D. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Horacek, J.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Hornung, G.
    Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Horton, A. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Horton, L. D.
    European Commiss, B-1049 Brussels, Belgium..
    Horvath, L.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Hotchin, S. P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hough, M. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Howarth, P. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hubbard, A.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Huber, A.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Huber, V.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Huddleston, T. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hughes, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Huijsmans, G. T. A.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Hunter, C. L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Huynh, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hynes, A. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Iglesias, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Imazawa, N.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Imbeaux, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Imrisek, M.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Incelli, M.
    Univ Tuscia, DEIM, Via Paradiso 47, I-01100 Viterbo, Italy..
    Innocente, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Irishkin, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ivanova-Stanik, I.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Jachmich, S.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England.;Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Jacobsen, A. S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Jacquet, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Jansons, J.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Jardin, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Jarvinen, A.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Jaulmes, F.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Jednorog, S.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Jenkins, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Jeong, C.
    Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea..
    Jepu, I.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Joffrin, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Johnson, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Johnson, T.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Johnston, Jane
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Joita, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Jones, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Jones, T. T. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Hoshino, K. K.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Kallenbach, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Kamiya, K.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Kaniewski, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kantor, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kappatou, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Karhunen, J.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Karkinsky, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Karnowska, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kaufman, M.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Kaveney, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kazakov, Y.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Kazantzidis, V.
    Natl Tech Univ Athens, Iroon Politechniou 9, Athens 15773, Greece..
    Keeling, D. L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Keenan, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Keep, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kempenaars, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kennedy, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kenny, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kent, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kent, O. N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Khilkevich, E.
    Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia..
    Kim, H. T.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Kim, H. S.
    Seoul Natl Univ, Shilim Dong, South Korea..
    Kinch, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    King, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    King, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    King, R. F.
    Kinna, D. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kiptily, V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kirk, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kirov, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kirschner, A.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Kizane, G.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Klepper, C.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Klix, A.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Knight, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Knipe, S. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Knott, S.
    Univ Coll Cork, Cork, Ireland..
    Kobuchi, T.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Koechl, F.
    Vienna Univ Technol, Fusi Osterreich Akad Wissensch OAW, Vienna, Austria..
    Kocsis, G.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Kodeli, I.
    Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Kogan, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kogut, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Koivuranta, S.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Kominis, Y.
    Natl Tech Univ Athens, Iroon Politechniou 9, Athens 15773, Greece..
    Koeppen, M.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Kos, B.
    Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Koskela, T.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Koslowski, H. R.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Koubiti, M.
    Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France..
    Kovari, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Kowalska-Strzeciwilk, E.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Krasilnikov, A.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Krasilnikov, V.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Krawczyk, N.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Kresina, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Krieger, K.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Krivska, A.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Kruezi, U.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ksiazek, I.
    Opole Univ, Inst Phys, Oleska 48, PL-45052 Opole, Poland..
    Kukushkin, A.
    NRC Kurchatov Inst, 1 Kurchatov Sq, Moscow 123182, Russia..
    Kundu, A.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Kurki-Suonio, T.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Kwak, S.
    Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea..
    Kwiatkowski, R.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Kwon, O. J.
    Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea..
    Laguardia, L.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Lahtinen, A.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Laing, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lam, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lambertz, H. T.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lane, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lang, P. T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lanthaler, S.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Lapins, J.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Lasa, A.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Last, J. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Laszynska, E.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Lawless, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lawson, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lawson, K. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lazaros, A.
    Natl Tech Univ Athens, Iroon Politechniou 9, Athens 15773, Greece..
    Lazzaro, E.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Leddy, J.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Lee, S.
    Natl Fusion Res Inst, 169-148 Gwahak Ro, Daejeon 305806, South Korea..
    Lefebvre, X.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Leggate, H. J.
    Dublin City Univ, Dublin, Ireland..
    Lehmann, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lehnen, M.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Leichtle, D.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Leichuer, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Leipold, F.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France.;Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Lengar, I.
    Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Lennholm, M.
    European Commiss, B-1049 Brussels, Belgium..
    Lerche, E.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Lescinskis, A.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Lesnoj, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Letellier, E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Leyland, M.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Leysen, W.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    Li, L.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Liang, Y.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Likonen, J.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Linke, J.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Linsmeier, Ch.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lipschultz, B.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Liu, G.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Liu, Y.
    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China..
    Lo Schiavo, V. P.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Loarer, T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Loarte, A.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Lobel, R. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lomanowski, B.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Lomas, P. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lonnroth, J.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland.;Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Lopez, J. M.
    Univ Politecn Madrid, Grupo I2A2, Madrid, Spain..
    Lopez-Razola, J.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Lorenzini, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Losada, U.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Lovell, J. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Loving, A. B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lowry, C.
    European Commiss, B-1049 Brussels, Belgium..
    Luce, T.
    Gen Atom, POB 85608, San Diego, CA 92186 USA..
    Lucock, R. M. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lukin, A.
    PELIN LLC, 27a Gzhatskaya Ulitsa, St Petersburg 195220, Russia..
    Luna, C.
    Arizona State Univ, Tempe, AZ USA..
    Lungaroni, M.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Lungu, C. P.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Lungu, M.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Lunniss, A.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Lupelli, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Lyssoivan, A.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Macdonald, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Macheta, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Maczewa, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Magesh, B.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Maget, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Maggi, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Maier, H.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Mailloux, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Makkonen, T.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Makwana, R.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Malaquias, A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Malizia, A.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Manas, P.
    Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France..
    Manning, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Manso, M. E.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Mantica, P.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Mantsinen, M.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Manzanares, A.
    Univ Complutense Madrid, Madrid, Spain..
    Maquet, Ph.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Marandet, Y.
    Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France..
    Marcenko, N.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Marchetto, C.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Marchuk, O.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Marinelli, M.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Marinucci, M.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Markovic, T.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Marocco, D.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Marot, L.
    Univ Basel, Dept Phys, Basel, Switzerland..
    Marren, C. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Marshal, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Martin, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Martin, Y.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Martin de Aguilera, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Martinez, F. J.
    Univ Nacl Educ Distancia, Madrid, Spain..
    Martin-Solis, J. R.
    Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain..
    Martynova, Y.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Maruyama, S.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Masiello, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Maslov, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Matejcik, S.
    Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia..
    Mattei, M.
    Second Univ Napoli, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Matthews, G. F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Maviglia, F.
    Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Mayer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Mayoral, M. L.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    May-Smith, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Mazon, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Mazzotta, C.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    McAdams, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    McCarthy, P. J.
    Univ Coll Cork, Cork, Ireland..
    McClements, K. G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    McCormack, O.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    McCullen, P. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    McDonald, D.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    McIntosh, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    McKean, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    McKehon, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meadows, R. C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meakins, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Medina, F.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Medland, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Medley, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meigh, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meigs, A. G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meisl, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Meitner, S.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Meneses, L.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Menmuir, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Mergia, K.
    NCSR Demokritos, Aghia Paraskevi 15310, Greece..
    Merrigan, I. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Mertens, Ph.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Meshchaninov, S.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Messiaen, A.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Meyer, H.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Mianowski, S.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Michling, R.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Middleton-Gear, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Miettunen, J.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Militello, F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Militello-Asp, E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Miloshevsky, G.
    Purdue Univ, 610 Purdue Mall, W Lafayette, IN 47907 USA..
    Mink, F.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Minucci, S.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Miyoshi, Y.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Mlynar, J.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Molina, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Monakhov, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Moneti, M.
    Univ Tuscia, DEIM, Via Paradiso 47, I-01100 Viterbo, Italy..
    Mooney, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Moradi, S.
    ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium..
    Mordijck, S.
    Gen Atom, POB 85608, San Diego, CA 92186 USA..
    Moreira, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Moreno, R.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Moro, F.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Morris, A. W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Morris, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Moser, L.
    Univ Basel, Dept Phys, Basel, Switzerland..
    Mosher, S.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Moulton, D.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Murari, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy.;Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England..
    Muraro, A.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Murphy, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Asakura, N. N.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Na, Y. S.
    Seoul Natl Univ, Shilim Dong, South Korea..
    Nabais, F.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Naish, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Nakano, T.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Nardon, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Naulin, V.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nave, M. F. F.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Nedzelski, I.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Nemtsev, G.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Nespoli, F.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Neto, A.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Neu, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Neverov, V. S.
    NRC Kurchatov Inst, 1 Kurchatov Sq, Moscow 123182, Russia..
    Newman, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Nicholls, K. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Nicolas, T.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Nielsen, A. H.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nielsen, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Nilsson, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Nishijima, D.
    Univ Calif, 1111 Franklin St, Oakland, CA 94607 USA..
    Noble, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Nocente, M.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Nodwell, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Nordlund, K.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Nordman, H.
    Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Nouailletas, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Nunes, I.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Oberkofler, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Odupitan, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Ogawa, M. T.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    O'Gorman, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Okabayashi, M.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Olney, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Omolayo, O.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    O'Mullane, M.
    Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland..
    Ongena, J.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Orsitto, F.
    Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Orszagh, J.
    Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia..
    Oswuigwe, B. I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Otin, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Owen, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Paccagnella, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pace, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pacella, D.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Packer, L. W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Page, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pajuste, E.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Palazzo, S.
    Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy..
    Pamela, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Panja, S.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Papp, P.
    Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia..
    Paprok, R.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Parail, V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Park, M.
    Natl Fusion Res Inst, 169-148 Gwahak Ro, Daejeon 305806, South Korea..
    Diaz, F. Parra
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England..
    Parsons, M.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Pasqualotto, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Patel, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pathak, S.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Paton, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Patten, H.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Pau, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy..
    Pawelec, E.
    Opole Univ, Inst Phys, Oleska 48, PL-45052 Opole, Poland..
    Soldan, C. Paz
    Gen Atom, POB 85608, San Diego, CA 92186 USA..
    Peackoc, A.
    European Commiss, B-1049 Brussels, Belgium..
    Pearson, I. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pehkonen, S. -P
    Peluso, E.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Penot, C.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Pereira, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Pereira, R.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Puglia, P. P. Pereira
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    von Thun, C. Perez
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England.;Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Peruzzo, S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Peschanyi, S.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Peterka, M.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Petersson, P.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Petravich, G.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Petre, A.
    Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania..
    Petrella, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Petrzilka, V.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Peysson, Y.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Pfefferle, D.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Philipps, V.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Pillon, M.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Pintsuk, G.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Piovesan, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pires dos Reis, A.
    Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil..
    Piron, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pironti, A.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Pisano, F.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy..
    Pitts, R.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Pizzo, F.
    Second Univ Napoli, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Plyusnin, V.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Pomaro, N.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pompilian, O. G.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Pool, P. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Popovichev, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Porfiri, M. T.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Porosnicu, C.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Porton, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Potzel, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Powell, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pozzi, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Prajapati, V.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Prakash, R.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Prestopino, G.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Price, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Price, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Price, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Prior, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Proudfoot, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Pucella, G.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Puglia, P.
    Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil..
    Puiatti, M. E.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pulley, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Purahoo, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Puetterich, Th.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rachlew, E.
    KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden..
    Rack, M.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Ragona, R.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Rainford, M. S. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Rakha, A.
    Barcelona Supercomp Ctr, Barcelona, Spain..
    Ramogida, G.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Ranjan, S.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Rapson, C. J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rasmussen, J. J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Rathod, K.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Ratta, G.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Ratynskaia, S.
    KTH, EES, Space & Plasma Phys, SE-10044 Stockholm, Sweden..
    Ravera, G.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Rayner, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Rebai, M.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Reece, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Reed, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Refy, D.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Regan, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Regana, J.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Reich, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Reid, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Reimold, F.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Reinhart, M.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Reinke, M.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.;Univ York, York YO10 5DD, N Yorkshire, England..
    Reiser, D.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Rendell, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Reux, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Reyes Cortes, S. D. A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Reynolds, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Riccardo, V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Richardson, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Riddle, K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Rigamonti, D.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Rimini, F. G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Risner, J.
    Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA..
    Riva, M.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Roach, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Robins, R. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Robinson, S. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Robinson, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Robson, D. W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Roccella, R.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Rodionov, R.
    Troitsk Inst Innovating & Thermonucl Res TRINITI, Moscow 142190, Russia..
    Rodrigues, P.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Rodriguez, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Rohde, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Romanelli, F.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Romanelli, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Romanelli, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Romazanov, J.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Rowe, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Rubel, M.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Rubinacci, G.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Rubino, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Ruchko, L.
    Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil..
    Ruiz, M.
    Univ Politecn Madrid, Grupo I2A2, Madrid, Spain..
    Ruset, C.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Rzadkiewicz, J.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Saarelma, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Sabot, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Safi, E.
    Univ Helsinki, POB 43, FI-00014 Helsinki, Finland..
    Sagar, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Saibene, G.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Saint-Laurent, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Salewski, M.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Salmi, A.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Salmon, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Salzedas, F.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Samaddar, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Samm, U.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Sandiford, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Santa, P.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Santala, M. I. K.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Santos, B.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Santucci, A.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Sartori, F.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Sartori, R.
    Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain..
    Sauter, O.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Scannell, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Schlummer, T.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Schmid, K.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schmidt, V.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Schmuck, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Schneider, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Schoepf, K.
    Univ Innsbruck, Fus Osterreich Akad Wissensch OAW, Innsbruck, Austria..
    Schworer, D.
    Dublin City Univ, Dublin, Ireland..
    Scott, S. D.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Sergienko, G.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Sertoli, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Shabbir, A.
    Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Sharapov, S. E.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Shaw, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Shaw, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Sheikh, H.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Shepherd, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Shevelev, A.
    Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia..
    Shumack, A.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Sias, G.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy..
    Sibbald, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Sieglin, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Silburn, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Silva, A.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Silva, C.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Simmons, P. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Simpson, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Simpson-Hutchinson, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Sinha, A.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Sipila, S. K.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Sips, A. C. C.
    European Commiss, B-1049 Brussels, Belgium..
    Siren, P.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Sirinelli, A.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skilton, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Slabkowska, K.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Slade, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Smith, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Smith, P. G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Smith, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Smith, T. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Smithies, M.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Snoj, L.
    Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Soare, S.
    Natl Inst Cryogen & Isotop Technol, Ramnicu Valcea, Romania..
    Solano, E. R.
    Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England.;CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Somers, A.
    Dublin City Univ, Dublin, Ireland..
    Sommariva, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Sonato, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Sopplesa, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Sousa, J.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Sozzi, C.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Spagnolo, S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Spelzini, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Spineanu, F.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Stables, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Stamatelatos, I.
    NCSR Demokritos, Aghia Paraskevi 15310, Greece..
    Stamp, M. F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Staniec, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Stankunas, G.
    Lithuanian Energy Inst, Breslaujos G 3, LT-4403 Kaunas, Lithuania..
    Stan-Sion, C.
    Horia Hulubei Natl Inst Phys & Nucl Engn, Magurele, Romania..
    Stead, M. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Stefanikova, E.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Stepanov, I.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Stephen, A. V.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Stephen, M.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Stevens, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Stevens, B. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Strachan, J.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Strand, P.
    Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Strauss, H. R.
    HRS Fusion, W Orange, NJ USA..
    Strom, P.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Stubbs, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Studholme, W.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Subba, F.
    Politecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy..
    Summers, H. P.
    Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland..
    Svensson, J.
    Max Planck Inst Plasma Phys, Teilinsitut Greifswald, D-17491 Greifswald, Germany..
    Swiderski, L.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Szabolics, T.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Szawlowski, M.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Szepesi, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Suzuki, T. T.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Tal, B.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Tala, T.
    VTT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland..
    Talbot, A. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Talebzadeh, S.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Taliercio, C.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Tamain, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Tame, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tang, W.
    Princeton Plasma Phys Lab, James Forrestal Campus, Princeton, NJ 08543 USA..
    Tardocchi, M.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Taroni, L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Taylor, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Taylor, K. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tegnered, D.
    Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Telesca, G.
    Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Teplova, N.
    Ioffe Phys Tech Inst, 26 Politekhnicheskaya, St Petersburg 194021, Russia..
    Terranova, D.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Testa, D.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Tholerus, E.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Thomas, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thomas, J. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thomas, P.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Thompson, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thompson, C. -A
    Thompson, V. K.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thorne, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thornton, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Thrysoe, A. S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Tigwell, P. A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tipton, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tiseanu, I.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Tojo, H.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Tokitani, M.
    Natl Inst Fus Sci, Toki, Gifu 5095292, Japan..
    Tolias, P.
    KTH, EES, Space & Plasma Phys, SE-10044 Stockholm, Sweden..
    Tomes, M.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Tonner, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Towndrow, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Trimble, P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tripsky, M.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Tsalas, M.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Tsavalas, P.
    NCSR Demokritos, Aghia Paraskevi 15310, Greece..
    Jun, D. Tskhakaya
    Univ Innsbruck, Fus Osterreich Akad Wissensch OAW, Innsbruck, Austria..
    Turner, I.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Turner, M. M.
    Dublin City Univ, Dublin, Ireland..
    Turnyanskiy, M.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Tvalashvili, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Tyrrell, S. G. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Uccello, A.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Ul-Abidin, Z.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Uljanovs, J.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Ulyatt, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Urano, H.
    Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan..
    Uytdenhouwen, I.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    Vadgama, A. P.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Valcarcel, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Valentinuzzi, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Valisa, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Olivares, P. Vallejos
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Valovic, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Van De Mortel, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Van Eester, D.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Van Renterghem, W.
    SCK CEN, Nucl Res Ctr, B-2400 Mol, Belgium..
    van Rooij, G. J.
    FOM Inst DIFFER, Eindhoven, Netherlands..
    Varje, J.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Varoutis, S.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Vartanian, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Vasava, K.
    Inst Plasma Res, Gandhinagar 382428, Gujarat, India..
    Vasilopoulou, T.
    NCSR Demokritos, Aghia Paraskevi 15310, Greece..
    Vega, J.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Verdoolaege, G.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Verhoeven, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Verona, C.
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Rinati, G. Verona
    Univ Roma Tor Vergata, Via Politecn 1, Rome, Italy..
    Veshchev, E.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Vianello, N.
    IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Vicente, J.
    Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Viezzer, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Univ Seville, Seville, Spain..
    Villari, S.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Villone, F.
    Univ Cassino, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Vincenzi, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Vinyar, I.
    PELIN LLC, 27a Gzhatskaya Ulitsa, St Petersburg 195220, Russia..
    Viola, B.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Vitins, A.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Vizvary, Z.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Vlad, M.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Voitsekhovitch, I.
    EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany..
    Vondracek, P.
    Inst Plasma Phys AS CR, Za Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Vora, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Vu, T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Pires de Sa, W. W.
    Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil..
    Wakeling, B.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Waldon, C. W. F.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Walkden, N.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Walker, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Walker, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Walsh, M.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Wang, E.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Wang, N.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Warder, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Warren, R. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Waterhouse, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Watkins, N. W.
    Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England..
    Watts, C.
    ITER Org, Route Vinon,CS 90 046, F-13067 St Paul Les Durance, France..
    Wauters, T.
    Ecole Royale Mil, Lab Plasma Phys, Koninklijke Mil Sch, Renaissancelaan 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Weckmann, A.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Weiland, J.
    Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden..
    Weisen, H.
    Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland..
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wellstood, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    West, A. T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wheatley, M. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Whetham, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Whitehead, A. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Whitehead, B. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Widdowson, A. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wiesen, S.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Wilkinson, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Williams, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Williams, M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wilson, A. R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wilson, D. J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wilson, H. R.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Wilson, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wischmeier, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Withenshaw, G.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Withycombe, A.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Witts, D. M.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wood, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wood, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Woodley, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wray, S.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wright, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wright, J. C.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Wu, J.
    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China..
    Wukitch, S.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Wynn, A.
    Univ York, York YO10 5DD, N Yorkshire, England..
    Xu, T.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Yadikin, D.
    Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Yanling, W.
    Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Yao, L.
    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China..
    Yavorskij, V.
    Univ Innsbruck, Fus Osterreich Akad Wissensch OAW, Innsbruck, Austria..
    Yoo, M. G.
    Seoul Natl Univ, Shilim Dong, South Korea..
    Young, C.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Young, D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Young, I. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Young, R.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Zacks, J.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Zagorski, R.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Zaitsev, F. S.
    Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia..
    Zanino, R.
    Politecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy..
    Zarins, A.
    Univ Latvia, 19 Raina Blvd, LV-1586 Riga, Latvia..
    Zastrow, K. D.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Zerbini, M.
    ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Zhang, W.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Zhou, Y.
    KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zilli, E.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Zoita, V.
    Natl Inst Laser, Plasma & Radiat Phys, Magurele, Romania..
    Zoletnik, S.
    Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Overview of the JET results in support to ITER2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102001Article in journal (Refereed)
    Abstract [en]

    The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at beta(N) similar to 1.8 and n/n(GW) similar to 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.

  • 212. Lovell, Jack
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    An FPGA-based bolometer for the MAST-U Super-X divertor2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 11, article id 11E721Article in journal (Refereed)
    Abstract [en]

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  • 213.
    Lungaroni, M.
    et al.
    Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, Rome, Italy.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    On the potential of ruled-based machine learning for disruption prediction on JET2018In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 130, p. 62-68Article in journal (Refereed)
    Abstract [en]

    In the last years, it has become apparent that detecting disruptions with sufficient anticipation time is an essential but not exclusive task of predictors. It is also important that the prediction is accompanied by appropriate qualifications of its reliability and it is formulated in mathematical terms appropriate for the task at hand (mitigation, avoidance, classification etc.). In this paper, a wide series of rule-based predictors, of the Classification and Regression Trees (CART) family, have been compared to assess their relative merits. An original refinement of the training, called noise-based ensembles, has allowed not only to obtain significantly better performance but also to increase the interpretability of the results. The final predictors can indeed be represented by a tree or a series of specific and clear rules. Such performance has been proved by analysing large databases of shots on JET with both the carbon wall and the ITER Like Wall. In terms of performance, the developed tools are therefore very competitive with other machine learning techniques, with the specificity of formulating the final models in terms of trees and simple rules.

  • 214.
    Maggi, C. F.
    et al.
    Culham Sci Ctr, CCFE, Abingdon, Oxon, England.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Isotope effects on L-H threshold and confinement in tokamak plasmas2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 1, article id 014045Article in journal (Refereed)
    Abstract [en]

    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.

  • 215. Maggi, C. F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Isotope identity experiments in JET-ILW with H and D L-mode plasmas2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 7, article id 076028Article in journal (Refereed)
    Abstract [en]

    NBI-heated L-mode plasmas have been obtained in JET with the Be/W ITER-like wall (JET-ILW) in H and D, with matched profiles of the dimensionless plasma parameters, rho*, nu*, beta and q in the plasma core confinement region and same T-i/T-e and Z(eff). The achieved isotope identity indicates that the confinement scale invariance principle is satisfied in the core confinement region of these plasmas, where the dominant instabilities are Ion Temperature Gradient (ITG) modes. The dimensionless thermal energy confinement time, Omega(i) tau(E,th), and the scaled core plasma heat diffusivity, A chi(eff)/B-T, are identical in H and D within error bars, indicating lack of isotope mass dependence of the dimensionless L-mode thermal energy confinement time in JET-ILW. Predictive flux driven simulations with JETTO-TGLF of the H and D identity pair is in very good agreement with experiment for both isotopes: the stiff core heat transport, typical of JET-ILW NBI heated L-modes, overcomes the local gyro-Bohm scaling of gradient-driven TGLF, explaining the lack of isotope mass dependence in the confinement region of these plasmas. The effect of E x B shearing on the predicted heat and particle transport channels is found to be negligible for these low beta and low momentum input plasmas.

  • 216. Maggi, C. F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 11, article id 116012Article in journal (Refereed)
    Abstract [en]

    The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of rho* and increases proportionally to root beta(pol,PED). Additional broadening of the width is observed, at constant beta(pol, PED), with increasing nu* and/ or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, eta(e), is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in (pe,PED) with increasing D-2 gas injection at high power is primarily due to clamping of del T-e half way through the ELM cycle and is suggestive of turbulence limiting the T-e pedestal growth. The inter-ELM pedestal pressure evolution in JET-ILW is consistent with the EPED model assumptions at low gas rates and only at low beta at high gas rates. At higher beta and high gas rate the inter-ELM pedestal pressure evolution is qualitatively consistent with the kinetic ballooning mode (KBM) constraint but the peeling-ballooning (P-B) constraint is not satisfied and the ELM trigger mechanism remains as yet unexplained.

  • 217. Makepeace, C.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. Uppsala University, Disciplinary Domain of Science and Technology, För teknisk-naturvetenskapliga fakulteten gemensamma enheter, Tandem Laboratory.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    The effect of beryllium oxide on retention in JET ITER-like wall tiles2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 346-351Article in journal (Refereed)
    Abstract [en]

    Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 degrees C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures.

  • 218. Manas, P.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Gyrokinetic modeling of impurity peaking in JET H-mode plasmas2017In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 24, no 6, article id 062511Article in journal (Refereed)
    Abstract [en]

    Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor (R/L-nC) on plasma parameters are investigated via multilinear regressions. A marked correlation between R/L-nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, nu*, and T-e/T-i < 1, the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher nu* and T-e/T-i > 1, the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.

  • 219.
    Maslov, M.
    et al.
    United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, United Kingdom of Great Britain and Northern Ireland.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 7, article id 076022Article in journal (Refereed)
    Abstract [en]

    Particle transport in tokamak plasmas has been intensively studied in the past, particularly in relation to density peaking and the presence of anomalous inward particle convection in L-and H-modes. While in the L-mode case the presence of the anomalous inward pinch has previously been unambiguously demonstrated, particle transport in the H-mode was unclear. The main difficulty of such studies is that particle diffusion and convection could not be measured independently in steady-state conditions in the presence of a core particle flux. Therefore, it is usually not possible to separate the transport effect(inward convection), from the source effect (slow diffusion of particles introduced to the plasma core by neutral beam injection heating). In this work we describe experiments done on JET with mixtures of two hydrogenic isotopes: H and D. It is demonstrated that in the case of several ion species, convection and diffusion can be separated in a steady plasma without implementation of perturbative techniques such as gas puff modulation. Previous H-mode density peaking studies suggested that for this relatively high electron collisionality plasma scenario, the observed density gradient is mostly driven by particle source and low particle diffusivity D < 0.5 * chi(eff). Transport coefficients derived from observation of the isotope profiles in the new experiments far exceed that value-ion particle diffusion is found to be as high as D >= 2 * chi(eff), combined with a strong inward convection. Apparent disagreement with previous findings was explained by significantly faster transport of ion components with respect to the electrons, which could not be observed in a single main ion species plasma. This conclusion is confirmed by quasilinear gyrokinetic simulations.

  • 220. Masuzakil, S.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Analyses of microstructure, composition and retention of hydrogen isotopes in divertor tiles of JET with the ITER-like wall2017In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014031Article in journal (Refereed)
    Abstract [en]

    Results of the comprehensive surface analyses of divertor tiles and dusts retrieved from JET after the first ITER-like wall campaign (2011-2012) are presented. The samples cored from the divertor tiles were analyzed. Numerous nano-size bubble-like structures were observed in the deposition layer on the apron of the inner divertor tile, and a beryllium dust with the same structures were found in the matter collected from the inner divertor after the campaign. This suggests that the nano-size bubble-like structures can make the deposition layer to become brittle and may lead to cracking followed by dust generation. X-ray photoelectron spectroscopy analyses of chemical states of species in the deposition layers identified the formation of beryllium-tungsten intermetallic compounds on an inner vertical tile. Different tritium retention profiles along the divertor tiles were observed at the top surfaces and at deeper regions of the tiles by using the imaging plate technique.

  • 221. Matos, Francisco A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Deep learning for plasma tomography using the bolometer system at JET2017In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 114, p. 18-25Article in journal (Refereed)
    Abstract [en]

    Deep learning is having a profound impact in many fields, especially those that involve some form of image processing. Deep neural networks excel in turning an input image into a set of high-level features. On the other hand, tomography deals with the inverse problem of recreating an image from a number of projections. In plasma diagnostics, tomography aims at reconstructing the cross-section of the plasma from radiation measurements. This reconstruction can be computed with neural networks. However, previous attempts have focused on learning a parametric model of the plasma profile. In this work, we use a deep neural network to produce a full, pixel-by-pixel reconstruction of the plasma profile. For this purpose, we use the overview bolometer system at JET, and we introduce an up-convolutional network that has been trained and tested on a large set of sample tomograms. We show that this network is able to reproduce existing reconstructions with a high level of accuracy, as measured by several metrics.

  • 222. Matthews, G. F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Energy balance in JET2017In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, p. 227-233Article in journal (Refereed)
    Abstract [en]

    In this paper we discuss results from the study of the energy balance in JET based on calculated heating energies, radiated energy from bolometry and tile calorimetry. Recent data enables us to be more confident in the numbers used and to exclude certain possibilities but the overall energy imbalance which typically amounts to 25% of total input remains unexplained. This shows that caution is required in interpreting fractional radiated powers which are commonly used to measure the effectiveness of impurity seeded scenarios at reducing divertor heat load. 

  • 223. Matthews, G. F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Melt damage to the JET ITER-like Wall and divertor2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014070Article in journal (Refereed)
    Abstract [en]

    In October 2014, JET completed a scoping study involving high power scenario development in preparation for DT along with other experiments critical for ITER. These experiments have involved intentional and unintentional melt damage both to bulk beryllium main chamber tiles and to divertor tiles. This paper provides an overview of the findings of concern for machine protection in JET and ITER, illustrating each case with high resolution images taken by remote handling or after removal from the machine. The bulk beryllium upper dump plate tiles and some other protection tiles have been repeatedly flash melted by what we believe to be mainly fast unmitigated disruptions. The flash melting produced in this way is seen at all toroidal locations and the melt layer is driven by j x B forces radially outward and upwards against gravity. In contrast, the melt pools caused while attempting to use MGI to mitigate deliberately generated runaway electron beams are localized to several limiters and the ejected material appears less influenced by j. x. B forces and shows signs of boiling. In the divertor, transient melting of bulk tungsten by ELMs was studied in support of the ITER divertor material decision using a specially prepared divertor module containing an exposed edge. Removal of the module from the machine in 2015 has provided improved imaging of the melt and this confirms that the melt layers are driven by ELMs. No other melt damage to the other 9215 bulk tungsten lamellas has yet been observed.

  • 224. Matthews, G. F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Dynamic power balance analysis in JET2017In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014035Article in journal (Refereed)
    Abstract [en]

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to similar to 25 ms.

  • 225. Mayer, M.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Erosion and deposition in the JET divertor during the first ILW campaign2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014051Article in journal (Refereed)
    Abstract [en]

    Erosion and deposition were studied in the JET divertor during the first JET ITER-like wall campaign 2011 to 2012 using marker tiles. An almost complete poloidal section consisting of tiles 0, 1, 3, 4, 6, 7, 8 was studied. The data from divertor tile surfaces were completed by the analysis of samples from remote divertor areas and from the inner wall cladding. The total mass of material deposited in the divertor decreased by a factor of 4-9 compared to the deposition of carbon during all-carbon JET operation before 2010. Deposits in 2011 to 2012 consist mainly of beryllium with 5-20 at.% of carbon and oxygen, respectively, and small amounts of Ni, Cr, Fe and W. This decrease of material deposition in the divertor is accompanied by a decrease of total deuterium retention inside the JET vessel by a factor of 10 to 20. The detailed erosion/deposition pattern in the divertor with the ITER-like wall configuration shows rigorous changes compared to the pattern with the all-carbon JET configuration.

  • 226. Mayer, M.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Erosion and deposition in the JET divertor during the second ITER-like wall campaign2017In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014058Article in journal (Refereed)
    Abstract [en]

    Erosion of plasma-facing materials and successive transport and redeposition of eroded material are crucial processes determining the lifetime of plasma-facing components and the trapped tritium inventory in redeposited material layers. Erosion and deposition in the JET divertor were studied during the second JET ITER-like wall campaign ILW-2 in 2013-2014 by using a poloidal row of specially prepared divertor marker tiles including the tungsten bulk tile 5. The marker tiles were analyzed using elastic backscattering with 3-4.5 MeV incident protons and nuclear reaction analysis using 0.8-4.5 MeV He-3 ions before and after the campaign. The erosion/deposition pattern observed during ILW-2 is qualitatively comparable to the first campaign ILW-1 in 2011-2012: deposits consist mainly of beryllium with 5-20 at.% of carbon and oxygen and small amounts of Ni and W. The highest deposition with deposited layer thicknesses up to 30 mu m per campaign is still observed on the upper and horizontal parts of the inner divertor. Outer divertor tiles 5, 6, 7 and 8 are net W erosion areas. The observed D inventory is roughly comparable to the inventory observed during ILW-1. The results obtained during ILW-2 therefore confirm the positive results observed in ILW-1 with respect to reduced material deposition and hydrogen isotopes retention in the divertor.

  • 227.
    McClements, K. G.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Akers, R. J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Boeglin, W. U.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Keeling, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Jones, O. M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England; Univ Durham, Dept Phys, Durham DH1 3LE, England.
    Kirk, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Perez, R. V.
    Florida Int Univ, Dept Phys, Miami, FL 33199 USA.
    Shinohara, K.
    Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan.
    Tani, K.
    Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan.
    The effects of resonant magnetic perturbations on fast ion confinement in the Mega Amp Spherical Tokamak2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 7, article id 075003Article in journal (Refereed)
    Abstract [en]

    The effects of resonant magnetic perturbations (RMPs) on the confinement of energetic (neutral beam) ions in the Mega Amp Spherical Tokamak (MAST) are assessed experimentally using measurements of neutrons, fusion protons and fast ion D alpha (FIDA) light emission. In single null-diverted (SND) MAST pulses with relatively low plasma current (400 kA), the total neutron emission dropped by approximately a factor of two when RMPs with toroidal mode number n = 3 were applied. The measured neutron rate during RMPs was much lower than that calculated using the TRANSP plasma simulation code, even when non-classical (but axisymmetric) ad hoc fast ion transport was taken into account in the latter. Sharp drops in spatially-resolved neutron rates, fusion proton rates and FIDA emission were also observed. First principles-based simulations of RMP-induced fast ion transport in MAST, using the F3D-OFMC code, show similar losses for two alternative representations of the MAST first wall, with and without full orbit effects taken into account; for n = 6 RMPs in a 600 kA plasma, the additional loss of beam power due to the RMPs was found in the simulations to be approximately 11%.

  • 228. McClements, K. G.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Observations and modelling of ion cyclotron emission observed in JET plasmas using a sub-harmonic arc detection system during ion cyclotron resonance heating2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 9, article id 096020Article in journal (Refereed)
    Abstract [en]

    Measurements are reported of electromagnetic emission close to the cyclotron frequency of energetic ions in JET plasmas heated by waves in the ion cylotron range of frequencies (ICRF). Hydrogen was the majority ion species in all of these plasmas. The measurements were obtained using a sub-harmonic arc detection system in the transmission lines of one of the ICRF antennas. The measured ion cyclotron emission spectra were strongly filtered by the antenna system, and typically contained sub-structure, consisting of sets of peaks with a separation of a few kHz, suggesting the excitation of compressional Alfven eigenmodes closely spaced in frequency. In most cases the energetic ions can be clearly identified as ICRF wave-accelerated He-3 minority ions, although in two pulses the emission may have been produced by energetic He-4 ions, originating from third harmonic ICRF wave acceleration. It is proposed that the emission close to the He-3 cyclotron frequency was produced by energetic ions of this species undergoing drift orbit excursions to the outer midplane plasma edge. Particle-in-cell and hybrid (kinetic ion, fluid electron) simulations using plasma parameters corresponding to edge plasma conditions in these JET pulses, and energetic particle parameters inferred from the cyclotron resonance location, indicate strong excitation of waves at multiple He-3 cyclotron harmonics, including the fundamental, which is identified with the observed emission. These results underline the potential importance of ICE measurements as a method of studying confined fast particles that are strongly suprathermal but have insufficient energies or are not present in sufficient numbers to excite detectable levels of gamma-ray emission or other collective instabilities.

  • 229. Meisl, G.
    et al.
    Andersson Sundén, Erik
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Simulating the nitrogen migration in Be/W tokamaks with WallDYN2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014079Article in journal (Refereed)
    Abstract [en]

    The migration of wall material or seeding impurities plays an important role in the formation of mixed materials, the impurity contamination of the plasma and tritium retention. First, this work presents an improved model for the sputtering from mixed material surfaces in WallDYN. Second, we present dynamic SDTrimSP and WallDYN simulations of the nitrogen implantation in Be and the migration of nitrogen in tokamaks with a Be main wall. The simulations with the binary collision code SDTrimSP predict that N accumulates directly at the surface and that the Be erosion decreases with increasing N surface content. A first application of WallDYN to the nitrogen migration with an ITER-like wall indicates that the Be main wall may cause wall pumping of N by co-deposition with Be.

  • 230. Meyer, H.
    et al.
    Abel, I. G.
    Akers, R. J.
    Allan, A.
    Allan, S. Y.
    Appel, L. C.
    Asunta, O.
    Barnes, M.
    Barratt, N. C.
    Ben Ayed, N.
    Bradley, J. W.
    Canik, J.
    Cahyna, P.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Challis, C. D.
    Chapman, I. T.
    Ciric, D.
    Colyer, G.
    Conway, N. J.
    Cox, M.
    Crowley, B. J.
    Cowley, S. C.
    Cunningham, G.
    Danilov, A.
    Darke, A.
    De Bock, M. F. M.
    De Temmerman, G.
    Dendy, R. O.
    Denner, P.
    Dickinson, D.
    Dnestrovsky, A. Y.
    Dnestrovsky, Y.
    Driscoll, M. D.
    Dudson, B.
    Dunai, D.
    Dunstan, M.
    Dura, P.
    Elmore, S.
    Field, A. R.
    Fishpool, G.
    Freethy, S.
    Fundamenski, W.
    Garzotti, L.
    Ghim, Y. C.
    Gibson, K. J.
    Gryaznevich, M. P.
    Harrison, J.
    Havlickova, E.
    Hawkes, N. C.
    Heidbrink, W. W.
    Hender, T. C.
    Highcock, E.
    Higgins, D.
    Hill, P.
    Hnat, B.
    Hole, M. J.
    Horacek, J.
    Howell, D. F.
    Imada, K.
    Jones, O.
    Kaveeva, E.
    Keeling, D.
    Kirk, A.
    Kocan, M.
    Lake, R. J.
    Lehnen, M.
    Leggate, H. J.
    Liang, Y.
    Lilley, M. K.
    Lisgo, S. W.
    Liu, Y. Q.
    Lloyd, B.
    Maddison, G. P.
    Mailloux, J.
    Martin, R.
    McArdle, G. J.
    McClements, K. G.
    McMillan, B.
    Michael, C.
    Militello, F.
    Molchanov, P.
    Mordijck, S.
    Morgan, T.
    Morris, A. W.
    Muir, D. G.
    Nardon, E.
    Naulin, V.
    Naylor, G.
    Nielsen, A. H.
    O'Brien, M. R.
    O'Gorman, T.
    Pamela, S.
    Parra, F. I.
    Patel, A.
    Pinches, S. D.
    Price, M. N.
    Roach, C. M.
    Robinson, J. R.
    Romanelli, M.
    Rozhansky, V.
    Saarelma, S.
    Sangaroon, S.
    Saveliev, A.
    Scannell, R.
    Seidl, J.
    Sharapov, S. E.
    Schekochihin, A. A.
    Shevchenko, V.
    Shibaev, S.
    Stork, D.
    Storrs, J.
    Sykes, A.
    Tallents, G. J.
    Tamain, P.
    Taylor, D.
    Temple, D.
    Thomas-Davies, N.
    Thornton, A.
    Turnyanskiy, M. R.
    Valovic, M.
    Vann, R. G. L.
    Verwichte, E.
    Voskoboynikov, P.
    Voss, G.
    Warder, S. E. V.
    Wilson, H. R.
    Wodniak, I.
    Zoletnik, S.
    Zagorski, R.
    Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 10, p. 104008-Article in journal (Refereed)
    Abstract [en]

    New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows.

  • 231.
    Meyer, H.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Eich, T.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Beurskens, M.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece.;Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Coda, S.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Hakola, A.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Martin, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Adamek, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Agostini, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Aguiam, D.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Ahn, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Aho-Mantila, L.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Akers, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Albanese, R.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Aledda, R.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Alessi, E.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Allan, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Alves, D.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Ambrosino, R.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Amicucci, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Anand, H.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Anastassiou, G.
    Natl Tech Univ Athens, Athens, Greece..
    Andrebe, Y.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Angioni, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Apruzzese, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Ariola, M.
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Arnichand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Arter, W.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Baciero, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal.;CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Barnes, M.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Barrera, L.
    EUROfus PMU, Boltzmannstr 2, D-85748 Garching, Germany.;Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Behn, R.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Bencze, A.
    Bernardo, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Bernert, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bettini, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bilkova, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Bin, W.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Birkenmeier, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bizarro, J. P. S.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Blanchard, P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Blanken, T.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Bluteau, M.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Bobkov, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bogar, O.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Boehm, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Bolzonella, T.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Boncagni, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Botrugno, A.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bottereau, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bouquey, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bourdelle, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bremond, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Brezinsek, S.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Brida, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Brochard, F.
    Univ Lorraine, Inst Jean Lamour, F-54000 Nancy, France..
    Buchanan, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Bufferand, H.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Buratti, P.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cahyna, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Calabro, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Camenen, Y.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Caniello, R.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Cannas, B.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Canton, A.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cardinali, A.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Carnevale, D.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Carr, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Carralero, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Carvalho, P.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Casali, L.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Castaldo, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Castejon, F.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Castro, R.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Causa, F.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cavazzana, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Cavedon, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ceccuzzi, S.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cesario, R.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Challis, C. D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Chapman, I. T.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Chapman, S.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Chernyshova, M.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Choi, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Cianfarani, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Ciraolo, G.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Citrin, J.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Clairet, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Classen, I.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Coelho, R.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Coenen, J. W.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Colas, L.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Conway, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Corre, Y.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Costea, S.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Crisanti, F.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Cruz, N.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Cseh, G.
    Czarnecka, A.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    D'Arcangelo, O.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    De Angeli, M.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    De Masi, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    De Temmerman, G.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    De Tommasi, G.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Decker, J.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Delogu, R. S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Dendy, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Denner, P.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Di Troia, C.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Dimitrova, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    D'Inca, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Doric, V.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Douai, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Drenik, A.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Dudson, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Dunai, D.
    Dunne, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Duval, B. P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Easy, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Elmore, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Erdos, B.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Esposito, B.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fable, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Faitsch, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Fanni, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Fedorczak, N.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Felici, F.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Ferreira, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fevrier, O.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ficker, O.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Fietz, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Figini, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Figueiredo, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fil, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Fishpool, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fitzgerald, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Fontana, M.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Ford, O.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Frassinetti, L.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Fridstr, R.
    Frigione, D.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Fuchert, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Fuchs, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Palumbo, M. Furno
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Futatani, S.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain..
    Gabellieri, L.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Galazka, K.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Galdon-Quiroga, J.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Galeani, S.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Gallart, D.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain..
    Gallo, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Galperti, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.;CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Gao, Y.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Garavaglia, S.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Garcia, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Garcia-Carrasco, A.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Garcia-Lopez, J.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Garcia-Munoz, M.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Gardarein, J. -L
    Garzotti, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Gaspar, J.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Gauthier, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Geelen, P.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Geiger, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Ghendrih, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ghezzi, F.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Giacomelli, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Giannone, L.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Giovannozzi, E.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Giroud, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Gleason Gonzalez, C.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Gobbin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Goodman, T. P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Gorini, G.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Gospodarczyk, M.
    Univ Roma Tor Vergata, Via Politecn 1, I-00133 Rome, Italy..
    Granucci, G.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Gruber, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Gude, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Guimarais, L.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Guirlet, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Gunn, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hacek, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Hacquin, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Hall, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Ham, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Happel, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Harrison, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Harting, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hauer, V.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Havlickova, E.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hellsten, T.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Helou, W.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Henderson, S.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Hennequin, P.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Heyn, M.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Hnat, B.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Holzl, M.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Hogeweij, D.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Honore, C.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Hopf, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Horacek, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Hornung, G.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Horvath, L.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Huang, Z.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Huber, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Igitkhanov, J.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Igochine, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Imrisek, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Innocente, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Ionita-Schrittwieser, C.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Isliker, H.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Ivanova-Stanik, I.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Jacobsen, A. S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Jacquet, P.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Jakubowski, M.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Jardin, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Jaulmes, F.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Jenko, F.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Jensen, T.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Busk, O. Jeppe Miki
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Jessen, M.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Joffrin, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Jones, O.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Jonsson, T.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Kallenbach, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Kallinikos, N.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Kalvin, S.
    Kappatou, A.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Karhunen, J.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Karpushov, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Kasilov, S.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Kasprowicz, G.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Kendl, A.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Kernbichler, W.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Kim, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Kirk, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Kjer, S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Klimek, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Kocsis, G.
    Kogut, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Komm, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Korsholm, S. B.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Koslowski, H. R.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Koubiti, M.
    Aix Marseille Univ, CNRS, PIIM, F-13013 Marseille, France..
    Kovacic, J.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Kovarik, K.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic.;Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Krawczyk, N.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Krbec, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Krieger, K.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Krivska, A.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Kube, R.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Kudlacek, O.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Kurki-Suonio, T.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Labit, B.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Laggner, F. M.
    Tech Univ Wien, Inst Angew Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria..
    Laguardia, L.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Lahtinen, A.
    Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland..
    Lalousis, P.
    Fdn Res & Technol, Iraklion, NE, Greece..
    Lang, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lauber, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lazanyi, N.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Lazaros, A.
    Natl Tech Univ Athens, Athens, Greece..
    Le, H. B.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Lebschy, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Leddy, J.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Lefevre, L.
    Univ Grenoble Alpes, LCIS, F-26902 Valence, France..
    Lehnen, M.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Leipold, F.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Lessig, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Leyland, M.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Li, L.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Liang, Y.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lipschultz, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Liu, Y. Q.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Loarer, T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Loarte, A.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Loewenhoff, T.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Lomanowski, B.
    Univ Durham, Dept Phys, Durham DH1 3LE, England..
    Loschiavo, V. P.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Lunt, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Lupelli, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lux, H.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lyssoivan, A.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Madsen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Maget, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Maggi, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Maggiora, R.
    Politecn Torino, DET, Turin, Italy..
    Magnussen, M. L.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Mailloux, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Maljaars, B.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Malygin, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Mantica, P.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Mantsinen, M.
    Barcelona Supercomp Ctr, Jordi Girona 29, Barcelona 08034, Spain.;ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain..
    Maraschek, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Marchand, B.
    Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland..
    Marconato, N.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Marini, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Marinucci, M.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Markovic, T.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Marocco, D.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Marrelli, L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Martin, Y.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Solis, J. R. Martin
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Martitsch, A.
    Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria..
    Mastrostefano, S.
    Univ Cassino, DIEI, CREATE, ENEA, Via Di Biasio 43, I-03043 Cassino, FR, Italy.;Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Mattei, M.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Matthews, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Mavridis, M.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Mayoral, M. -L
    Mazon, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    McCarthy, P.
    Univ Coll Cork, Cork, Ireland..
    McAdams, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McArdle, G.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McClements, K.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McDermott, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    McMillan, B.
    Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England..
    Meisl, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Merle, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Meyer, O.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Milanesio, D.
    Politecn Torino, DET, Turin, Italy..
    Militello, F.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Miron, I. G.
    Natl Inst Laser Plasma & Radiat Phys, POB MG-36, Bucharest, Romania..
    Mitosinkova, K.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Mlynar, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Mlynek, A.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Molina, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Molina, P.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Monakhov, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Morales, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Moreau, D.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Morel, P.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Moret, J. -M
    Moro, A.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Moulton, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Mueller, H. W.
    Nabais, F.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Nardon, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Naulin, V.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nemes-Czopf, A.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Nespoli, F.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Neu, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Nielsen, A. H.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nielsen, S. K.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nikolaeva, V.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Nimb, S.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Nocente, M.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Nouailletas, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Nowak, S.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Oberkofler, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Oberparleiter, M.
    Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Ochoukov, R.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Odstrcil, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Olsen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Omotani, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    O'Mullane, M. G.
    Univ Strathclyde, Dept Phys, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland..
    Orain, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Osterman, N.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Paccagnella, R.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pamela, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Pangione, L.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Panjan, M.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Papp, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Paprok, R.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Parail, V.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Parra, I.
    Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England.;Culham Ctr Fusion Energy, Abingdon, Oxon, England..
    Pau, A.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Pautasso, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Pehkonen, S. -P
    Pereira, A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Cippo, E. Perelli
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Ridolfini, V. Pericoli
    Univ Napoli Parthenope, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Peterka, M.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Petersson, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Petrzilka, V.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Piovesan, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Piron, C.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Pironti, A.
    Univ Napoli Federico II, Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy..
    Pisano, F.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Pisokas, T.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Pitts, R.
    ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Ploumistakis, I.
    Fdn Res & Technol, Iraklion, NE, Greece..
    Plyusnin, V.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Pokol, G.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Poljak, D.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Poloskei, P.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Popovic, Z.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Por, G.
    Budapest Univ Technol & Econ, Inst Nucl Tech, POB 91, H-1521 Budapest, Hungary..
    Porte, L.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Potzel, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Predebon, I.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Preynas, M.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Primc, G.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Pucella, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Puiatti, M. E.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Putterich, T.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rack, M.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Ramogida, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Rapson, C.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rasmussen, J. Juul
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Rasmussen, J.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Ratta, G. A.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Ratynskaia, S.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Ravera, G.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Refy, D.
    Reich, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Reimerdes, H.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Reimold, F.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Reinke, M.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Reiser, D.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Resnik, M.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Reux, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Ripamonti, D.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Rittich, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Riva, G.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Rodriguez-Ramos, M.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Rohde, V.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Rosato, J.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Ryter, F.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Saarelma, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sabot, R.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Saint-Laurent, F.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Salewski, M.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Salmi, A.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Samaddar, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sanchis-Sanchez, L.
    Univ Seville, CS Fernando 4, Seville 41004, Spain..
    Santos, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Sauter, O.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Scannell, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Scheffer, M.
    Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Schneider, M.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;ITER Org Route Vinon, CS 90 046, F-13067 St Paul Les Durance, France..
    Schneider, B.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Schneider, P.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schneller, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schrittwieser, R.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Schubert, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Schweinzer, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Seidl, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Sertoli, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Sesnic, S.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Shabbir, A.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Shalpegin, A.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Shanahan, B.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Sharapov, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sheikh, U.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Sias, G.
    Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi, I-09123 Cagliari, Italy..
    Sieglin, B.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Silva, C.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Silva, A.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fuglister, M. Silva
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Simpson, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Snicker, A.
    Aalto Univ, Dept Appl Phys, POB 14100, FI-00076 Aalto, Finland..
    Sommariva, C.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Sozzi, C.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Spagnolo, S.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Spizzo, G.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Spolaore, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Stange, T.
    Teilinst Greifswald, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany..
    Pedersen, M. Stejner
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Stepanov, I.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Stober, J.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Strand, P.
    Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Susnjara, A.
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Suttrop, W.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Szepesi, T.
    Tal, B.
    Tala, T.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland. Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary..
    Tamain, P.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Tardini, G.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Tardocchi, M.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Teplukhina, A.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Terranova, D.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Testa, D.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Theiler, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Thornton, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Tolias, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Tophoj, L.
    Tech Univ Denmark, Dept Phys, Bldg 309, DK-2800 Lyngby, Denmark..
    Treutterer, W.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Trevisan, G. L.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Tripsky, M.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Tsironis, C.
    Natl Tech Univ Athens, Athens, Greece..
    Tsui, C.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Tudisco, O.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Uccello, A.
    CNR, IFP, Via R Cozzi 53, I-20125 Milan, Italy..
    Urban, J.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Valisa, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Vallejos, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Valovic, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Van den Brand, H.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Vanovac, B.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Varoutis, S.
    Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Vartanian, S.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Vega, J.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Verdoolaege, G.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Verhaegh, K.
    Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England..
    Vermare, L.
    Ecole Polytech, UMR7648, CNRS, Lab Phys Plasmas, F-91128 Palaiseau, France..
    Vianello, N.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy.;Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Vicente, J.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Viezzer, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Vignitchouk, L.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Vijvers, W. A. J.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.;FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Villone, F.
    Univ Cassino, DIEI, CREATE, ENEA, Via Di Biasio 43, I-03043 Cassino, FR, Italy..
    Viola, B.
    ENEA CR Frascati, UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Vlahos, L.
    Aristotle Univ Thessaloniki, Thessaloniki, Greece..
    Voitsekhovitch, I.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;EUROfus PMU, Boltzmannstr 2, D-85748 Garching, Germany..
    Vondracek, P.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Vu, N. M. T.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Wagner, D.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Walkden, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Wang, N.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany..
    Wauters, T.
    Ecole Royale Mil Renaissancelaan, Koninklijke Mil Sch, Plasma Phys Lab, 30 Ave Renaissance, B-1000 Brussels, Belgium..
    Weiland, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Weinzettl, V.
    AS CR, Inst Plasma Phys, Slovankou 1782-3, Prague 18200 8, Czech Republic..
    Westerhof, E.
    FOM Inst DIFFER Dutch Inst Fundamental Energy Res, Nieuwegein, Netherlands..
    Wiesenberger, M.
    Univ Innsbruck, Inst Ionen & Angew Phys, Tech Str 25, A-6020 Innsbruck, Austria..
    Willensdorfer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Wischmeier, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Wodniak, Iwona
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Wolfrum, E.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Yadykin, Dimitry
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zagorski, R.
    Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland..
    Zammuto, I.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Zanca, P.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Zaplotnik, R.
    Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Zestanakis, P.
    Natl Tech Univ Athens, Athens, Greece..
    Zhang, W.
    UG Ghent Univ, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium..
    Zoletnik, S.
    Zuin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102014Article in journal (Refereed)
    Abstract [en]

    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.

  • 232. Mlynar, Jan
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Current Research into Applications of Tomography for Fusion Diagnostics2019In: Journal of fusion energy, ISSN 0164-0313, E-ISSN 1572-9591, Vol. 38, no 3-4, p. 458-466Article in journal (Refereed)
    Abstract [en]

    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks.

  • 233.
    Monakhov, I.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    ICRH antenna &ITS&IT-matrix measurements and plasma coupling characterisation at JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 4, article id 046012Article in journal (Refereed)
    Abstract [en]

    The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (similar to 10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L.-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding 'global' antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.

  • 234. Moon, Sunwoo
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    First mirror test in JET for ITER: Complete overview after three ILW campaigns2019In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, p. 59-66Article in journal (Refereed)
    Abstract [en]

    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015-2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011-2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20-80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5 x 10(17) cm(-2), W is up to 4.3 x 10(17) cm(-2), while the content of Ni is the greatest in the outer divertor: 3.8 x 10(17) cm(-2). Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1 x 10(16) cm(-2). The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s(-1)) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred.

  • 235. Moser, L.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Investigation and plasma cleaning of first mirrors coated with relevant ITER contaminants: beryllium and tungsten2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 8, article id 086019Article in journal (Refereed)
    Abstract [en]

    In order to extend the investigation of the plasma cleaning of ITER first mirrors, a set of molybdenum mirrors was coated in a laboratory with ITER-relevant contaminants, namely beryllium and tungsten. Different coating techniques as well as several contaminant compositions were used to ensure a large variety of films to clean, completing a previous study conducted on mirrors exposed in the JET ITER-like wall (tokamak deposits) [ 1]. Due to the toxicity of beryllium, the samples were treated in a vacuum chamber specially built for this purpose. The cleaning was performed using capacitively coupled RF plasma and evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis. The removal of all types of contaminants was achieved by using different plasma compositions (argon, helium and mixtures of the two) with various ion energies (from 200-600 eV) and in some cases the mirror's reflectivity was restored towards initial values. Pure helium discharges were capable of removing mixed beryllium/tungsten layers and oxidized molybdenum. In addition, no significant increase in the diffuse reflectivity of the mirrors was observed for the helium cleaning, though this was the case for some samples cleaned with argon. Helium is therefore appropriate for cleaning all mirrors in ITER leading to a possible cleaning regime where the entire vessel is filled with He and all mirrors are cleaned simultaneously without damaging their surfaces.

  • 236. Moulton, D.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Neutral pathways and heat flux widths in vertical- and horizontal-target EDGE2D-EIRENE simulations of JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 9, article id 096029Article in journal (Refereed)
    Abstract [en]

    This paper further analyses the EDGE2D-EIRENE simulations presented by Chankin et al (2017 Nucl. Mater. Energy 12 273), of L-mode JET plasmas in vertical-vertical (VV) and Vertical-horizontal (VH) divertor configurations. As expected, the simulated outer divertor ionisation source peaks near the separatrix in VV and radially further out in VH. We identify the reflections of recycled neutrals from lower divertor tiles as the primary mechanism by which ionisation is concentrated on the outer divertor separatrix in the VV configuration. These lower tile reflection pathways (of neutrals from the outer divertor, and to an even greater extent from the inner divertor) dominate the outer divertor separatrix ionisation. In contrast, the lower-tile-reflection pathways are much weaker in the VII simulation and its outer divertor ionisation is dominated by neutrals which do not reflect from any surfaces. Interestingly, these differences in neutral pathways give rise to strong differences in the heat flux density width lambda(q) at the outer divertor entrance: lambda(q) = 3.2 mm in VH compared to lambda(q) = 11.8 mm in VV. In VH, a narrow channel exists in the near scrape-off-layer (SOL) where the convected heat flux, driven by strong E-r x B flow and thermoelectric current, dominates over the conducted heat flux. The width of this channel sets lambda(q) and is determined by the radial distance between the separatrix and the ionisation peak in the outer divertor.

  • 237. Murari, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Application of transfer entropy to causality detection and synchronization experiments in tokamaks2016In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 2, article id 026006Article in journal (Refereed)
    Abstract [en]

    Determination of causal-effect relationships can be a difficult task even in the analysis of time series. This is particularly true in the case of complex, nonlinear systems affected by significant levels of noise. Causality can be modelled as a flow of information between systems, allowing to better predict the behaviour of a phenomenon on the basis of the knowledge of the one causing it. Therefore, information theoretic tools, such as the transfer entropy, have been used in various disciplines to quantify the causal relationship between events. In this paper, Transfer Entropy is applied to determining the information relationship between various phenomena in Tokamaks. The proposed approach provides unique insight about information causality in difficult situations, such as the link between sawteeth and ELMs and ELM pacing experiments. The application to the determination of disruption causes, and therefore to the classification of disruption types, looks also very promising. The obtained results indicate that the proposed method can provide a quantitative and statistically sound criterion to address the causal-effect relationships in various difficult and ambiguous situations if the data is of sufficient quality.

  • 238. Murari, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Determining the prediction limits of models and classifiers with applications for disruption prediction in JET2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 1, article id 016024Article in journal (Refereed)
    Abstract [en]

    Understanding the many aspects of tokamak physics requires the development of quite sophisticated models. Moreover, in the operation of the devices, prediction of the future evolution of discharges can be of crucial importance, particularly in the case of the prediction of disruptions, which can cause serious damage to various parts of the machine. The determination of the limits of predictability is therefore an important issue for modelling, classifying and forecasting. In all these cases, once a certain level of performance has been reached, the question typically arises as to whether all the information available in the data has been exploited, or whether there are still margins for improvement of the tools being developed. In this paper, a theoretical information approach is proposed to address this issue. The excellent properties of the developed indicator, called the prediction factor (PF), have been proved with the help of a series of numerical tests. Its application to some typical behaviour relating to macroscopic instabilities in tokamaks has shown very positive results. The prediction factor has also been used to assess the performance of disruption predictors running in real time in the JET system, including the one systematically deployed in the feedback loop for mitigation purposes. The main conclusion is that the most advanced predictors basically exploit all the information contained in the locked mode signal on which they are based. Therefore, qualitative improvements in disruption prediction performance in JET would need the processing of additional signals, probably profiles.

  • 239. Murari, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    How to assess the efficiency of synchronization experiments in tokamaks2016In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 7, article id 076008Article in journal (Refereed)
    Abstract [en]

    Control of instabilities such as ELMs and sawteeth is considered an important ingredient in the development of reactor-relevant scenarios. Various forms of ELM pacing have been tried in the past to influence their behavior using external perturbations. One of the main problems with these synchronization experiments resides in the fact that ELMs are periodic or quasi-periodic in nature. Therefore, after any pulsed perturbation, if one waits long enough, an ELM is always bound to occur. To evaluate the effectiveness of ELM pacing techniques, it is crucial to determine an appropriate interval over which they can have a real influence and an effective triggering capability. In this paper, three independent statistical methods are described to address this issue: Granger causality, transfer entropy and recurrence plots. The obtained results for JET with the ITER-like wall (ILW) indicate that the proposed techniques agree very well and provide much better estimates than the traditional heuristic criteria reported in the literature. Moreover, their combined use allows for the improvement of the time resolution of the assessment and determination of the efficiency of the pellet triggering in different phases of the same discharge. Therefore, the developed methods can be used to provide a quantitative and statistically robust estimate of the triggering efficiency of ELM pacing under realistic experimental conditions.

  • 240.
    Murari, A.
    et al.
    Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR ,ENEA, INFN, Padua, Italy.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    Adaptive predictors based on probabilistic SVM for real time disruption mitigation on JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 5, article id 056002Article in journal (Refereed)
    Abstract [en]

    Detecting disruptions with sufficient anticipation time is essential to undertake any form of remedial strategy, mitigation or avoidance. Traditional predictors based on machine learning techniques can be very performing, if properly optimised, but do not provide a natural estimate of the quality of their outputs and they typically age very quickly. In this paper a new set of tools, based on probabilistic extensions of support vector machines (SVM), are introduced and applied for the first time to JET data. The probabilistic output constitutes a natural qualification of the prediction quality and provides additional flexibility. An adaptive training strategy 'from scratch' has also been devised, which allows preserving the performance even when the experimental conditions change significantly. Large JET databases of disruptions, covering entire campaigns and thousands of discharges, have been analysed, both for the case of the graphite and the ITER Like Wall. Performance significantly better than any previous predictor using adaptive training has been achieved, satisfying even the requirements of the next generation of devices. The adaptive approach to the training has also provided unique information about the evolution of the operational space. The fact that the developed tools give the probability of disruption improves the interpretability of the results, provides an estimate of the predictor quality and gives new insights into the physics. Moreover, the probabilistic treatment permits to insert more easily these classifiers into general decision support and control systems.

  • 241. Murari, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    On efficiency and interpretation of sawteeth pacing with on-axis ICRH modulation in JET2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 12, article id 126057Article in journal (Refereed)
    Abstract [en]

    In metallic machines ICRH heating is playing an increasingly important role. One of its most recent applications on the Joint Europena Torus (JET) is sawtooth control by ICRH modulation, for avoiding triggering dangerous neo-classical tearing modes (NTMs) and counteracting impurity accumulation. Some of the main difficulties of these experiments are the assessment of the synchronization efficiency and the understanding of the main physical mechanisms at play. In this paper, three independent classes of statistical indicators are introduced to address these issues: Recurrence Plots, Convergent Cross Mapping and Transfer Entropy. The application to JET experiments with the ILW shows that the proposed indicators agree quite well among themselves and provide sound estimates of the efficiency of the synchronisation scheme investigated. They also support, with a shot to shot basis analysis and an estimate of the uncertainties, the interpretation that the fast ions play a fundamental role in the stabilization of the sawteeth, in both L and H mode. Proposals for experiments to be carried out in the future to consolidate the interpretation of the results are discussed.

  • 242. Murari, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Primetzhofer, Daniel
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sahlberg, Arne
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I
    Adaptive learning for disruption prediction in non-stationary conditions2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 8, article id 086037Article in journal (Refereed)
    Abstract [en]

    For many years, machine learning tools have proved to be very powerful disruption predictors in tokamaks. On the other hand, the vast majority of the techniques deployed assume that the input data is independent and is sampled from exactly the same probability distribution for the training set, the test set and the final real time deployment. This hypothesis is certainly not verified in practice, since the experimental programmes evolve quite rapidly, resulting typically in ageing of the predictors and consequent suboptimal performance. This paper describes various adaptive training strategies that have been tested to maintain the performance of disruption predictors in non-stationary conditions. The proposed approaches have been implemented using new ensembles of classifiers, explicitly developed for the present application. The improvements in performance are unquestionable and, given the difficulties encountered so far in translating predictors from one device to another, the proposed adaptive methods from scratch can therefore be considered a useful option in the arsenal of alternatives envisaged for the next generation of devices, particularly at the very beginning of their operation.

  • 243. Murari, Andrea
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals2018In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300, Vol. 20, no 9, article id 627Article in journal (Refereed)
    Abstract [en]

    Understanding the details of the correlation between time series is an essential step on the route to assessing the causal relation between systems. Traditional statistical indicators, such as the Pearson correlation coefficient and the mutual information, have some significant limitations. More recently, transfer entropy has been proposed as a powerful tool to understand the flow of information between signals. In this paper, the comparative advantages of transfer entropy, for determining the time horizon of causal influence, are illustrated with the help of synthetic data. The technique has been specifically revised for the analysis of synchronization experiments. The investigation of experimental data from thermonuclear plasma diagnostics proves the potential and limitations of the developed approach.

  • 244. Murari, Andrea
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Detection of Causal Relations in Time Series Affected by Noise in Tokamaks Using Geodesic Distance on Gaussian Manifolds2017In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300, Vol. 19, no 10, article id 569Article in journal (Refereed)
    Abstract [en]

    Modern experiments in Magnetic Confinement Nuclear Fusion can produce Gigabytes of data, mainly in form of time series. The acquired signals, composing massive databases, are typically affected by significant levels of noise. The interpretation of the time series can therefore become quite involved, particularly when tenuous causal relations have to be investigated. In the last years, synchronization experiments, to control potentially dangerous instabilities, have become a subject of intensive research. Their interpretation requires quite delicate causality analysis. In this paper, the approach of Information Geometry is applied to the problem of assessing the effectiveness of synchronization experiments on JET (Joint European Torus). In particular, the use of the Geodesic Distance on Gaussian Manifolds is shown to improve the results of advanced techniques such as Recurrent Plots and Complex Networks, when the noise level is not negligible. In cases affected by particularly high levels of noise, compromising the traditional treatments, the use of the Geodesic Distance on Gaussian Manifolds allows deriving quite encouraging results. In addition to consolidating conclusions previously quite uncertain, it has been demonstrated that the proposed approach permit to successfully analyze signals of discharges which were otherwise unusable, therefore salvaging the interpretation of those experiments.

  • 245. Muraro, A.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    First neutron spectroscopy measurements with a pixelated diamond detector at JET2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 11, article id 11D833Article in journal (Refereed)
    Abstract [en]

    A prototype Single crystal Diamond Detector (SDD) was installed at the Joint European Torus (JET) in 2013 along an oblique line of sight and demonstrated the possibility to carry out neutron spectroscopy measurements with good energy resolution and detector stability in discharges heated by neutral beam injection and radio-frequency waves. Starting from these positive results, within the Vertical Neutron Spectrometer project of the Joint European Torus, we have developed a pixelated instrument consisting of a matrix of 12 independent SDDs, called the Diamond Vertical Neutron Spectrometer (DVNS), which boosts the detection efficiency of a single SDD by an order of magnitude. In this paper we describe the main features of the DVNS, including the detector design, energy resolution, and data acquisition system for on-line processing. Preliminary spectroscopy measurements of 2.5 MeV neutrons from the present deuterium plasma at JET are finally presented.

  • 246.
    Myers, C. E.
    et al.
    Princeton Plasma Phys Lab, Princeton, NJ USA.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Natl Ctr Nucl Res, Otwock, Poland.
    A multi-machine scaling of halo current rotation2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 1, article id 016050Article in journal (Refereed)
    Abstract [en]

    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machine-specific minimum current quench time, tau(CQ); (2) the halo current rotation duration, trot; and (3) the average halo current rotation frequency, < f(h)>. These data reveal that the normalized rotation duration, t(rot)/tau(CQ), and the average rotation velocity, < v(h)>, are surprisingly consistent from machine to machine. Furthermore, comparisons between carbon and metal wall machines show that metal walls have minimal impact on the behavior of rotating halo currents. Finally, upon projecting to ITER, the empirical scalings indicate that substantial halo current rotation above < f(h)> = 20 Hz is to be expected. More importantly, depending on the projected value of tau(CQ) in ITER, substantial rotation could also occur in the resonant frequency range of 6-20 Hz. As such, the possibility of damaging halo current rotation during unmitigated disruptions in ITER cannot be ruled out.

  • 247. Nabais, F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, F.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, N.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, C.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, M.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    TAE stability calculations compared to TAE antenna results in JET2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 8, article id 082007Article in journal (Refereed)
    Abstract [en]

    The excitation of modes in the toroidal Alfven eigenmodes (TAE) gap by an external antenna can be modelled by a driven damped harmonic oscillator. By performing a frequency scan it is possible to determine the damping rate of the mode through the quality factor. This method has been employed in recent Joint European Torus (JET) experiments dedicated to scenario development for the observation of alpha-driven instabilities in JET DT plasmas (i.e. plasmas composed by Deuterium and Tritium). However, the toroidal mode number n of the mode for which the measurements were performed could not be determined experimentally. The value of the damping obtained through experimental measurements for a selected time slice is then compared with those obtained from calculations performed by numerical codes for different modes with frequencies close to the experimental frequency of the antenna. This paper describes the modelling method and presents the numerical simulations carried out using a suite of codes to calculate the damping of TAE, which are compared with the value measured experimentally. The radial structures of these modes are first calculated with the ideal magnetohydrodynamic (MHD) code MISHKA. For each of these modes, the damping on thermal ions and thermal electrons and the contribution to the mode growth rate resulting from the resonant interaction with the ion cyclotron resonance heating (ICRH) accelerated ion population are calculated using the drift-kinetic code CASTOR-K. The radiative damping is calculated by using a complex resistivity in the resistive MHD code CASTOR code and the continuum damping is estimated using also the CASTOR code through the standard method of making the real part of the resistivity tend to zero. It was found the radiative damping is largely dominant over all other effects, except for the n = 3 TAE. The overall damping calculated numerically is consistent with the damping measured experimentally.

  • 248. Nabais, F.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Energetic ion losses 'channeling' mechanism and strategy for mitigation2019In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, no 8, article id 084008Article in journal (Refereed)
    Abstract [en]

    Results from two different sets of JET experiments are presented. In experiments in which toroidicity-induced Alfven eigenmodes (TAEs) localized at different radial locations had the same frequencies and toroidal mode numbers, the occurrence of enhanced losses after the excitation of TAEs in the core of the plasma was observed. On the contrary, enhanced losses were not observed if the TAEs localized at different radial locations had different frequencies and toroidal mode numbers. Numerical modeling indicates that, in the first set of experiments, the enhanced losses were caused by a combined effect of the TAEs localized at different radial locations. The TAEs localized in the plasma core transported energetic ions from the core to outer regions of the plasma. Then, the TAEs localized in outer regions of the plasma interacted with these ions just transported by the core-localized TAEs causing a further radial displacement of the ions to the plasma edge. This process eventually ends up causing the loss of the resonant ions. In the second set of experiments, it was found that TAEs localized in the plasma core and in outer regions did not interact with the same ions and so no enhanced losses were measured. Sheared profiles of the safety factor combined with flat mass density profiles lead to larger differences on the frequencies of the TAEs localized at different radial locations, eventually avoiding loss of energetic ions through the described mechanism.

  • 249. Nardon, E.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 1, article id 016027Article in journal (Refereed)
    Abstract [en]

    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013).

  • 250. Nardon, E.
    et al.
    Andersson Sundén, Erik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Asp, E.
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Binda, Federico
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Cecconello, Marco
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Conroy, Sean
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Dzysiuk, Nataliia
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Ericsson, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Eriksson, Jacob
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hellesen, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Hjalmarsson, Anders
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Possnert, Göran
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Sjöstrand, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Skiba, Mateusz
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Weiszflog, Matthias
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
    Zychor, I.
    Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 1, article id 014006Article in journal (Refereed)
    Abstract [en]

    3D non-linear MHD simulations of a D-2 massive gas injection (MGI) triggered disruption in JET with the JOREK code provide results which are qualitatively consistent with experimental observations and shed light on the physics at play. In particular, it is observed that the gas destabilizes a large m/n = 2/1 tearing mode, with the island O-point coinciding with the gas deposition region, by enhancing the plasma resistivity via cooling. When the 2/1 island gets so large that its inner side reaches the q = 3/2 surface, a 3/2 tearing mode grows. Simulations suggest that this is due to a steepening of the current profile right inside q = 3/2. Magnetic field stochastization over a large fraction of the minor radius as well as the growth of higher n modes ensue rapidly, leading to the thermal quench (TQ). The role of the 1/1 internal kink mode is discussed. An I-p spike at the TQ is obtained in the simulations but with a smaller amplitude than in the experiment. Possible reasons are discussed.

2345678 201 - 250 of 390
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf