Change search
Refine search result
1234567 151 - 200 of 199143
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 151. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Precision measurement and interpretation of inclusive W+, W- and Z/gamma* production cross sections with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 6, 367Article in journal (Refereed)
    Abstract [en]

    High-precision measurements by the ATLAS Collaboration are presented of inclusive W+ -> l(+) nu, W- -> l(-) (nu) over bar and Z/gamma* -> ll (l = e, mu) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at root s = 7 TeV with an integrated luminosity of 4.6 fb(-1). Differential W+ and W- cross sections are measured in a lepton pseudorapidity range vertical bar eta(l)vertical bar < 2.5. Differential Z/gamma* cross sections are measured as a function of the absolute dilepton rapidity, for vertical bar y(ll)vertical bar < 3.6, for three intervals of dilepton mass, m(ll), extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive e(+/-) p scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element vertical bar V-cs vertical bar is also provided.

  • 152. Aaboud, M
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at root S=8 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 3, 032001Article in journal (Refereed)
    Abstract [en]

    A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to 20.2 fb(-1) of root S = 8 TeV pp collisions and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production ofWW or WZ boson pairs accompanied by a high-mass dijet system, with one W decaying leptonically and a W or Z decaying hadronically. The hadronically decaying W/Z is reconstructed as either two small-radius jets or one largeradius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters a 4 and a 5 are set by fitting the transverse mass of the diboson system, and the resulting 95% confidence intervals are -0.024 < alpha(4) < 0.030 and -0.028 < alpha(5) < 0.033.

  • 153. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Studies of Zγ production in association with a high-mass dijet system in pp collisions at √s=8 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Article in journal (Refereed)
    Abstract [en]

    The production of a Z boson and a photon in association with a high-mass dijet system is studied using 20.2 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = 8TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total pp -> Z gamma jj cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes VV -> Z gamma. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.

  • 154. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Study of hard double-parton scattering in four-jet events in pp collisions root s=7 TeV with the ATLAS experiment2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479Article in journal (Refereed)
    Abstract [en]

    Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb−1, collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum pT ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at least one having pT ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be fDPS = 0.092− 0.011 + 0.005(stat.)− 0.037 + 0.033(syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σeff , was determined to be σeff = 14. 9− 1.0 + 1.2(stat.)− 3.8 + 5.1(syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σeff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21− 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.

  • 155. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 7, 072002Article in journal (Refereed)
    Abstract [en]

    Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 3.2 fb(-1) collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-k(t) algorithm with radius parameter R = 0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20 < p(T) < 2000 GeV and pseudorapidities of vertical bar eta vertical bar < 4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (vertical bar eta vertical bar < 1.2) for jets with 100 < p(T) < 500 GeV. An uncertainty of about 4.5% is found for low-p(T) jets with p(T) = 20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (vertical bar eta vertical bar > 0.8) is derived from dijet p(T) balance measurements. For jets of p(T) = 80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range vertical bar eta vertical bar > 3.5 and in a narrow slice of 2.2 < vertical bar eta vertical bar < 2.4.

  • 156. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for direct top squark pair production in events with a Higgs or Z boson, and missing transverse momentum in root s=13 TeV pp collisions with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 8, 006Article in journal (Refereed)
    Abstract [en]

    A search for direct top squark pair production resulting in events with either a same-flavour opposite-sign dilepton pair with invariant mass compatible with a Z boson or a pair of jets compatible with a Standard Model (SM) Higgs boson (h) is presented. Requirements on the missing transverse momentum, together with additional selections on leptons, jets, jets identified as originating from b-quarks are imposed to target the other decay products of the top squark pair. The analysis is performed using proton-proton collision data at root s = 13 TeV collected with the ATLAS detector at the LHC in 20152016, corresponding to an integrated luminosity of 36.1 fb(-1). No excess is observed in the data with respect to the SM predictions. The results are interpreted in two sets of models. In the first set, direct production of pairs of lighter top squarks ((t) over tilde (1)) with long decay chains involving Z or Higgs bosons is considered. The second set includes direct pair production of the heavier top squark pairs ((t) over tilde (2)) decaying via (t) over tilde (2) -> Z (t) over tilde (1) or (t) over tilde (2) -> h (t) over tilde (1). The results exclude at 95% confidence level (t) over tilde (2) and (t) over tilde (1) masses up to about 800 GeV, extending the exclusion region of supersymmetric parameter space covered by previous LHC searches.

  • 157. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in dijet events using 37 fb(-1) of pp collision data collected at root s=13 TeV with the ATLAS detector2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 5, 052004Article in journal (Refereed)
    Abstract [en]

    Dijet events are studied in the proton-proton collision dataset recorded at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb(-1) and 33.5 fb(-1) respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The dataset is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy W' bosons, W* bosons, and a range of masses and couplings in a Z' dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.

  • 158. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Measurement of the cross section for inclusive isolated-photon production in pp collisions at root s=13 TeV using the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 770, 473-493 p.Article in journal (Refereed)
    Abstract [en]

    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV is studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2 fb(-1). The cross section is measured as a function of the photon transverse energy above 125 GeV in different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data.

  • 159. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurements of charge and CP asymmetries in b-hadron decays using top-quark events collected by the ATLAS detector in pp collisions at root s=8 TeV2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 2, 071Article in journal (Refereed)
    Abstract [en]

    Same-and opposite-sign charge asymmetries are measured in lepton+ jets t (t) over bar events in which a b-hadron decays semileptonically to a soft muon, using data corresponding to an integrated luminosity of 20.3 fb(-1) from proton-proton collisions at a centre-of-mass energy of root s = 8TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. The charge asymmetries are based on the charge of the lepton from the top-quark decay and the charge of the soft muon from the semileptonic decay of a b -hadron and are measured in a fi ducial region corresponding to the experimental acceptance. Four CP asymmetries (one mixing and three direct) are measured and are found to be compatible with zero and consistent with the Standard Model.

  • 160. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurements of top-quark pair to Z-boson cross-section ratios at root s=13, 8, 7 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2017, no 2, 117Article in journal (Refereed)
    Abstract [en]

    Ratios of top-quark pair to Z-boson cross sections measured from proton-proton collisions at the LHC centre-of-mass energies of s=13 TeV, 8 TeV, and 7 TeV are presented by the ATLAS Collaboration. Single ratios, at a given s for the two processes and at different s for each process, as well as double ratios of the two processes at different s, are evaluated. The ratios are constructed using previously published ATLAS measurements of the tt¯ and Z-boson production cross sections, corrected to a common phase space where required, and a new analysis of Z → ℓ+ where ℓ = e, μ at s=13 TeV performed with data collected in 2015 with an integrated luminosity of 3.2 fb−1. Correlations of systematic uncertainties are taken into account when evaluating the uncertainties in the ratios. The correlation model is also used to evaluate the combined cross section of the Z → e+e and the Z → μ+μ channels for each s value. The results are compared to calculations performed at next-to-next-to-leading-order accuracy using recent sets of parton distribution functions. The data demonstrate significant power to constrain the gluon distribution function for the Bjorken-x values near 0.1 and the light-quark sea for x < 0.02.[Figure not available: see fulltext.]

  • 161. Aaboud, M.
    et al.
    Kastanas, Konstatinos
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at root s=8 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2017, no 4, 124Article in journal (Refereed)
    Abstract [en]

    To probe the Wtb vertex structure, top-quark and W-boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb(-1), recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W-boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling gR are also set from model-independent measurements.

  • 162. Aaboud, M.
    et al.
    Lund Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P.E.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s =13 TeV using the ATLAS detector2016In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 94, no 3, 032005Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb-1 at s=13 TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between ETmiss>250 GeV and ETmiss>700 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.

  • 163. Aaboud, M
    et al.
    Lund Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of exclusive γγ →w+W- production and search for exclusive Higgs boson production in pp collisions at s =8 TeV using the ATLAS detector2016In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 94, no 3, 032011Article in journal (Refereed)
    Abstract [en]

    Searches for exclusively produced W boson pairs in the process pp(γγ)→pW+W-p and an exclusively produced Higgs boson in the process pp(gg)→pHp have been performed using e±μ final states. These measurements use 20.2 fb-1 of pp collisions collected by the ATLAS experiment at a center-of-mass energy s=8 TeV at the LHC. Exclusive production of W+W- consistent with the Standard Model prediction is found with 3.0σ significance. The exclusive W+W- production cross section is determined to be σ(γγ→W+W-→e±μX)=6.9±2.2(stat)±1.4(sys) fb, in agreement with the Standard Model prediction. Limits on anomalous quartic gauge couplings are set at 95% confidence level as -1.7×10-6<a0W/Λ2<1.7×10-6 GeV-2 and -6.4×10-6<aCW/Λ2<6.3×10-6 GeV-2. A 95% confidence-level upper limit on the total production cross section for an exclusive Higgs boson is set to 1.2 pb.

  • 164. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in high-mass diphoton final states using 37 fb(-1) of proton-proton collisions collected at root s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 775, 105-125 p.Article in journal (Refereed)
    Abstract [en]

    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb(-1) at a centre-of-mass energy root s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.

  • 165. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Searches for the Z gamma decay mode of the Higgs boson and for new high-mass resonances in pp collisions at root s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, 112Article in journal (Refereed)
    Abstract [en]

    This article presents searches for the Z gamma decay of the Higgs boson and for narrow high-mass resonances decaying to Z gamma, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb(-1) of pp collisions at root s = 13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected - assuming Standard Model pp -> H -> Z gamma production and decay) upper limit on the production cross section times the branching ratio for pp -> H -> Z gamma is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level.

  • 166. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    L. Zwalinski,
    et. al.,
    Identification and rejection of pile-up jets at high pseudorapidity with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 9, 580Article in journal (Refereed)
    Abstract [en]

    The rejection of forward jets originating from additional proton–proton interactions (pile-up) is crucial for a variety of physics analyses at the LHC, including Standard Model measurements and searches for physics beyond the Standard Model. The identification of such jets is challenging due to the lack of track and vertex information in the pseudorapidity range | η| > 2.5. This paper presents a novel strategy for forward pile-up jet tagging that exploits jet shapes and topological jet correlations in pile-up interactions. Measurements of the per-jet tagging efficiency are presented using a data set of 3.2 fb- 1 of proton–proton collisions at a centre-of-mass energy of 13 TeV collected with the ATLAS detector. The fraction of pile-up jets rejected in the range 2.5 < | η| < 4.5 is estimated in simulated events with an average of 22 interactions per bunch-crossing. It increases with jet transverse momentum and, for jets with transverse momentum between 20 and 50 GeV, it ranges between 49% and 67% with an efficiency of 85% for selecting hard-scatter jets. A case study is performed in Higgs boson production via the vector-boson fusion process, showing that these techniques mitigate the background growth due to additional proton–proton interactions, thus enhancing the reach for such signatures.

  • 167. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, 84Article in journal (Refereed)
    Abstract [en]

    A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or μ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton-proton collisions at s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to a total integrated luminosity of 36.1 fb−1, is used for the search. No significant excess over the Standard Model prediction is observed. The results are interpreted in several simplified supersymmetric models featuring R-parity conservation or R-parity violation, extending the exclusion limits from previous searches. In models considering gluino pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When bottom squarks are pair-produced and decay to a chargino and a top quark, models with bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confidence level. In addition, model-independent limits are set on a possible contribution of new phenomena to the signal region yields.[Figure not available: see fulltext.].

  • 168. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Luminosity determination in pp collisions at √s = 8 TeV using the ATLAS detector at the LHC2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 761, 158-178 p.Article in journal (Refereed)
    Abstract [en]

    A measurement of the total pp cross section at the LHC at s=8 TeV is presented. An integrated luminosity of 500 μb−1 was accumulated in a special run with high-β beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the −t range from 0.014 GeV2 to 0.1 GeV2 to extrapolate t→0, the total cross section, σtot(pp→X), is measured via the optical theorem to beσtot(pp→X)=96.07±0.18(stat.)±0.85(exp.)±0.31(extr.)mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation t→0. In addition, the slope of the exponential function describing the elastic cross section at small t is determined to be B=19.74±0.05(stat.)±0.23(syst.)GeV−2.

  • 169. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr, Stockholm, Sweden.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr, Stockholm, Sweden.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr, Stockholm, Sweden.
    Zwalinski, L.
    et al.,
    Measurement of the relative width difference of the B-0-(B)over-bar(0) system with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 6, 081Article in journal (Refereed)
    Abstract [en]

    This paper presents the measurement of the relative width difference Delta Gamma(d)/Gamma(d) of the B-0-(B) over bar (0) system using the data collected by the Lambda TLAS experiment at the LHC in pp collisions at root s = 7 TeV and root s= 8 TeV and corresponding to an integrated luminosity of 25.2 fb(-1). The value of Delta Gamma(d)/Gamma(d) is obtained by comparing the decay-time distributions of B-0 -> J/Psi K-S and (B) over bar (0) -> J/Psi K*(0)(892) decays. The result is Delta Gamma(d)/Gamma(d) = (-0.1 +/- 1.1 (stat.) +/- 0.9 (syst.)) x 10(-2). Currently, this is the most precise single measurement of AFd/Fd. It agrees with the Standard Model prediction and the measurements by other experiments.

  • 170. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al,
    Measurement of the total cross section from elastic scattering in pp collisions at s=8 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 761, 158-178 p.Article in journal (Refereed)
    Abstract [en]

    A measurement of the total pp cross section at the LHC at s=8 TeV is presented. An integrated luminosity of 500 μb−1 was accumulated in a special run with high-β beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the −t range from 0.014 GeV2 to 0.1 GeV2 to extrapolate t→0, the total cross section, σtot(pp→X), is measured via the optical theorem to beσtot(pp→X)=96.07±0.18(stat.)±0.85(exp.)±0.31(extr.)mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation t→0. In addition, the slope of the exponential function describing the elastic cross section at small t is determined to be B=19.74±0.05(stat.)±0.23(syst.)GeV−2.

  • 171. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 6, 059Article in journal (Refereed)
    Abstract [en]

    Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum with the ATLAS experiment at the Large Hadron Collider are reported. The data were collected in proton-proton collisions at a centre-of- mass energy of 13TeV and correspond to an integrated luminosity of 3.2 fb(-1). The observed data are in agreement with the Standard Model expectations. Exclusion limits are presented in models of new phenomena including pair production of dark matter candidates or large extra spatial dimensions. In a simplified model of dark matter and an axial-vector mediator, the search excludes mediator masses below 710 GeV for dark matter candidate masses below 150 GeV. In an effective theory of dark matter production, values of the suppression scale M-* up to 570 GeV are excluded and the effect of truncation for various coupling values is reported. For the ADD large extra spatial dimension model the search places more stringent limits than earlier searches in the same event topology, excluding M-D up to about 2.3 (2.8) TeV for two (six) additional spatial dimensions; the limits are reduced by 20 40% depending on the number of additional spatial dimensions when applying a truncation procedure.

  • 172. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et, al
    Measurement of the b(b)over-bar dijet cross section in pp collisions at root s=7TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 12, 670Article in journal (Refereed)
    Abstract [en]

    The dijet production cross section for jets containing a b-hadron (b-jets) has been measured in protonproton collisions with a centre-of-mass energy of root s = 7TeV, using the ATLAS detector at the LHC. The data used correspond to an integrated luminosity of 4.2 fb(-1). The cross section is measured for events with two identified b-jets with a transverse momentum pT > 20GeV and a minimum separation in the eta-phi plane of Delta R = 0.4. At least one of the jets in the event is required to have p(T) > 270GeV. The cross section is measured differentially as a function of dijet invariant mass, dijet transverse momentum, boost of the dijet system, and the rapidity difference, azimuthal angle and angular distance between the b-jets. The results are compared to different predictions of leading order and next-to-leading order perturbative quantum chromodynamics matrix elements supplemented with models for parton-showers and hadronization.

  • 173. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    A measurement of material in the ATLAS tracker using secondary hadronic interactions in 7 TeV p p collisions2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, P11020Article in journal (Refereed)
    Abstract [en]

    Knowledge of the material in the ATLAS inner tracking detector is crucial in under-standing the reconstruction of charged-particle tracks, the performance of algorithms that identify jets containing b-hadrons and is also essential to reduce background in searches for exotic particles that can decay within the inner detector volume. Interactions of primary hadrons produced in pp collisions with the material in the inner detector are used to map the location and amount of this material. The hadronic interactions of primary particles may result in secondary vertices, which in this analysis are reconstructed by an inclusive vertex-finding algorithm. Data were collected using minimum-bias triggers by the ATLAS detector operating at the LHC during 2010 at centre-of-mass energy root s = 7 TeV, and correspond to an integrated luminosity of 19 nb(-1). Kinematic properties of these secondary vertices are used to study the validity of the modelling of hadronic interactions in simulation. Secondary-vertex yields are compared between data and simulation over a volume of about 0.7m(3) around the interaction point, and agreement is found within overall uncertainties.

  • 174. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 1, 26Article in journal (Refereed)
    Abstract [en]

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb(-1) of proton-proton collision data at root s = 7 TeV from 2010 and 0.1 nb(-1) of data at root s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of GEANT4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

  • 175. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at root s=13 TeV using the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, no 7, 490Article in journal (Refereed)
    Abstract [en]

    The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  • 176. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead, and proton-proton collisions with the ATLAS detector2017In: Physical review C, ISSN 2469-9985, Vol. 95, no 6, 064914Article in journal (Refereed)
  • 177. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Measurement of jet activity in top quark events using the e mu final state with two b-tagged jets in pp collisions at root s=8 TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 074, no 9Article in journal (Refereed)
    Abstract [en]

    Measurements of the jet activity in t (t) over bar events produced in proton-proton collisions at root s = 8 TeV are presented, using 20.3 fb(-1) of data collected by the ATLAS experiment at the Large Hadron Collider. The events were selected in the dilepton e mu decay channel with two identified b-jets. The numbers of additional jets for various jet transverse momentum ( p(T)) thresholds, and the normalised differential cross-sections as a function of p(T) for the five highest-p(T) additional jets, were measured in the jet pseudorapidity range broken vertical bar eta broken vertical bar < 4.5. The gap fraction, the fraction of events which do not contain an additional jet in a central rapidity region, was measured for several rapidity intervals as a function of the minimum p(T) of a single jet or the scalar sum of p(T) of all additional jets. These fractions were also measured in different intervals of the invariant mass of the e mu b<(b)over bar> b system. All measurements were corrected for detector effects, and found to be mostly well-described by predictions from next-to-leading-order and leading-order t (t) over bar t event generators with appropriate parameter choices. The results can be used to further optimise the parameters used in such generators.

  • 178. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at root s = 8 TeV with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 8Article in journal (Refereed)
  • 179. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at root s=13 TeV with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, 086Article in journal (Refereed)
    Abstract [en]

    A measurement of the t-channel single-top-quark and single-top-antiquark production cross-sections in the lepton+jets channel is presented, using 3.2 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC in 2015. Events are selected by requiring one charged lepton (electron or muon), missing transverse momentum, and two jets with high transverse momentum, exactly one of which is required to be b-tagged. Using a binned maximum-likelihood fit to the discriminant distribution of a neural network, the cross-sections are determined to be sigma(tq) = 156 +/- 5 (stat.) +/- 27 (syst.) +/- 3 (lumi.) pb for single top-quark production and sigma((t) over barq) = 91 +/- 4 (stat.) +/- 18 (syst.) +/- 2 (lumi.) pb for single top-antiquark production, assuming a top-quark mass of 172.5 GeV. The cross-section ratio is measured to be R-t = sigma(tq) / sigma((t) over barq) = 1.72 +/- 0.09 (stat.) +/- 0.18 (syst.). All results are in agreement with Standard Model predictions.

  • 180. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the Inelastic Proton-Proton Cross Section at root s=13 TeV with the ATLAS Detector at the LHC2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 8, 182002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 μb-1 of pp collisions at a center-of-mass energy s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07<|η|<3.86) of the detector. A cross section of 68.1±1.4 mb is measured in the fiducial region ξ=MX2/s>10-6, where MX is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with MX>13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  • 181. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data2016In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 76, no 12, 666Article in journal (Refereed)
    Abstract [en]

    The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb- 1 of pp collision data collected at the LHC at s=7 TeV and 20.3 fb- 1 at s=8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity.

  • 182. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the top quark mass in the tt¯→dilepton channel from s=8 TeV ATLAS data2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 761, 350-371 p.Article in journal (Refereed)
    Abstract [en]

    The top quark mass is measured in the tt¯→dilepton channel (lepton=e,μ) using ATLAS data recorded in the year 2012 at the LHC. The data were taken at a proton–proton centre-of-mass energy of s=8 TeV and correspond to an integrated luminosity of about 20.2 fb−1. Exploiting the template method, and using the distribution of invariant masses of lepton–b-jet pairs, the top quark mass is measured to be mtop=172.99±0.41 (stat)±0.74 (syst) GeV, with a total uncertainty of 0.84 GeV. Finally, a combination with previous ATLAS mtop measurements from s=7 TeV data in the tt¯→dilepton and tt¯→lepton+jets channels results in mtop=172.84±0.34 (stat)±0.61 (syst) GeV, with a total uncertainty of 0.70 GeV.

  • 183. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at s=13TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 761, 136-157 p.Article in journal (Refereed)
    Abstract [en]

    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2fb−1 of proton–proton collisions at a centre-of-mass energy of s=13TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:σtt¯=818±8(stat)±27(syst)±19(lumi)±12(beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

  • 184. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the t(t)over-barZ and t(t)over-barW production cross sections in multilepton final states using 3.2 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector2017In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 77, no 1, 40Article in journal (Refereed)
    Abstract [en]

    A measurement of the t (t) over barZ and t (t) over barW production cross sections in final states with either two same-charge muons, or three or four leptons (electrons or muons) is presented. The analysis uses a data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015, corresponding to a total integrated luminosity of 3.2 fb(-1). The inclusive cross sections are extracted using likelihood fits to signal and control regions, resulting in sigma(t (t) over barZ) = 0.9 +/- 0.3 pb and sigma(t (t) over barW) = 1.5 +/- 0.8 pb, in agreement with the Standard Model predictions.

  • 185. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the W±Z boson pair-production cross section in pp collisions at s=13 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 762, 1-22 p.Article in journal (Refereed)
    Abstract [en]

    The production of W±Z events in proton–proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb−1. The W±Z candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is σW±Z→ℓ′νℓℓ fid.=63.2±3.2(stat.)±2.6(sys.)±1.5(lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is 53.4−2.8 +3.6 fb. The extrapolation of the measurement from the fiducial to the total phase space yields σW±Z tot.=50.6±2.6(stat.)±2.0(sys.)±0.9(th.)±1.2(lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of 48.2−1.0 +1.1 pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent W+Z and W−Z cross sections and their ratio.

  • 186. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of top quark pair differential cross sections in the dilepton channel in pp collisions at root s=7 and 8 TeV with ATLAS2017In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 94, no 9, 092003Article in journal (Refereed)
    Abstract [en]

    Measurements of normalized differential cross sections of top quark pair (t (t) over bar) production are presented as a function of the mass, the transverse momentum and the rapidity of the t (t) over bar system in proton-proton collisions at center-of-mass energies of root s = 7 and 8 TeV. The data set corresponds to an integrated luminosity of 4.6 fb(-1) at 7 TeV and 20.2 fb(-1) at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a b hadron. The measured distributions are corrected for detector effects and selection efficiency to cross sections at the parton level. The differential cross sections are compared with different Monte Carlo generators and theoretical calculations of t (t) over bar production. The results are consistent with the majority of predictions in a wide kinematic range.

  • 187. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Measurement of (WW +/-)-W-+/- vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector2017In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 96, no 1, 012007Article in journal (Refereed)
    Abstract [en]

    This paper presents the extended results of measurements of (WW +/-)-W-+/- jj production and limits on anomalous quartic gauge couplings using 20.3 fb(-1) of proton-proton collision data at root s = 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two leptons (e or mu) with the same electric charge and at least two jets are analyzed. Production cross sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. An additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters alpha 4 and alpha 5, is introduced, which allows more stringent limits on these parameters compared to the previous ATLAS measurement.

  • 188. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Measurements of psi(2S) and X(3872) -> J/psi pi (+) pi (-) production in pp collisions at root s=8 Tev with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, 117Article in journal (Refereed)
    Abstract [en]

    Differential cross sections are presented for the prompt and non-prompt production of the hidden-charm states X(3872) and psi(2S), in the decay mode J/psi pi (+) pi (-), measured using 11.4 fb(-1) of pp collisions at root s = 8 Tev by the ATLAS detector at the LHC. The ratio of cross-sections X(3872)/psi(2S) is also given, separately for prompt and non-prompt components, as well as the non-prompt fractions of X(3872) and psi(2S). Assuming independent single effective lifetimes for non-prompt X(3872) and psi(2S) production gives separating short- and long-lived contributions, assuming that the short-lived component is due to B (c) decays, gives R (B) = (3.57 +/- 0.33(stat) +/- 0.11(sys)) x 10(-2), with the fraction of non-prompt X(3872) produced via B (c) decays for p (T)(X(3872)) > 10 GeV being (25 +/- 13(stat) +/- 2(sys) +/- 5(spin))%. The distributions of the dipion invariant mass in the X(3872) and psi(2S) decays are also measured and compared to theoretical predictions.

  • 189. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton-proton collisions at the LHC2017In: The European Physical Journal C, ISSN 1434-6044, Vol. 77, no 5Article in journal (Refereed)
    Abstract [en]

    This paper presents the method and performance of primary vertex reconstruction in proton-proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of root s = 8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30 mu m is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20 mu m and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing.

  • 190. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for bottom squark pair production in proton–proton collisions at √s=13 TeV with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 10, 547Article in journal (Refereed)
    Abstract [en]

    The result of a search for pair production of the supersymmetric partner of the Standard Model bottom quark (b~1) is reported. The search uses 3.2 fb- 1 of pp collisions at s=13 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2015. Bottom squarks are searched for in events containing large missing transverse momentum and exactly two jets identified as originating from b-quarks. No excess above the expected Standard Model background yield is observed. Exclusion limits at 95 % confidence level on the mass of the bottom squark are derived in phenomenological supersymmetric R-parity-conserving models in which the b~1 is the lightest squark and is assumed to decay exclusively via b~1→bχ~10, where χ~10 is the lightest neutralino. The limits significantly extend previous results; bottom squark masses up to 800 (840) GeV are excluded for the χ~10 mass below 360 (100) GeV whilst differences in mass above 100 GeV between the b~1 and the χ~10 are excluded up to a b~1 mass of 500 GeV.

  • 191. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 765, 11-31 p.Article in journal (Refereed)
    Abstract [en]

    A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 fb−1 of pp collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum bb¯ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a Z′ gauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional Z′ boson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particles.

  • 192. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at √s = 13 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 763, 251-268 p.Article in journal (Refereed)
    Abstract [en]

    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb-1 of pp collisions at √ s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter. © 2016 The Author.

  • 193. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for heavy resonances decaying to a Z boson and a photon in pp collisions at √s = 13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 764, 11-30 p.Article in journal (Refereed)
    Abstract [en]

    This Letter presents a search for new resonances with mass larger than 250 GeV, decaying to a Z boson and a photon. The dataset consists of an integrated luminosity of 3.2 fb−1 of pp   collisions collected at  with the ATLAS detector at the Large Hadron Collider. The Z   bosons are identified through their decays either to charged, light, lepton pairs (e+e, μ+μ) or to hadrons. The data are found to be consistent with the expected background in the whole mass range investigated and upper limits are set on the production cross section times decay branching ratio to  of a narrow scalar boson with mass between 250 GeV and 2.75 TeV.

  • 194. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for high-mass new phenomena in the dilepton final state using proton–proton collisions at s=13TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 761, 372-392 p.Article in journal (Refereed)
    Abstract [en]

    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses 3.2fb−1 of proton–proton collision data, collected at s=13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the model.

  • 195. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new phenomena in different-flavour high-mass dilepton final states in pp collisions at root s=13Tev with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 10, 541Article in journal (Refereed)
    Abstract [en]

    A search is performed for a heavy particle decaying into different flavour dilepton pairs (, or ), using 3.2 fb of proton-proton collision data at TeV collected in 2015 by the ATLAS detector at the Large Hadron Collider. No excess over the Standard Model prediction is observed. Limits at the 95 % credibility level are set on the mass of a boson with lepton-flavour-violating couplings at 3.0, 2.7 and 2.6 TeV, and on the mass of a supersymmetric sneutrino with R-parity-violating couplings at 2.3, 2.2 and 1.9 TeV, for , and final states, respectively. The results are also interpreted as limits on the threshold mass for quantum black hole production.

  • 196. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for new resonances decaying to a W or Z boson and a Higgs boson in the ℓ+ℓ−bb¯, ℓνbb¯, and νν¯bb¯ channels with pp collisions at s=13 TeV with the ATLAS detector2017In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 765, 32-52 p.Article in journal (Refereed)
    Abstract [en]

    A search is presented for new resonances decaying to a W or Z boson and a Higgs boson in the ℓ+ℓ−bb¯, ℓνbb¯, and νν¯bb¯ channels in pp collisions at s=13 TeV with the ATLAS detector at the Large Hadron Collider using a total integrated luminosity of 3.2 fb−1. The search is conducted by looking for a localized excess in the WH/ZH invariant or transverse mass distribution. No significant excess is observed, and the results are interpreted in terms of constraints on a simplified model based on a phenomenological Lagrangian of heavy vector triplets.

  • 197. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et. al.,
    Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2016In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 762, 334-352 p.Article in journal (Refereed)
    Abstract [en]

    A search for W' bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb(-1) of pp collision data collected at root s = 13 TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the W' boson cross-section times branching ratio to leptons are set as a function of the W' mass. Within the Sequential Standard Model W' masses below 4.07 TeV are excluded at the 95% confidence level. This extends the limit set using LHC data at root s = 8 TeV by around 800 GeV. (C) 2016 The Author(s). Published by Elsevier B.V.

  • 198. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at root s=13 TeV with the ATLAS detector2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 5, 052002Article in journal (Refereed)
    Abstract [en]

    A search for Higgs-boson pair production in the bbbb final state is carried out with 3.2 fb(-1) of protonproton collision data collected at root s = 13 TeV with the ATLAS detector. The data are consistent with the estimated background and are used to set upper limits on the production cross section of Higgs-boson pairs times branching ratio to bbbb for both nonresonant and resonant production. In the case of resonant production of Kaluza-Klein gravitons within the Randall-Sundrum model, upper limits in the 24 to 91 fb range are obtained for masses between 600 and 3000 GeV, at the 95% confidence level. The production cross section times branching ratio for nonresonant Higgs-boson pairs is also constrained to be less than 1.22 pb, at the 95% confidence level.

  • 199. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    et al.,
    Search for resonances in diphoton events at root s=13TeV with the ATLAS detector2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 9, 001Article in journal (Refereed)
    Abstract [en]

    Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on protonproton collision data corresponding to an integrated luminosity of 3.2 fb(-1) at root s = 13TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13TeV and 8TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported.

  • 200. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton–proton collisions at √s=13 TeV recorded with the ATLAS detector2016In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 12, 683Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton has been performed using 3.2 fb-1 of proton–proton collision data at s=13TeV recorded by the ATLAS detector at the Large Hadron Collider in 2015. Two exclusive final states are considered, with either exactly one or at least two tau leptons. No excess over the Standard Model prediction is observed in the data. Results are interpreted in the context of gauge-mediated supersymmetry breaking and a simplified model of gluino pair production with tau-rich cascade decays, substantially improving on previous limits. In the GMSB model considered, supersymmetry-breaking scale (Λ) values below 92TeV are excluded at the 95% confidence level, corresponding to gluino masses below 2000GeV. For large values of tan β, values of Λ up to 107TeV and gluino masses up to 2300GeV are excluded. In the simplified model, gluino masses are excluded up to 1570GeV for neutralino masses around 100GeV. Neutralino masses below 700GeV are excluded for all gluino masses between 800 and 1500GeV, while the strongest exclusion of 750GeV is achieved for gluino masses around 1450GeV.

1234567 151 - 200 of 199143
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf