Change search
Refine search result
2345678 201 - 250 of 8921
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Sahlin, Fredrik
    Larsson, Roland
    An Abbott curve based rough surface contact mechanics approach2005In: Proceedings of the World Tribology Congress III - 2005: presented at ..., September 12 - 16, 2005, Washington, DC, New York: American Society of Mechanical Engineers , 2005, Vol. Paper no 64038, p. 397-398Conference paper (Refereed)
    Abstract [en]

    In this way all the height information of the surface profile is preserved and not only a few parameters, like Ra, Rq, Rz, Rsk, etc. The aim of this work is to investigate how classes of surfaces based on a single Abbott curve perform in terms of contact mechanical parameters like the real area of contact. The result shows that surfaces taken from a class of random surfaces generated from a specific Abbott curve behaves similar in a contact mechanics simulation. That is, the distribution of for example the real area of contact within such a class is compact, having a small deviation from its mean.This implies that it is possible to simulate classes of surfaces based on Abbott curves and to use the results to predict contact mechanical properties of real surface topographies.

  • 202.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Sahlin, Fredrik
    Larsson, Roland
    Glavatskih, Sergei
    On the dry elasto-plastic contact of nominally flat surfaces2004In: Proceedings of the 11th Nordic symposium on tribology: NORDTRIB 2004 : Tromsø, Harstad, Hurtigruten, [Bodø], Norway, June [1 - 5], 2004, 2004, p. 753-762Conference paper (Refereed)
  • 203.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Sahlin, Fredrik
    Larsson, Roland
    Glavatskikh, Sergei
    On the dry elasto-plastic contact of nominally flat surfaces2007In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 40, no 4, p. 574-579Article in journal (Refereed)
    Abstract [en]

    A model to be used for numerical simulation of the contact of linear elastic perfectly plastic rough surfaces was developed. Energy dissipation due to plastic deformation is taken into account. Spectral theory and an FFT-techique are used to facilitate the numerical solution process. Results of simulations using four two-dimensional profiles with different topographies in contact with a rigid plane for a number loads are reported. From the results it is clear that the real area of contact (Ar) changes almost linearly with load and is only slightly affected by the difference in topography. A plasticity index is defined as the ratio of plastically deformed area (Ap) and Ar. Plastic deformation occurs even at low loads and there is a significant difference in plasticity index between the surface profiles considered. An investigation on how the spectral content of the surface profile influences the results presented is also performed. This is to ensure that the metrological limitations of the optical profiler used to measure the surfaces do not have a significant influence. It is concluded that the highest frequencies of the measured profile have a negligible influence on the real area of contact.

  • 204. Almqvist, Andreas
    et al.
    Taylor, R.I.
    Shell Global Solutions, UK.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Simulation of piston ring: cylinder liner lubrication considering layered fluid films2009In: Tribologia : Finnish Journal of Tribology, ISSN 0780-2285, Vol. 28, no 3-4, p. 44-58Article in journal (Refereed)
    Abstract [en]

    During the operation of hydrodynamically lubricated devices a fully formulated lubricant has the ability to form layers at the surfaces. A friction modifier's task is to adjust the interaction between lubricant and the surface so that friction is lowered. An antiwear additive creates a protective layer on the surface and this definitely influence the performance of the lubricated device. To gain fundamental understanding, models that address the modified liquid - solid interaction due to the formation of layers, but also models that may be used to study the effects of layers already formed on the contacting surfaces are required. In this paper, two non-Newtonian lubricant rheology models that may be used to simulate reacted layers resembling those created by lubricant additives are adopted for the simulation of the piston ring - cylinder liner lubrication problem. The possibility of layer to layer interaction, which is likely to occur in the convex conjunction between the ring and the liner, is considered and this extends the models found in the literature. The effects induced by this type of layering are studied by using a modified Reynolds' equation where the coefficients have been corrected with factors that accounts for the layer properties. This enables, effectively, studies of layers resembling those created by lubricant additives during the operation of the lubricated conjunction between a piston ring and a cylinder liner.

  • 205.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Taylor, Robert Ian
    Shell Global Solutions, UK.
    Larsson, Roland
    Simulation of piston ring: cylinder liner lubrication considering layered fluid films2008In: Proceedings of the 35th Leeds-Lyon Symposium on Tribology, 2008, 2008Conference paper (Other academic)
    Abstract [en]

    During the operation of hydrodynamically lubricated devices a fully formulated lubricant has the ability to form layers at the surfaces. Such layers alter the interaction between the lubricant and the surface that definitely will influence the performance of the lubricated device.To gain fundamental understanding, models that address the formation of layers and the altered liquid – solid interaction, but also models that may be used to study the effects of existing layers are required. In this paper, non-Newtonian lubricant rheology models that may be used to resemble layers of variable shear strength – wall-slip specifically – are considered for the simulation of the piston ring - cylinder liner lubrication problem.The effects induced by this type of layering are studied by using a modified Reynold’s equation where the coefficients have been corrected with factors that accounts for layer properties. This enables, effectively, studies of immobile layers as well as wall-slip in the lubricated conjunction between a piston ring and a cylinder liner.

  • 206.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    A new concept in cavitation modelling2013In: Tribo Lyon 2013: book of abstracts : a joint event of WTC 2013, Lyon, 2013, p. 170-Conference paper (Refereed)
  • 207.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization applied in rough surface hydrodynamic lubrication2007In: Svenska Mekanikdagar 2007: Program och abstracts / [ed] Niklas Davidsson; Elianne Wassvik, Luleå: Luleå tekniska universitet, 2007, p. 31-Conference paper (Other academic)
  • 208.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Homogenization of the Reynolds equation2013In: Encyclopedia of Tribology, Berlin: Springer-Verlag New York Inc. , 2013, p. 1685-1690Chapter in book (Refereed)
  • 209.
    Almqvist, Andreas
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Wall, Peter
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science.
    Modelling cavitation in (elasto)hydrodynamic lubrication2016In: Advances in tribology / [ed] Pranav H. Darji, Croatia: INTECH, 2016, p. 198-213Chapter in book (Refereed)
    Abstract [en]

    In this chapter we will present a derivation of a mathematical model describing how cavitation influences the pressure distribution in a thin lubricant film between two moving surfaces. The main idea in the derivation is to first describe the influence of cavitation on the mass flow and thereafter using a conservation law for the mass. This leads to a nonlinear system with two complementary variables: one is the pressure distribution and the other is related to the density, i.e. a nonlinear complementarity problem (NLCP). The proposed approach is used to derive a mass conserving cavitation model considering that density, viscosity and film thickness of the lubricant depend on the pressure. To demonstrate the applicability and evaluate the proposed model and the suggested numerical implementation, a few model problems are analysed and presented.

  • 210.
    Almqvist, Nils
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Fractal analysis of scanning probe microscopy images1996In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 355, no 1-3, p. 221-228Article in journal (Refereed)
    Abstract [en]

    The accuracy and precision of several algorithms, including newly developed, for calculating the fractal dimension from scanning probe microscopy images of material surfaces are investigated. The algorithms are based on the area-perimeter method, a variance method or versions of the structure function method. The latter two methods show good correspondence to computer simulated images, with known fractal dimensions, and have successfully been applied also on real images. The results show that these two methods give reliable fractal dimensions and are well suited to describe surface roughness quantitatively.

  • 211.
    Almqvist, Nils
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Scanning probe microscopy: Applications1994Licentiate thesis, comprehensive summary (Other academic)
  • 212.
    Almqvist, Nils
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Studies of plasma-facing materials and macromolecules using scanning probe microscopy1995Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main topic of this thesis is experimental analysis of material surfaces using scanning probe microscopies. These microscopes are used for characterization through high-resolution topographical imaging, but also for controlled modification of surfaces and molecules. The surface characterization includes evaluation and development of fractal methods for surface roughness determination. The term modification is used for manipulating the structures on a microscale by scraping them with a tiny tip. The major application of this technique in the present work is the analysis of effects induced by plasma-surface interactions. Such studies are fundamental in the understanding of erosion and deposition processes on the first wall in controlled fusion devices. In this work, scanning probe microscopes were for the first time used for studying such plasma-facing materials. Both the surface structure and composition have to be known in order to evaluate new wall-materials for fusion reactors. The materials studied here are graphites, SiC/Al coatings, graphite-silicon mixtures and various silicon carbide based composites. They were all exposed to plasmas, either to lowenergy deuterium plasmas and ions in laboratory experiments, or to the plasma in a socalled tokamak. The results show the usefulness of these high-resolution microscopes in the study of plasma-surface interaction. Several other surface sensitive techniques were also applied, at the home laboratories of our collaborators, the most important ones being Rutherford backscattering spectroscopy and nuclear reaction analysis. The scanning probe microscopy in combination with the ion-beam analysis made it possible to trace fine structural features on the surfaces and to measure the surface roughness. The main results are: (i) the detection of the initial stages of bubble/blister formation on CSi mixtures, SiC/AI coatings and graphites; (ii) the morphological changes and the physical properties of the silicon carbide composites; (iii) the distinction of radiation damages on different phases of multicomponent composites; (iv) the estimation of layer thickness with scanning probe microscopy; (v) the determination of the structure of codeposited layers formed during exposure in a tokamak; (vi) the uptake of deuterium by the materials. The atomic force microscope has also been used to study the human protein spectrin, and we managed to image free spectrins with molecular resolution in an almost natural environment. The elongated spectrin macromolecule was found to be 100 rim long and 5 nm broad. Indications of a substructure were observed. The force between the sensor tip and the molecules was crucial, both for sample movement, manipulation and image resolution. Therefore, the instrument was rebuilt to operate with so called tapping-mode in liquid. Preliminary results with this method on spectrin are presented.

  • 213.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Bhatia, R
    Neuroscience Research Institute, University of California, Santa Barbara.
    Primbs, G
    Neuroscience Research Institute, University of California, Santa Barbara.
    Desai, N
    NutraSweet Company, Chicago.
    Banerjee, S
    Department of Chemical Engineering, University of California, Santa Barbara.
    Lal, R
    Neuroscience Research Institute, University of California, Santa Barbara.
    Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties2004In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 86, no 3, p. 1753-1762Article in journal (Refereed)
    Abstract [en]

    Cell surface macromolecules such as receptors and ion channels serve as the interface link between the cytoplasm and the extracellular region. Their density, distribution, and clustering are key spatial features influencing effective and proper physical and biochemical cellular responses to many regulatory signals. In this study, the effect of plasma-membrane receptor clustering on local cell mechanics was obtained from maps of interaction forces between antibody-conjugated atomic force microscope tips and a specific receptor, a vascular endothelial growth factor (VEGF) receptor. The technique allows simultaneous measurement of the real-time motion of specific macromolecules and their effect on local rheological properties like elasticity. The clustering was stimulated by online additions of VEGF, or antibody against VEGF receptors. VEGF receptors are found to concentrate toward the cell boundaries and cluster rapidly after the online additions commence. Elasticity of regions under the clusters is found to change remarkably, with order-of-magnitude stiffness reductions and fluidity increases. The local stiffness reductions are nearly proportional to. receptor density and, being concentrated near the cell edges, provide a mechanism for cell growth and angiogenesis.

  • 214.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Delamo, Y
    Neuroscience Research Institute, University of California.
    Smith, BL
    Thomson, NH
    Laboratoire d'Océanographie Biologique (LOB).
    Bartholdson, A
    Department of Physics and Astronomy, University of Leeds.
    Lal, R
    Marine Science Institute, University of California.
    Brzezinski, M
    Neuroscience Research Institute, University of California.
    Hansma, PK
    Luleå tekniska universitet.
    Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy2001In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 202, no 3, p. 518-532Article in journal (Refereed)
    Abstract [en]

    The mechanisms behind natural nanofabrication of highly structured silicas are increasingly being investigated. We have explored the use of a standard Nanoscope III Multimode atomic force microscope (AFM) to study the silica shell of diatoms. The delicate structures of the shell surface of the diatom Navicula pelliculosa (Breb.) Hilse were imaged and the shell's micromechanical properties were measured semi-quantitatively with a resolution down to approximately 10 nm. The technique to measure elasticity and hardness with the AFM was demonstrated to be useable even on these hard glass-like surfaces, Different experimental configurations and evaluation methods were tested, They gave a consistent result of the shell micromechanical properties, The first results showed that the diatom shell's overall hardness and elasticity was similar to that of known silicas. However, regions with different mechanical proper ties were distinguished. The elastic modulus varied from 7 to 20 GPa, from 20 to 100 GPa and from 30 to hundreds of GPa depending on the location. In general, the hardness measurements showed similar spatial differences, The hardness values ranged from 1 to 12 GPa but one specific part of the shell was even harder. Hence, certain localized regions of the shell were significantly harder or more elastic. These regions coincide with known characteristic features and mechanisms appearing at the different stages of the shell's growth. These results show that this method serves as a complementary tool in the study of silica biomineralization, and can detect eventual crystalline phases.

  • 215.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Fredriksson, Sverker
    Backman, Lars
    Imaging human erythrocyte spectrin with atomic force microscopy1994In: Micron, ISSN 0968-4328, E-ISSN 1878-4291, Vol. 25, no 3, p. 227-232Article in journal (Refereed)
    Abstract [en]

    Isolated spectrin covalently attached to a surface in a liquid environment as well as dried on mica has been studied with a contact-mode atomic force microscope. Both pyramidal and conical-type cantilever tip facets were used in the AFM. Our images show structures and give dimensions that correlate well with previous structural studies using transmission electron microscopy.

  • 216.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Fredriksson, Sverker
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, Marek
    Royal Institute of Technology, Physics Department, S-10405 Stockholm, Sweden.
    Emmoth, Birger
    Royal Institute of Technology, Physics Department, S-10405 Stockholm, Sweden.
    SFM and STM topographic studies of carbon-based surfaces exposed to deuterium plasma1994In: Book of abstracts: Microprobe Symposium, Vadstena, April 25-26, 1994, 1994Conference paper (Refereed)
  • 217.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Quist, Arjan P
    Mälardalen University, Department of Chemical Engineering, Box 325 SE-63105 Eskilstuna, Sweden.
    Lal, Ratnesh
    University of California, Neuroscience Research Institute, Santa Barbara, CA 93106, USA.
    Elastic properties of living cells studied by multimodal atomic force microscopy2000In: Abstract book Nordic-Baltic SPM Workshop, 2000: abstract #1, 2000Conference paper (Refereed)
  • 218.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, M.
    Franconi, E.
    Surface characterization of SiC composites exposed to deuterium ions, using atomic force microscopy1995In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 201, no 1-2, p. 277-285Article in journal (Refereed)
    Abstract [en]

    We study the influence of deuterium plasma on the surface structure of SiC based composites. The substrates are silicon carbides doped with titanium diboride, aluminium nitride or graphite. A number of surface sensitive techniques are used to characterize the substrates, before and after exposure to low-energy deuterium ions, the main method being atomic force microscopy. The microscope reveals distinct morphological changes on the irradiated samples. The density and surface area of the samples probably influence the content of deuterium in the surfaces. However, this study shows that the amount of graphite aggregated on the surfaces is of crucial importance for the uptake of deuterium.

  • 219.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, M.
    Physics Department - Frescati, Royal Institute of Technology, Association EURATOM-NFR.
    Fredriksson, Sverker
    Emmoth, B.
    Physics Department - Frescati, Royal Institute of Technology, Association EURATOM-NFR.
    Wienhold, P.
    Institute of Plasma Physics, Forschungszentrum Jülich, Association EURATOM-KFA.
    Ilyinsky, L.
    Institute of Electrical Engineering, St. Petersburg.
    AFM and STM characterization of surfaces exposed to high flux deuterium plasma1995In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 220-222, no 1-3, p. 917-921Article in journal (Refereed)
    Abstract [en]

    This paper reports the results of scanning tunneling (STM) and atomic force microscopy (AFM) studies of D+ irradiated graphite and graphite-silicon mixtures. The microscopes were used for studying surface topography and for measuring the surface roughness. The substrates were exposed at various temperatures (60 and 700°C) to different doses of deuterium ions in simulators of plasma - surface interactions and in the TEXTOR tokamak. Also nuclear reaction analysis (NRA) and Rutherford backscattering spectroscopy were applied for the qualitative and quantitative determination of surface composition. The initial stages of radiation damage, nanometer-sized bubbles/blisters, were found in plasma-eroded surfaces. These structures only appeared in the graphite phase on the multicomponent material. The microroughness of the surfaces was measured. We also used the AFM for probing the thickness of the plasma-modified layers. The results correlate with the presence of deuterium measured by NRA depth-profiling. Moreover, the AFM reveals the co-deposited layers formed on surfaces facing the tokamak plasma. The appearance of these layers is clearly correlated to the amount of co-deposited atoms.

  • 220.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, M.
    Nannetti, C.A.
    Franconi, E.
    Fredriksson, Sverker
    Emmoth, B.
    Scanning probe microscopy and thermo-mechanical characterization of silicon carbide composites1995In: Fourth Euro-Ceramics: the proceedings of the Fourth European Ceramic Society Conference / [ed] S. Meriani; V. Sergo, Gruppo Ed. Faenza Ed. , 1995, Vol. 3, p. 361-368Conference paper (Refereed)
    Abstract [en]

    series of SiC-based composites was obtained by sintering. Since such materials are considered for fusion applications, their thermal shock resistance and behaviour under deuterium irradiation are of primary interest. Extensive bulk and surface characterisation of pure and doped (AlN, TiB2, graphite) silicon carbides treated by a deuterium plasma was carried out. The change in surface structure following irradiation is addressed, and major factors influencing deuterium retention are discussed.

  • 221.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Rubel, M.
    Royal Institute of Technology, Physics Department-Frescati, Association EURATOM-NFR.
    Wienhold, P.
    Institute of Plasma Physics, Forschungszentrum Jülich, Association EURATOM-KFA.
    Fredriksson, Sverker
    Roughness determination of plasma-modified surface layers with atomic force microscopy1995In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 270, no 1-2, p. 426-430Article in journal (Refereed)
    Abstract [en]

    Graphite surfaces exposed to the deuterium plasma in the TEXTOR tokamak were characterized in detail by means of scanning probe microscopy, ion beam analysis and colorimetry methods. The aim is to study the composition and structure of thin layer deposits formed on surfaces subjected to the tokamak plasma. The surface roughness was measured and parametrized in terms of fractal dimension and scaling constant. Several different methods for the fractal analysis of plasma-exposed surfaces have been critically evaluated. The main emphasis of this paper is on the correlation between surface roughness (fractal parameters), the amount of deposited atoms and the layer thickness.

  • 222.
    Almqvist, Nils
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Thomson, Neil H.
    Smith, Bettye L.
    Stucky, Galen D.
    Morse, Daniel E.
    Hansma, Paul K.
    Methods for fabricating and characterizing a new generation of biomimetic materials1999In: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 7, no 1, p. 37-43Article in journal (Refereed)
    Abstract [en]

    Bringing together current ideas in the fields of biomineralization and composite laminate materials, we have attempted to fabricate model materials that mimic abalone nacre through the rapid assembly of inorganic tablets, such as talc. Several physical methods were tested to aid the orientation of the talc tablets in fluid suspensions with a low percentage, 10% by dry weight, of organic binding material. The orientation of talc tablets in the synthesized composites was characterized by X-ray diffraction and scanning electron microscopy. The modulus of rupture of the materials was measured in a three-point bending test. We demonstrate that the alignment of tablets increases by the use of physical methods and from chemical surface treatment. Important factors to consider in making materials that mimic abalone nacre are discussed. Important factors to consider in making materials that mimic abalone nacre are discussed.

  • 223. Almqvist, Torbjörn
    et al.
    Almqvist, Andreas
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    A comparison between computational fluid dynamic and Reynolds approaches for simulating transient EHL line contacts2004In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 37, no 1, p. 61-69Article in journal (Refereed)
    Abstract [en]

    When simulating elastohydrodynamic lubrication (EHL), the Reynolds equation is the predominating partial differential equation for prediction of the fluid flow. Also very few attempts have been carried out using the full momentum and continuity equations separately. The aim of this investigation is to compare two different approaches for simulation of EHL line contacts where a single ridge travels through an EHL conjunction. One of the approaches is based on the Reynolds equation, addressing the coupling between the pressure and the film thickness. The solver uses the advantages of multilevel techniques to speed up the convergence rate. The other approach is based on commercial CFD software. The software uses the momentum and continuity equations in their basic form, enabling numerical simulations outside the contact regions, as well as in the thin film region to be carried out. The numerical experiments show that, under the running conditions chosen, only small deviations between the two approaches can be observed. The results are encouraging from several viewpoints: validation of the codes, the possibilities of further developments of the CFD approach and the justification of using a Reynolds approach under the running conditions chosen

  • 224. Almqvist, Torbjörn
    et al.
    Glavatskikh, Sergei
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Larsson, Roland
    THD analysis of tilting pad thrust bearings: comparison between theory and experiments2000In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 122, no 2, p. 412-417Article in journal (Refereed)
    Abstract [en]

    The objective of the present research is to verify a THD model of hydrodynamic thrust bearings. The developed model of a pivoted pad bearing, which can tilt both radially and circumferentially, allows for three-dimensional temperature distribution in the oil film and in the pad, as well as two-dimensional temperature variation in the runner. Viscosity and density are treated as functions of both temperature and pressure. Experiments have been performed on a test rig, containing two identical equalizing pivoted pad thrust bearings. Power loss, runner temperature, and pressure profiles as a function of load and rotational speed are compared for both theoretical and experimental investigations. Fairly good agreement has been found when the oil inlet temperature and heat transfer coefficients have been estimated in order to get the same runner temperature in both theory and experiment.

  • 225. Almqvist, Torbjörn
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Comparison of Reynolds and Navier-Stokes approach for solving isothermal EHL line contacts2001In: Tribology 2001: scientific achievements, industrial applications, future challenges ; plenary and session key papers from the 2nd World Tribology Congress, Vienna, Austria, 3 - 7 September / organized by the Austrian Tribology Society (Österreichische Tribologische Gesellschaft, ÖTG) / [ed] Friedrich Franek, Wien: ÖTG , 2001Conference paper (Refereed)
  • 226. Almqvist, Torbjörn
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Some remarks on the validity of Reynolds equation in the modeling of lubricant film flows on the surface roughness scale2004In: Journal of tribology, ISSN 0742-4787, E-ISSN 1528-8897, Vol. 126, no 4, p. 703-710Article in journal (Refereed)
    Abstract [en]

    The objective of this paper is to investigate the flow in a lubricant film on the surface roughness scale and to compare the numerical solutions obtained by two different solution approaches. This is accomplished firstly by the CFD-approach (computational fluid dynamic approach) where the momentum and continuity equations are solved separately, and secondly the Reynolds equation approach, which is a combination and a simplification of the above equations. The rheology is assumed to be both Newtonian and non-Newtonian. An Eyring model is used in the non-Newtonian case. The result shows that discrepancies between the two approaches may occur, primarily due to a singularity which appears in the momentum equations when the stresses in the lubricant attain magnitudes that are common in EHL. This singularity is not represented by the Reynolds equation. If, however, the rheology is shifted to a non-Newtonian Eyring model the deviations between the two solution approaches is removed or reduced. The second source of discrepancies between the two approaches is the film thickness to wavelength scale ω. It will be shown that the Reynolds equation is valid until this ratio is approximately O(10-2).

  • 227. Almqvist, Torbjörn
    et al.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    The Navier-Stokes approach for thermal EHL line contact solutions2002In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 35, no 3, p. 163-170Article in journal (Refereed)
    Abstract [en]

    The complicated nature of the EHL-problem has so far forced researchers to develop their own computer codes. These codes are ultimately based on the Reynolds equation, and if thermal EHL-simulations are required, a simultaneous solution of the equation of energy also has to be performed. To date only a few attempts to solve the full equations of momentum and continuity as well as equations of energy have been performed. However, such an approach will give extended possibilities of simulating EHL-contacts; i.e. the computational domain can be expanded and it will be possible to simulate the flow, not only in the contact but also around the contact. Another possibility is to investigate how the altering length scales of the surface roughness influence the behaviour of the flow in the contact. However, the aim of the work presented in this paper is to investigate the possibilities of using a commercial CFD-code (computational fluid dynamics code) based on the above-mentioned equations for simulating thermal EHL. The rheology is assumed to be Newtonian and the equations of momentum and continuity are then commonly referred to as the Navier-Stokes equations (N-S equations). The geometry chosen for the simulations is a smooth line contact geometry, for which the results from the simulations show that it is possible to use the N-S equations for thermal EHL for contact pressures up to approximately 0.7 GPa. The code used in this work is the commercial CFD software (CFX 4.3 user guide). There is a limitation in the N-S approach due to a singularity that can occur in the equation of momentum when the principal shear stresses in the film become too high. However, a thermal approach makes it possible to simulate EHL-contacts at higher loads compared with an isothermal approach, due to the reduction of the viscosity in the former approach. The singularity is not present in the Reynolds approach.

  • 228.
    Almqvist, Torbjörn
    et al.
    LKAB.
    Larsson, Roland
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Thermal transient rough EHL line contact simulations by aid of computational fluid dynamics2008In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 41, no 8, p. 683-693Article in journal (Refereed)
    Abstract [en]

    Reynolds equation is the pre-dominantly used PDE for modelling the fluid flow or more accurately the fluid pressure in an elastohydrodynamic lubrication (EHL) contact. The equation is derived by combining the two conservation equations of momentum and continuity into a single equation for the fluid pressure. The numerical approach for theoretical investigations performed on EHL contacts in this work is somewhat different. The modelling of the fluid flow is based on a computational fluid dynamic (CFD) technique. The fluid flow is simulated by aid of the equations of momentum and continuity in a more complete form and when the thermodynamics is incorporated, the equation of energy. The aim of the investigation was to examine whether the CFD technique could be used to handle thermal transient rough EHL line contacts. It is shown that commercial CFD software can be modified to meet such requirements. The influence of thermal effects on the flow under sliding motion was investigated. The non-Newtonian model used in this work is the Ree-Eyring model. It is shown that the choice of the Eyring stress in the model influences flow in the contacts. If the thermal properties of the surrounding solids differ, it has been shown experimentally and theoretically that a dimple or increased central film thickness may appear in the EHL contacts. This work shows that the governing mechanisms that result in the dimple are also present in thermal transient rough EHL line contacts.

  • 229.
    Al-Ramahi, Nawres
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Failure Impact Energy in Curved Composite Plates2012Conference paper (Refereed)
    Abstract [en]

    An investigation of low velocity impact characteristics of curved composite plates have been presented. The plates represent parts of car's bumpers with radii of curvature of 120mm,200mm, 300mm, 450mm and infinity.

    Two types of composite materials are used, unidirectional 0° and woven 0°/90° types with five layers of 3mm thickness and ten layers of 6mm thickness of each type.

    The results showed that larger plates curvatures can absorb more impact energy and the ten layer woven 0°/90° composite are superior to similar unidirectional 0° composite. On the other hand the five layer unidirectional 0° plates are superior in absorbing energy compared to similar woven 0°/90° plates.

    An investigation of the failure patterns and development for both types of composite has been presented and discussed.

    The effects of multi-strike on the energy absorbtion of both type of composite have showed different pattern of energy absorbtion behavior.

  • 230.
    Al-Ramahi, Nawres
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Numerical stress analysis in hybrid adhesive joint with non-linear materials2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents systematic numerical study of stresses in the adhesive of a single-lap joint subjected to various loading scenarios (mechanical and thermal loading). The main objective of this work is to improve understanding of the main material and geometrical parameters determining performance of adhesive joint for the future analysis of failure initiation and development in these structures.

    The first part of the thesis deals with development of a 3D model as well as 2D model, optimized with respect to the computational efficiency by use of novel displacement coupling conditions able to correctly represent monoclinic materials (off-axis layers of composite laminates). The model takes into account the nonlinearity of materials (adherend and adhesive) with geometrical nonlinearity also accounted for. The parameters of geometry of the joint are normalized with respect to the dimensions of adhesive (e.g. thickness) thus making analysis of results more general and applicable to wide range of different joints. Optimal geometry of the single-lap joint is selected based on results of the parametric analysis by using peel and shear stress distributions in the adhesive layer as a criteria and it allows separation of edge and end effects. Three different types of single lap joint with similar and dissimilar (hybrid) materials are considered: a) metal-metal; b) composite-composite; c) composite-metal. In case of composite laminates, four lay-ups are evaluated: uni-directional ([08]T and [908]T) and quasi-isotropic laminates ([0/45/90/-45]S and [90/45/0/-45]S). The influence of the abovementioned parameters is carefully examined by analyzing peel and shear stress distributions in the adhesive layer. Discussion and conclusions with respect to the magnitude of the stress concentration at the ends of the joint overlap as well as overall level of stresses within overlap are presented. Recommendations concerning use of nonlinear material model are given.

    The rest of the work is related to the various methods of manufacturing of joint (curing) and application of thermo-mechanical loading suitable to these scenarios. The appropriate sequences of application of thermal and mechanical loads for the analysis of the residual thermal stresses developed due to manufacturing of joints at elevated temperature required to cure polymer (adhesive/composite) are proposed. It is shown that the most common approach used in many studies of simple superposition of thermal and mechanical stresses works well only for linear materials and produces wrong results if material is non-linear. The model and simulation technique presented in the current thesis rectifies this issue and accurate stress distributions are obtained. Based on the analysis of these stress distributions the following conclusions can be made: joint processing at elevated temperature causes high stresses inside the adhesive layer; the residual thermal stresses will reduce the peel stress concentration at the ends of overlap joint and the shear stress within the overlap, moreover, this effect is more pronounced for the case of the one-step joint manufacturing in comparison with two-step processing technique.

    This study has generated a lot of results for better understand of behavior of adhesive joints and it will help in design of stronger, more durable adhesive single-lap joints in the future.

  • 231.
    Al-Ramahi, Nawres
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Institute of Technology, Middle Technical University, Baghdad.
    Joffe, Roberts
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Swerea SICOMP AB.
    Varna, Janis
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Fem analysis of stresses in adhesive single-lap joints with non-linear materials under thermo-mechanical loading2018In: ECCM18, 2018Conference paper (Refereed)
    Abstract [en]

    This study presents comprehensive numerical stress analysis in the adhesive layer of a single-lap joint subjected to various loading scenarios (mechanical and thermal loading). For this purpose numerical model (finite element method) with novel displacement coupling conditions able to correctly represent monoclinic materials (off-axis layers of composite laminates) has been developed. This model includes nonlinear material model and geometrical nonlinearity is also accounted for. The effect of thermal residual stresses (in adhesive) is analysed for various methods of manufacturing of single lap joint. The sequences of application of thermal and mechanical loads for the analysis of the thermal residual stresses in joints are proposed. It is shown that the most common approach used in many studies of linear superposition of thermal and mechanical stresses works well only for linear materials and produces wrong results if material is non-linear. The present study demonstrates suitable method to apply combined thermal and mechanical loads to get accurate stress distributions. Based on the analysis of these stress distributions the conclusions concerning the effect of the thermal residual stresses on peel and shear stress concentrations are made. The comparison between effect of thermal stresses in case of the one-step and two-step joint manufacturing techniques is made.

  • 232.
    Al-Ramahi, Nawres
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Institute of Technology / Baghdad, Middle Technical University, Baghdad, Iraq.
    Joffe, Roberts
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Swerea SICOMP AB, Piteå, Sweden.
    Varna, Janis
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Investigation of end and edge effects on results of numerical simulation of single lap adhesive joint with non-linear materials2018In: International Journal of Adhesion and Adhesives, ISSN 0143-7496, E-ISSN 1879-0127, Vol. 87, p. 191-204Article in journal (Refereed)
    Abstract [en]

    This paper presents systematic numerical study of stresses in the adhesive of a single-lap joint with the objective to improve understanding of the main material and geometrical parameters determining performance of adhesive joints. For this purpose a 3D model as well as 2D model, optimized with respect to the computational efficiency by use of novel displacement coupling conditions able to correctly represent monoclinic materials (off-axis layers of composite laminates), are employed. The model accounts for non-linearity of materials (adherend and adhesive) as well as geometrical non-linearity. The parameters of geometry of the joint are normalized with respect to the dimensions of adhesive (e.g. thickness) thus making analysis of results more general and applicable to wide range of different joints. Optimal geometry of the single-lap joint allowing to separate edge effect from end effects is selected based on results of the parametric analysis by using peel and shear stress distributions in the adhesive layer as a criterion. Three different types of single lap joint with similar and dissimilar (hybrid) materials are considered in this study: a) metal-metal; b) composite-composite; c) composite-metal. In case of composite laminates, four lay-ups are evaluated: uni-directional ([08]T and [908]T) and quasi-isotropic laminates ([0/45/90/-45]S and [90/45/0/-45]S). The influence of the abovementioned parameters on peel and shear stress distributions in the adhesive layer is examined carefully and mechanical parameters governing the stress concentrations in the joint have been identified, this dependence can be described by simple but accurate fitting function. The effect of the used material model (linear vs non-linear) on results is also demonstrated.

  • 233.
    Al-Ramahi, Nawres
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Joffe, Roberts
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Varna, Janis
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Model for numerical simulation and parametric analysis of composite adhesive joints under thermo-mechanical loading2017In: ICCS20: Proceedings : 20th International Conference on Composite Structures / [ed] Antonio J.M. Ferreira, W. Larbi, J.F. Deu, F. Tornabene, N. Fantuzzi, Paris: Società Editrice Esculapio, 2017 , 2017, , p. 662p. 234-Conference paper (Refereed)
    Abstract [en]

    Abstract: The current investigation focuses on development and verification of a modelfor numerical simulation of performance of adhesive joints under tensile loading. Differentcombination of materials in joints is considered: metal-metal, composite-composite andcomposite-metal. The objective of this paper is to present simulation results of joints usingan accurate finite element model including non-linear behaviour and large deformation.Moreover, several loading scenarios are analysed, including simultaneous application oftemperature and mechanical load. Not only the effect of temperature on mechanicalperformance of materials (adhesive as well as adherents) is analysed but also built up ofresidual thermal stresses during the manufacturing of joints are taken into account. Thisapproach is demonstrated by simulation of tensile tests of joints at several temperatures.Two scenarios of application of temperature and mechanical load using large deformationtheory are considered: 1) the thermal and mechanical loads are applied simultaneously (theproperties of the materials are adjusted accordingly to their performance at differenttemperatures); 2) temperature is applied on specimen which is not macroscopicallyconstrained and the obtained stress distribution is used as initial state for the nextsimulation of mechanical loaded joint. The influence of edge effects (due to limited widthof the joint) on the stress distribution within the joint are studied. In order to eliminatethese effects the periodic boundary conditions (BC) are used in the numerical model.These BC are adjusted to optimize numerical model and obtain efficient calculation routinefor analysis of stresses within interior part of the structure. The validity of these BCs isevaluated and verified by analysing number of case studies. The comparison between full3D FEM model and simplified 2D model is carried out. The resulting stress distributions inthe overlap region of joints are presented for different joints (the parameters are: materialcombinations, material models, geometry of adhesive layer, constraints and BCs) withcomprehensive analysis and recommendations for optimal numerical model that can beused in joint design.

  • 234.
    Al-Ramahi, Nawres
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Joffe, RobertsLuleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.Varna, JanisLuleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Numerical stress analysis in adhesive joints under thermo-mechanical load using model with special boundary conditions2019Conference proceedings (editor) (Refereed)
    Abstract [en]

    A numerical study of the adhesive joint made of similar and dissimilar adherends subjected to thermo-mechanical loading is presented. A comprehensive numerical model was used for this purpose with the novel displacement coupling conditions which are able to correctly represent monoclinic materials (off-axis layers of composite laminates). The geometrical nonlinearity as well as nonlinear material model are also taken into account. Three different types of single-lap and double-lap adhesive joints are considered in this study: a) metal-metal; b) composite-composite; c) composite-metal. In case of composite laminates, four lay-ups are evaluated: uni-directional ([08]T and [908]T) and quasi-isotropic laminates ([0/45/90/-45]S and [90/45/0/-45]S). This paper focuses on the parameters which have the major effect on the peel and shear stress distribution within adhesive layer at the overlap ends. The comparison of behaviour of single- and double- lap joints in relation to these parameters is made. The master curves for maximum stress (peel and shear) at the ends of the overlap with respect to the bending stiffness and axial modulus of the adherends are constructed by analysing stress distributions in the middle of the adhesive. The main conclusions of this paper are: the maximum peel stress value for SLJ is reduced with increase of the adherend bending stiffness and for DLJ, similar behaviour was observed at the end next to the inner plate corner, while, at the end next to the outer plate corner peel stress is reduced with increase of adherend axial modulus.

  • 235. Alrifaiy, Ahmed
    et al.
    Borg, Johan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.
    Lindahl, Olof
    Ramser, Kerstin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    A lab-on-a-chip for hypoxic patch clamp measurements combined with optical tweezers and spectroscopy: first investigations of single biological cells2015In: Biomedical engineering online, ISSN 1475-925X, E-ISSN 1475-925X, Vol. 14, article id 36Article in journal (Refereed)
    Abstract [en]

    The response and the reaction of the brain system to hypoxia is a vital research subject that requires special instrumentation. With this research subject in focus, a new multifunctional lab-on-a-chip (LOC) system with control over the oxygen content for studies on biological cells was developed. The chip was designed to incorporate the patch clamp technique, optical tweezers and absorption spectroscopy. The performance of the LOC was tested by a series of experiments. The oxygen content within the channels of the LOC was monitored by an oxygen sensor and verified by simultaneously studying the oxygenation state of chicken red blood cells (RBCs) with absorption spectra. The chicken RBCs were manipulated optically and steered in three dimensions towards a patch-clamp micropipette in a closed microfluidic channel. The oxygen level within the channels could be changed from a normoxic value of 18% O 2 to an anoxic value of 0.0-0.5% O 2. A time series of 3 experiments were performed, showing that the spectral transfer from the oxygenated to the deoxygenated state occurred after about 227 ± 1 s and a fully developed deoxygenated spectrum was observed after 298 ± 1 s, a mean value of 3 experiments. The tightness of the chamber to oxygen diffusion was verified by stopping the flow into the channel system while continuously recording absorption spectra showing an unchanged deoxygenated state during 5400 ± 2 s. A transfer of the oxygenated absorption spectra was achieved after 426 ± 1 s when exposing the cell to normoxic buffer. This showed the long time viability of the investigated cells. Successful patching and sealing were established on a trapped RBC and the whole-cell access (Ra) and membrane (Rm) resistances were measured to be 5.033 ± 0.412 M Ω and 889.7 ± 1.74 M Ω respectively.

  • 236.
    Alriksson, Stina
    et al.
    Linnéuniversitetet.
    Grip, Carl-Erik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Steel industry environmental objectives: stakeholder preference assessment using conjoint analysis2013In: Ironmaking & steelmaking, ISSN 0301-9233, E-ISSN 1743-2812, Vol. 40, no 8, p. 605-612Article in journal (Refereed)
    Abstract [en]

    The Swedish steel industry has combined traditional methods such as life cycle analysis with less traditional methods such as preference analysis in order to move towards a closed steel eco cycle. The paper describes the use of conjoint analysis to study preferences of six different stakeholder groups regarding four environmental objectives (reduction in carbon dioxide emissions, reduced use of non-renewable resources, reduced use of non-renewable energy and weight reduction in products) and to identify gaps in preferences between the stakeholder groups. Our results suggested that there was a difference in preference between the stakeholder groups: respondents that were closer to the steel industry favoured all four environmental objectives, while members of public and political decision makers preferred a reduction in carbon dioxide emissions. One of the conclusions of our study is that there is a need of improved information to clients and public on the environmental benefits of product weight reduction.

  • 237.
    Alsyouf, Imad
    et al.
    Växjö university.
    Alzghoul, Ahmad
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Product and Production Development.
    Soft computing applications in wind power systems: a review and analysis2009Conference paper (Other academic)
    Abstract [en]

    This paper reviews, analyses, discusses and summarises the recent research and development and trends in the applications of soft computing in the field of wind power systems. We show the usage and the influence of soft computing on the different aspects of wind power systems especially in the field of operation and maintenance. This work provides the state of the art in this area which will be a good guidance for future research work. The main results achieved from the study show that the soft computing techniques are adequate for solving the different challenges at the different phases of the life cycle processes of wind power systems. Using the various soft computing techniques with wind power systems proved to be useful for the wind energy business. Using these tools contribute by improving the robustness of the decisions at different phases of the system's life cycle. Soft computing can enhance the efficiency and effectiveness of the operation and maintenance of offshore wind power systems through improving the availability levels. Thus, providing secure, sustainable and competitive energy supply for the future.

  • 238.
    Altorkmany, Lobna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Kharseh, Mohamad
    Civil Environmental Engineering Department, Chalmers University of Technology, Sweden.
    Ljung, Anna-Lena
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Lundström, Staffan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Effect of Working Parameters of the Plate Heat Exchanger on the Thermal Performance of the Anti-Bact Heat Exchanger System to Disinfect Legionella in Hot Water Systems2018In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 141, p. 435-443Article in journal (Refereed)
    Abstract [en]

    The objective of the current study is to analyze the effect of different working parameters on the thermal performance of the Anti-Bact Heat Exchanger system (ABHE). The ABHE system is inspired by nature and implemented to achieve continuous disinfection of Legionella in different human-made water systems at any desired disinfection temperature. In the ABHE system, most of the energy is recovered using an efficient plate heat exchanger (PHE). A model by Engineering Equation Solver (EES) is set-up to figure out the effect of different working parameters on the thermal performance of the ABHE system. The study shows that higher supplied water temperature can enhance the regeneration ratio (RR), but it requires a large PHE area and pumping power (PP) which consequently increase the cost of the ABHE system. However, elevate temperature in use results in a reduced PHE area and PP, which accordingly reduce the cost of the ABHE system. On the other hand, the EES-based model is used to study the effect of the length and the width of the plates used in the PHE on the RR and the required area of the PHE. Finally, taking into account the geometrical parameters, flow arrangement and the initial operating conditions of the PHE, the EES-based model is used to optimize the PHE in which its area is minimized, and the RR of the ABHE system is maximized.

  • 239.
    Altorkmany, Lobna
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Architecture and Water.
    Kharseh, Mohamad
    Civil Environmental Engineering Department, Chalmers University of Technology.
    Ljung, Anna-Lena
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Lundström, Staffan
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Fluid and Experimental Mechanics.
    Experimental and Simulation Validation of ABHE for Disinfection of Legionella in Hot Water Systems2017In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 116, p. 253-265Article in journal (Refereed)
    Abstract [en]

    The work refers to an innovative system inspired by nature that mimics the thermoregulation system that exists in animals. This method, which is called Anti Bacteria Heat Exchanger (ABHE), is proposed to achieve continuous thermal disinfection of bacteria in hot water systems with high energy efficiency. In particular, this study aims to demonstrate the opportunity to gain energy by means of recovering heat over a plate heat exchanger. Firstly, the thermodynamics of the ABHE is clarified to define the ABHE specification. Secondly, a first prototype of an ABHE is built with a specific configuration based on simplicity regarding design and construction. Thirdly, an experimental test is carried out. Finally, a computer model is built to simulate the ABHE system and the experimental data is used to validate the model. The experimental results indicate that the performance of the ABHE system is strongly dependent on the flow rate, while the supplied temperature has less effect. Experimental and simulation data show a large potential for saving energy of this thermal disinfection method by recovering heat. To exemplify, when supplying water at a flow rate of 5 kg/min and at a temperature of 50 °C, the heat recovery is about 1.5 kW while the required pumping power is 1 W. This means that the pressure drop is very small compared to the energy recovered and consequently high saving in total cost is promising.

  • 240.
    Alvarez, Manuel
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Distribution Network Planning Considering Capacity Mechanisms and Flexibility2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The increasing penetration of distributed energy resources (DERs) has posed challenges to the distribution system operator (DSO) from the operation and regulatory point of view. High penetration of DERs could have negative impacts on the performance of the distribution grid, and depending on the regulatory framework, the DSO's remuneration as well. In liberalized electrical systems, the focus on promoting eciency has led to the implementation of an incentive-based regulation that exerts additional pressure on the DSOs to reduce costs. Additionally, the European Parliament Directive 2009/72/EC establishes a regulatory unbundling among the distribution, production, and retailing activities within the same vertically integrated electric utility.

    A way of helping the DSO to cope with the posed challenges is by providing it with exibility. This exibility can be acquired from the planning stage, and later be used during the system operation. This exibility can stem from the DSO's ability to exert control on the demand and the supply side to balance the system and correct its operational state.

    Based on the European DSOs' current situation at facing the increasing penetration of DERs, this thesis investigates in non-wired exible grid tools to solve the distribution network expansion problem. The investigation focuses on exibility providers, in particular on energy storage systems and hydropower, and also on capacity mechanisms to translate the capacity from DERs into the grid's capacity for planning purposes.

    Given that the share of renewable sources among the DERs is increasing, and considering the importance of energy storage systems in providing exibility to balance renewable energy production, the eort has been turned on to developing a hydropower model and a generic storage model that t both planning and operational studies.

    Given the need for gearing the DERs' behavior into the DSO's decision making process during the planning and operational timescales, the design and implementation of a distribution capacity mechanism have been developed. The design of the capacity mechanism has been conceived considering its integration within the distribution network expansion problem.

    The outcomes of this thesis can be synthesized as follows: 1) A generic hydraulic/storage model provided with an equivalent marginal cost that aids in considering the impact of present decisions in the future costs. 2) A market oriented distribution capacity mechanism that gears DERs and the DSOs to benefit mutually. 3) A distribution network expansion planning formulation that integrates the capacity resource from DERs through the distribution capacity mechanism.

  • 241.
    Alvarez, Manuel
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Gil-de-Castro, Aurora
    University of Cordoba, Electronics and Electronic Technology Area, University of Cordoba.
    A Smart Distribution Toolbox for Distribution System Planning2015Conference paper (Refereed)
    Abstract [en]

    The distribution system planner should be able to coordinate smart grid solutions in order to find cost effective expansions plans. These plans should be able to deal with new added system uncertainties from renewable production and consumers while guaranteeing power quality and availability of supply. This paper proposes a structure for distribution systems planning oriented to help the planner in deciding how to make use of smart solutions for achieving the described task. Here, the concept of a system planning toolbox is introduced and supported with a review of relevant works implementing smart solutions. These are colligated in a way that the system planner can foresee what to expect with their combined implementation. Future developments in this subject should attempt to theorize a practical algorithm in an optimization and decision making context.

  • 242.
    Alvarez, Manuel
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Jabr, Rabih
    American University of Beirut.
    Cossent, Rafael
    Universidad Pontificia de Comillas.
    Frías, Pablo
    Universidad Pontificia de Comillas.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Capacity Mechanisms for Distribution Network Expansion Planning2019In: IEEE Transactions on Power Delivery, ISSN 0885-8977, E-ISSN 1937-4208Article in journal (Refereed)
  • 243.
    Alvarez, Manuel
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Frías, Pablo
    Comillas Pontifical University, Madrid, Spain.
    Cossent, Rafael
    Comillas Pontifical University, Madrid, Spain.
    Jabr, Rabih
    American University of Beirut, Beirut, Lebanon.
    Zhong, Jin
    The University of Hong Kong, Hong Kong, China.
    A Capacity Mechanism Design for Distribution Network Expansion Planning2018In: 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2018, article id 8493874Conference paper (Refereed)
    Abstract [en]

    Capacity remuneration mechanisms have been originally oriented to ensure availability and continuity of supply on the power generation pool. Equivalent generation-based capacity mechanisms could be implemented to enhance and prolong the usability of the distribution grid. In particular, such capacity mechanisms would provide an alternative to traditional expansion options leading to investment deferral. In this work, a distribution capacity mechanism to fit within a distribution network planning methodology will be proposed and discussed. The capacity mechanism will be outlined following similar guidelines as for the design of capacity mechanisms used in the energy only market. The result of the design is a volume based capacity auction for a capacity-constrained system, oriented to both the active and the reactive power provision.

  • 244.
    Alvarez Perez, Manuel Alejandro
    Luleå University of Technology, Department of Engineering Sciences and Mathematics.
    Stochastic Planning of Smart Electricity Distribution Networks2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The penetration of intermittent Distributed Generation (DG) brought additional uncertainty to the system operation and planning. To cope with uncertainties the Distribution System Operator (DSO) could implement several strategies. These strategies range from the inclusion of smart technologies which will increment system’s flexibility and resiliency, to improvements in forecasting, modeling, and regulatory pledge that will facilitate the planning activity. Regardless of the nature of the solutions, they could be collected in a sort of toolbox. The planner will access the toolbox to conform cost effective plans, better able to deal with any uncertainty. The present work will address the problem of distribution system planning under uncertainties, considering smart solutions along with traditional reinforcements, in the short-term lead time up to 3 years ahead. The work will be focused on three aspects that are the cornerstones of this work:

     • A planning facilitating strategy: Distribution Capacity Contracts (DCCs).

     • A flexibility enabler technology: Energy Storage.

     • A binding methodology: Multistage Stochastic Programming. Stochastic dual dynamic programming (SDDP). 

    Under the present directive of the European Parliament concerning common rules for the internal market in electricity, distribution companies are not allowed to own DG but entitled to include it as a planning option to differ investment in traditional grid reinforcements. An evaluation of the regulatory context will lead this work to consider DCCs as a planning alternative available in the toolbox. The impact of this type of contract on the remuneration of the DG owner will be assessed in order to provide insight on its willingness to participate. The DCCs might aid the DSO to defer grid i ii investments during planning stages and to control the network flows during operation. 

    Given that storage solutions help to match in time production from intermittent sources with load consumption, they will play a major role in dealing with uncertainties. A generic storage model (GSM) based on a future cost piecewise approximation will be developed. This model inspired by hydro-reservoirs will help assessing the impact of storage in planning decisions. This model will be tested by implementing it in short-term hydro scheduling and unit commitment studies. 

    To trace a path towards the future of this research work, a discussion on the planning problem formulation, under consideration of the lead time, the expansion options, the smart strategies, and the regulatory framework will be presented. Special focus will be given to multistage stochastic programming methods and in particular to the SDDP approach.

  • 245.
    Alvarez Perez, Manuel Alejandro
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bermúdez, Juan
    Universidad Simón Bolívar.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science. The University of Hong Kong.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    A Generic Storage Model Based on a Future Cost Piecewise-Linear Approximation2019In: IEEE Transactions on Smart Grid, ISSN 1949-3053, E-ISSN 1949-3061, Vol. 10, no 1, p. 878-888Article in journal (Refereed)
    Abstract [en]

    This work presents a generic storage model (GSM) inspired by the scheduling of hydraulic reservoirs. The model for steady state short-term (ST) operational studies interlaces with the long-term (LT) energy scheduling through a piecewise-linear Future Cost Function (FCF). Under the assumption that a Stochastic Dual Dynamic Programming (SDDP) approach has been used to solve the energy schedule for the LT, the FCF output from that study will be processed to obtain an equivalent marginal opportunity cost for the storage unit. The linear characteristic of a segment of the future cost function (FCF) will allow a linear modeling of the storage unit production cost. This formulation will help to coordinate the renewable resource along with storage facilities in order to find the optimal operation cost while meeting end-point conditions for the long-term plan of the energy storage. The generic model will be implemented to represent a battery storage and a pumped-hydro storage. A stochastic unit commitment (SUC) with the GSM will be formulated and tested to assess the day-ahead scheduling strategy of a Virtual Power Plant (VPP) facing uncertainties from production, consumption, and market prices.

  • 246.
    Alvarez Perez, Manuel Alejandro
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bermúdez, Juan
    Universidad Simón Bolívar.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    A Hydro-Reservoir Generic Storage Model for Short-Term Hydrothermal Coordination2017In: IEEE PES PowerTech Manchester 2017: towards and beyond sustainable energy systems, 2017, Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7980882Conference paper (Refereed)
    Abstract [en]

    This work presents a linear solution for the short-term hydro-thermal scheduling problem linked to long-term conditions through a piecewise-linear Future Cost Function (FCF). Given end-point conditions to conform long-term water releases, and given actual reservoir conditions, a segment of a pre-built piecewise future cost function will be chosen. The linear characteristic of the FCF segment will allow a linear modeling of the hydro-power plant, in a similar fashion as a thermal unit with an equivalent marginal opportunity cost. A short-term hydro thermal coordination problem will be formulated considering parallel and cascaded hydro-reservoirs. Three study cases involving different reservoir configurations and scenarios will be computed to test the model. The results of this model mimics coherently the future-cost hydro-thermal coordination problem for the different configurations tested. Given similarities with other forms of energy storage, a new theoretical model for generic storage will be proposed and discussed.

  • 247.
    Alvarez Perez, Manuel Alejandro
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bermúdez, Juan
    Department of Energy Conversion and Transport, Simón Bolívar University.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Reservoir-Type Hydropower Equivalent Model Based on a Future Cost Piecewise Approximation2018In: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 155, p. 184-195Article in journal (Refereed)
    Abstract [en]

    The long-term (LT) scheduling of reservoir-type hydropower plants is a multistage stochastic dynamic problem that has been traditionally solved using the stochastic dual dynamic programming (SDDP) approach. This LT schedule of releases should be met through short-term (ST) scheduling decisions obtained from a hydro-thermal scheduling that considers uncertainties. Both time scales can be linked if the ST problem considers as input the future cost function (FCF) obtained from LT studies. Known the piecewise-linear FCF, the hydro-scheduling can be solved as a one-stage problem. Under certain considerations a single segment of the FCF can be used to solve the schedule. From this formulation an equivalent model for the hydropower plant can be derived and used in ST studies. This model behaves accordingly to LT conditions to be met, and provides a marginal cost for dispatching the plant. A generation company (GENCO) owning a mix of hydro, wind, and thermal power will be the subject of study where the model will be implemented. The GENCO faces the problem of scheduling the hydraulic resource under uncertainties from e.g. wind and load while determining the market bids that maximize its profit under uncertainties from market prices. A two-stage stochastic unit commitment (SUC) for the ST scheduling implementing the equivalent hydro model will be solved.

  • 248.
    Alvarez Perez, Manuel Alejandro
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Cossent, Rafael
    Universidad Pontificia de Comillas.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Regulatory Matters Affecting Distribution Planning With Distributed Generation2017In: CIRED - Open Access Proceedings Journal, E-ISSN 2515-0855, Vol. 2017, no 1, p. 2869-2873Article in journal (Refereed)
    Abstract [en]

    Under the present European directive concerning common rules for the internal market in electricity, distribution companies are not allowed to own distributed generation (DG) but encouraged to include it as a planning option to defer investment in traditional grid reinforcements. Distribution system operators (DSOs) have used the provision of capacity contracted to DG as a viable alternative under current regulatory arrangements. Here, the topics bonding DSOs and DG owners under the present regulation will be explored and a planning structure that considers distribution capacity contracts as a planning option will be proposed. This will serve as a road map for DSOs to implement its preferred planning tools in an optimisation context, considering costs of investment, reliability, operation, and capacity provision while complying with current regulation.

  • 249.
    Alvarez Perez, Manuel Alejandro
    et al.
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Rönnberg, Sarah
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Cossent, Rafael
    Universidad Pontificia de Comillas.
    Zhong, Jin
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bollen, Math
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Remuneration Assessment of a VPP Providing Distribution Capacity Services2017In: IEEE PES PowerTech Manchester 2017: towards and beyond sustainable energy systems, Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7980881Conference paper (Refereed)
    Abstract [en]

    A Distribution System Operator (DSO) might consider a capacity contract as a planning alternative to defer grid investments. A Virtual Power Plant (VPP) might be able to provide such capacity and change its production as requested by the DSO. This article presents an assessment of the impact of this type of distribution capacity contract (DCC) on VPP's remuneration. This assessment is done by comparing the optimal production / bidding strategy which maximize its profit, under presence or absence of these contracts. The impact of intermittent generation and storage while evaluating these scenarios will be investigated as well. A stochastic unit commitment will be used to determine the VPP's strategy under uncertainties from wind power, load, market prices, and the requested power by the DSO. The model showed that the VPP involvement in distribution capacity contracts can improve its remuneration when certain types of Distributed Energy Resources (DER) are used to provide the service.

  • 250.
    Alvi, Sajid
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science. Lulea University of Technology.
    Synthesis and Characterization of High Entropy Alloy and Coating2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    High entropy alloys (HEAs) are a new class of alloys that contains five or more principal elements in equiatomic or near-equiatomic proportional ratio. The configuration entropy in the HEAs tends to stabilize the solid solution formation, such as body-centered-cubic (BCC), face-centered-cubic (FCC) and/or hexagonal-closed-pack (HCP) solid solution. The high number of principal elements present in HEAs results in severe lattice distortion, which in return gives superior mechanical properties compared to the conventional alloys. HEAs are considered as a paradigm shift for the next generation high temperature alloys in extreme environments, such as aerospace, cutting tools, and bearings applications.

    The project is based on the development of refractory high entropy alloy and film. The first part of the project involves designing high entropy alloy of CuMoTaWV using spark plasma sintering (SPS) at 1400 oC. The sintered alloy showed the formation of a composite of BCC solid solution (HEA) and V rich zones with a microhardness of 600 HV and 900 HV, respectively. High temperature ball-on-disc tribological studies were carried out from room temperature (RT) to 600 oC against Si3N4 counter ball. Sliding wear characterization of the high entropy alloy composite showed increasing coefficient of friction (COF) of 0.45-0.67 from RT to 400 oC and then it decreased to 0.54 at 600 oC. The wear rates were found to be low at RT (4 × 10⁠−3 mm⁠3/Nm) and 400 oC (5 × 10⁠−3 mm⁠3/Nm) and slightly high at 200 oC (2.3 × 10⁠−2 mm⁠3/Nm) and 600 oC (4.5 × 10⁠−2 mm⁠3/Nm). The tribology tests showed adaptive behavior with lower wear rate and COF at 400 oC and 600 oC, respectively. The adaptive wear behavior at 400 oC was due to the formation of CuO that protected against wear, and at 600 oC, the V-rich zones converted to elongated magneli phases of V2O5 and helped in reducing the friction coefficient.

    The second part of the project consists of sintering of novel CuMoTaWV target material using SPS and depositing CuMoTaWV refractory high entropy films (RHEF) using DC-magnetron sputtering on silicon and 304 stainless steel substrate. The deposited films showed the formation of nanocrystalline BCC solid solution. The X-ray diffraction (XRD) studies showed a strong (110) preferred orientation with a lattice constant and grain size of 3.18 Å and 18 nm, respectively. The lattice parameter were found to be in good agreement with the one from the DFT optimized SQS (3.16 Å). The nanoindentation hardness measurement at 3 mN load revealed an average hardness of 19 ± 2.3 GPa and an average Young’s modulus of 259.3 ± 19.2 GPa. The Rutherford backscattered (RBS) measurement showed a gradient composition in the cross-section of the film with W, Ta and Mo rich at the surface, while V and Cu were found to be rich at the substrate-film interface. AFM measurements showed an average surface roughness (Sa) of 3 nm. Nano-pillars of 440 nm diameter from CuMoTaWV RHEFs were prepared by ion-milling in a focused-ion-beam (FIB) instrument, followed by its compression. The compressional yield strength and Young’s modulus was calculated to be 10.7 ± 0.8 GPa and 196 ± 10 GPa, respectively. Room temperature ball-on-disc tribological test on the CuMoTaWV RHEF, after annealing at 300 oC, against E52100 alloy steel (Grade 25, 700-880 HV) showed a steady state COF of 0.25 and a low average wear rate of 6.4 x 10-6 mm3/Nm.

2345678 201 - 250 of 8921
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf