Change search
Refine search result
1234567 151 - 200 of 695
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Nilsson, B
    Nilsson, G E
    Ett fågeltorn berättar: gräsänderna i Nasen2001In: Vår fågelvärld, ISSN 0042-2649, Vol. 60, no 4, p. 16-18Article in journal (Other (popular science, discussion, etc.))
  • 152.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Nummi, Petri
    Finland.
    Sjöberg, Kjell
    SLU.
    Pöysä, Hannu
    Finland.
    Andkonferens på prärien2001In: Vår fågelvärld, ISSN 0042-2649, Vol. 60, no 8, p. 25-Article in journal (Other (popular science, discussion, etc.))
  • 153.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Olsen, Björn
    Flyttfåglarna är inte några livsfarliga influensamissiler2006In: Dagens Nyheter, ISSN 1101-2447, no 03-02Article in journal (Other (popular science, discussion, etc.))
  • 154.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Olsson, Camilla
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Månsson, Johan
    SLU/Grimsö.
    Liljebäck, Niklas
    Svenska Jägareförbundet.
    Gäss: ny kunskap krävs2017In: Vår fågelvärld, ISSN 0042-2649, no 4Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    "Dum som en gås" är ett märkligt talesätt. Gäss är tvärtom vaksamma, sociala och förnämligt anpassade till sin miljö. De hittar och väljer den föda som bäst svarar mot årstidens behov, och de fattar strategiska beslut inför flyttning och häckning. Att de också är framgångsrika visar den sentida starka ökningen av flera arter.

  • 155.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Pöysä, H.
    Knipa och gräsand är goda grannar2012In: Vår fågelvärld, ISSN 0042-2649, Vol. 71, no 4, p. 39-Article in journal (Other (popular science, discussion, etc.))
  • 156.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Sjöberg, Kjell
    SLU.
    Nummi, Petri
    Finland.
    Pöysä, Hannu
    Finland.
    Hur påverkas andstammarna av jakt?2000In: Jakt och jägare, ISSN 1401-8306, Vol. 60, no 10, p. 44-45Article in journal (Other (popular science, discussion, etc.))
  • 157.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Svensson, M
    Tjernberg, M
    Skedand2007Other (Other academic)
  • 158.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Söderquist, Pär
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Hur utsatta är utsatta änder?2012In: Vår fågelvärld, ISSN 0042-2649, Vol. 71, no 2, p. 40-42Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Utsättningar av djur och växter har förekommit mycket länge. Slottens svandammar har kommit till av detta skäl, godsen har satt ut jaktbart vilt. Jordbruk och skogsbruk bygger på idén att plantera ut för att sedan skörda, och även naturvården ägnar sig åt ”stödutplanteringar”. Ingen fågelart sätts ut i så stora antal som gräsanden. Men vad är det för änder det handlar om? Vilka blir effekterna?

  • 159.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Söderquist, Pär
    Kristianstad University, Research environment Man & Biosphere Health (MABH). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Gunnarsson, Gunnar
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Thulin, Carl-Gustaf
    SLU, Umeå.
    Champagnon, Jocelyn
    Frankrike.
    Guillemain, Matthieu
    Frankrike.
    Kreisinger, Jakub
    Tjeckien.
    Prins, H. H. T.
    Nederländerna.
    Crooijmans, R. P. M. A.
    Nederländerna.
    Kraus, R. H. S.
    Tyskland.
    Farmed European mallards are genetically different and cause introgression in the wild population following releases2016Conference paper (Refereed)
    Abstract [en]

    The practice of restocking already viable populations to increase harvest potential has since long been common in forestry, fisheries and wildlife management. The potential risks of restocking native species have long been overshadowed by the related issue of invasive alien species. However, during the last decade releases of native species with potentially non-native genome have received more attention. A suitable model to study genetic effects of large-scale releases of native species is the Mallard Anas platyrhynchos, being the most widespread duck in the world, largely migratory, and an important quarry species. More than 3 million unfledged hatchlings are released each year around Europe to increase local harvest. The aims of this study were to determine if wild and released farmed Mallards differ genetically, if there are signs of previous or ongoing introgression between wild and farmed birds, and if the genetic structure of the wild Mallard population has changed since large-scale releases started in Europe in the 1970s. Using 360 Single Nucleotide Polymorphisms (SNPs) we found that the genetic structure differed among historical wild, present-day wild, and farmed Mallards in Europe. We also found signs of introgression in the wild Mallard population, that is, individuals with a genetic background of farmed stock are part of the present free-living population. Although only a small proportion of the released Mallards appears to survive to merge with the free-living breeding population, their numbers are still so large that the genetic impact may have significance for the wild population in terms of individual survival and longterm fitness.

  • 160.
    Elmberg, Johan
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Tjernberg, I
    Nilsson, SG
    Forslund, P
    Swanberg, P-O
    Nötkråka2007Other (Other academic)
  • 161.
    El-Schich, Zahra
    et al.
    Malmö University.
    Mölder, Anna
    Phase Holographic Imaging AB, Lund.
    Tassidis, Helena
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Härkönen, Pirkko
    Finland.
    Miniotis, Maria Falck
    Malmö University.
    Gjörloff Wingren, Anette
    Malmö University.
    Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy2015In: Journal of Structural Biology, ISSN 1047-8477, E-ISSN 1095-8657, Vol. 189, no 3, p. 207-212Article in journal (Refereed)
    Abstract [en]

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.

  • 162.
    Erduran, Sibel
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Philosophy, chemistry and education: an introduction2013In: Science & Education, ISSN 0926-7220, E-ISSN 1573-1901, Vol. 22, no 7, p. 1559-1562Article in journal (Refereed)
  • 163.
    Erduran, Sibel
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Special issue reviewers2012In: Science & Education, ISSN 0926-7220, E-ISSN 1573-1901Article in journal (Other (popular science, discussion, etc.))
  • 164.
    Erduran, Sibel
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Jimenez-Aleixandre, Maria Pilar
    Universidade de Santiago de Compostela.
    Argumentation in science education research: perspectives from Europe2012In: Science education research and practice in Europe: retrospective and prospective / [ed] Doris Jorde & Justin Dillon, Rotterdam: Sense Publishers, 2012, p. 253-289Chapter in book (Refereed)
  • 165.
    Erduran, Sibel
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Learning in Science and Mathematics (LISMA).
    Mugaloglu, Ebru Z.
    School of Education, Bogazici University, Istanbul.
    Interactions of economics of science and science education: investigating the implications for science teaching and learning2013In: Science & Education, ISSN 0926-7220, E-ISSN 1573-1901, Vol. 22, no 10, p. 2405-2425Article in journal (Refereed)
    Abstract [en]

    In recent years, there has been upsurge of interest in the applications of interdisciplinary perspectives on science in science education. Within this framework, the implications of the so-called “economics of science” is virtually an uncharted territory. In this paper, we trace a set of arguments that provide a dialectic engagement with two conflicting agendas: (a) the broadening of science education to include the contextual positioning of science including economical dimensions of science, and (b) the guarding of the proliferation and reinforcement of those aspects of economics of science such as commodification of scientific knowledge that embraces inequity and restricted access to the products of the scientific enterprise. Our aim is broadly to engage, as science education researchers, in the debates in economics of science so as to investigate the reciprocal interactions that might exist with science education. In so doing, we draw out some recommendations whereby the goals of science education might provide as much input into the intellectual debates within philosophy of science on issues related to the commercialisation and commodification of scientific knowledge. We explore some implications of commodification of science in the context of modelling and argumentation in science education.

  • 166.
    Eriksson, Maria
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Digital loggbok för reflektion och lärande under VFU2017In: Högskolepedagogisk debatt, ISSN 2000-9216, no 2, p. 4-17Article in journal (Refereed)
  • 167.
    Eriksson, Susanne P.
    et al.
    Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg.
    Hernroth, Bodil
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Baden, Susanne P.
    Department of Biological and Environmental Sciences-Kristineberg, University of Gothenburg.
    Stress biology and immunology in Nephrops norvegicus2013In: The ecology and biology of Nephrops norvegicus, Amsterdam: Academic Press, 2013, Vol. 64, p. 149-200Chapter in book (Refereed)
    Abstract [en]

    The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.

  • 168.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Astronomi på distans: 2011In: Populär Astronomi, ISSN 1650-7177, Vol. 12, no 3, p. 38-40Article in journal (Other (popular science, discussion, etc.))
    Abstract [sv]

    Dagens studenter är mycket mer flexibla i sina studier än tidigare. Idag läser många studenter kurser på olika universitet och högskolor samtidigt. Detta är möjligt genom att många kurser ges på distans via internet. I denna artikel kommer jag att berätta lite om de erfarenheter som jag har efter att ha undervisat ca 10 år på distans.

  • 169.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    En astronomisk reflektion över bin och honungsproduktion.2006In: Bitidningen, ISSN 0006-3886Article in journal (Other (popular science, discussion, etc.))
  • 170.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Från Stjärnfläckar till Stjärnobservationer: bland galaxer, stjärnor, planeter och tankar kring dessa2017Conference paper (Other academic)
    Abstract [sv]

    Att lära sig astronomi, eller naturvetenskap över lag, involverar så mycket och kan liknas vid att lära sig ett nytt språk. Eleven måste lära sig detta språk och det innefattar, förutom skrivet och talat fackspråk, en mängd mer eller mindre begripliga sk representationerna, aktiviteter och verktyg. Det är därför en grannlaga uppgift att lära sig naturvetenskap och eleverna behöver hjälp med att lära sig naturvetenskapens språk. Det sker i allmänhet samtidigt som de lär sig ämnet, men jag kommer att prata om att det krävs träning av vissa speciella färdigheter för att underlätta denna process. Detta involverar disciplinärt urskiljande samt multidimensionellt tänkande. Jag kommer att beskriva ett teoretiskt ramverk, med praktiska exempel från astronomins värld, på hur detta kan ske.

  • 171.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    “Reading” representations: what does this have to do with teaching and learning physics?2017Conference paper (Other academic)
    Abstract [en]

    Learning physics can be compared to learning a new language in several respects. This includes learning to “read and write” the representations that carry the meaning of the language. In the case of physics these representations include text, gestures, mathematics, graphs, images, simulations and animations. For those who are fluent in the language, these representations are full of meaning but for the novice learning to discern the relevant disciplinary aspects of these representations (disciplinary discernment) can be a struggle. Research has shown that often teachers assume that students “see” the same things in a representation that they do. However, this is usually not true. Learning to discern disciplinary aspects of representations is something that students need help with (scaffolding). One important aspect of learning representational fluency in physics is that of spatial thinking, in particular learning to extrapolate three-dimensionality from one- and two-dimensional representations.

    In this talk I will present a theoretical framework describing the process of teaching and learning representational disciplinary fluency. I will also provide some examples to illustrate the framework, from the perspectives of the instructor and the student.

  • 172.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Reading the Sky And The Spiral of Teaching and Learning in AstronomyManuscript (preprint) (Other academic)
    Abstract [en]

    This theoretical paper introduces a new way to view and characterize teaching and learning astronomy. It describes a framework, based on results from empirical data, analyzed through standard qualitative research methodology, in which a theoretical model for vital competencies of learning astronomy is proposed: Reading the Sky . This model takes into account not only disciplinary knowledge  but also disciplinary discernment  and extrapolating three-dimensionality . Together, these constitute the foundation for the competency referred to as Reading the Sky . In this paper, I describe these concepts and how I see them being connected and intertwined to form a new competency model for learning astronomy and how this can be used to inform astronomy education to better match the challenges students face when entering the discipline of astronomy: The Spiral of Teaching and Learning . Two examples are presented to highlight how this model can be used in teaching situations.

  • 173.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Reading the Sky and The Spiral of Teaching and Learning in Astronomy2017Conference paper (Other academic)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also the ability to discern meaning from disciplinary specific representations (disciplinary discernment). This includes the ability to think spatially, in particular, extrapolating three-dimensionality from a one- or two-dimensional input i.e. to be able to visualize in one’s mind how a three-dimensional astronomical object may look from a one- or two-dimensional input such as from a visual image or a mathematical representation. In this talk I demonstrate that these abilities are deeply intertwined, and that to learn astronomy at any level demands becoming fluent in all three aspects (disciplinary knowledge, disciplinary discernment and spatial thinking). A framework is presented for how these competencies can be described, and combined, as a new and innovative way to frame teaching and learning in astronomy. It is argued that using this framework “Reading the Sky” optimizes the learning outcomes for students. The talk also suggests strategies for how to implement this approach for improving astronomy teaching and learning overall.

  • 174.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Reading the sky and the spiral of teaching and learning in astronomy2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary discernment, and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input. Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinaryspecific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn astronomy at any level demands becoming fluent in all three. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teaching and learning in astronomy for optimizing the learning outcome of students - what we refer to as developing the ability to Read the Sky. We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

  • 175.
    Eriksson, Urban
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Reading the sky: from starspots to spotting stars2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis encompasses two research fields in astronomy: astrometry and astronomy education and they are discussed in two parts. These parts represent two sides of a coin; astrometry, which is about constructing 3D representations of the Universe, and AER, where for this thesis, the goal is to investigate university students’ and lecturers’ disciplinary discernment vis-à-vis the structure of the Universe and extrapolating three-dimensionality.

    Part I presents an investigation of stellar surface structures influence on ultra-high-precision astrometry. The expected effects in different regions of the HR-diagram were quantified. I also investigated the astrometric effect of exoplanets, since astrometric detection will become possible with projects such as Gaia. Stellar surface structures produce small brightness variations, influencing integrated properties such as the total flux, radial velocity and photocenter position. These properties were modelled and statistical relations between the variations of the different properties were derived. From the models it is clear that for most stellar types the astrometric jitter due to stellar surface structures is expected to be of order 10 μAU or greater. This is more than the astrometric displacement typically caused by an Earth-sized exoplanet in the habitable zone, which is about 1–4 μAU, making astrometric detection difficult.

    Part II presents an investigation of disciplinary discernment at the university level. Astronomy education is a particularly challenging experience for students because discernment of the ‘real’ Universe is problematic, making interpretation of the many disciplinary-specific representations used an important educational issue. The ability to ‘fluently’ discern the disciplinary affordances of these representations becomes crucial for the effective learning of astronomy. To understand the Universe I conclude that specific experiences are called. Simulations could offer these experiences, where parallax motion is a crucial component. In a qualitative study, I have analysed students’ and lecturers’ discernment while watching a simulation video, and found hierarchies that characterize the discernment in terms of three-dimensionality extrapolation and an Anatomy of Disciplinary Discernment. I combined these to define a new construct: Reading the Sky. I conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this in astronomy education.

  • 176.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Teaching and learning in astronomy education – a spiral approach to reading the sky2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. However, learning astronomy at university level is a demanding task for many students. The learning pro-cess involves not only disciplinary knowledge, but also the ability to discern affordances from disciplinary specific representations used within the astronomy discourse, which we call discipli-nary discernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that con-stitutes the discipline, disciplinary discernment involves discernment of the affordances of disci-plinary-specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are inter-twined and to learn astronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and in-novative way to frame teaching and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

    References

    Eriksson, Urban. (2014). Reading the Sky - From Starspots to Spotting Stars. (Doctor of Philosophy), Uppsala University, Uppsala. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234636  

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014a). Introducing the Anatomy of Disciplinary Discernment - An example for Astronomy. European Journal of Science and Mathematics Education, 2(3), 167-182. 

    Eriksson, Urban, Linder, Cedric, Airey, John, & Redfors, Andreas. (2014b). Who needs 3D when the Universe is flat? Science Education, 98(3), 31. 

  • 177.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The spiral of teaching and learning in astronomy education2015Conference paper (Refereed)
    Abstract [en]

    Teaching and learning astronomy is known to be both exciting and challenging. To learn astronomy demands not only disciplinary knowledge, but also ability to discern affordances from disciplinary specific representations used within the discourse, which we call disciplinary dis- cernment (Eriksson, Linder, Airey, & Redfors, 2014a) and ability to think spatially, which we refer to as extrapolating three-dimensionality from a two dimensional input (Eriksson, Linder, Airey, & Redfors, 2014b). Disciplinary knowledge involves all the knowledge that constitutes the discipline, disciplinary discernment involves discernment of the affordances of disciplinary- specific representations, and extrapolating three-dimensionality involves the ability to visualize in ones mind how a three-dimensional astronomical object may look from a two-dimensional input (image or simulation). In this paper we argue that these abilities are intertwined and to learn as- tronomy at any level demands becoming fluent in all three abilities. A framework is presented for how these abilities can be described and combined as a new and innovative way to frame teach- ing and learning in astronomy at university level for optimizing the learning outcome of students - what we refer to as developing the ability of Reading the Sky (Eriksson, 2014). We conclude that this is a vital competency needed for learning astronomy and suggest strategies for how to implement this to improve astronomy education.

  • 178.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The Spiral of Teaching and Learning in Physics and Astronomy2016Conference paper (Refereed)
    Abstract [en]

    When students start to learn physics and astronomy, they immediately are confronted with a multitude of representations packed with disciplinary information. This information is embedded in these representations and the students need to learn to discern the relevant information. This is not straightforward, and requires a lot of teaching and practice before being mastered. It carries many similarities to learning a new language – the language of physics, astronomy, or other sciences. 

    However, it all starts with disciplinary discernment from those representations, something that has been shown to be challenging for students. Often the teacher who knows the representations and their appresented meaning—their disciplinary affordances—assumes that the students discern the same things in those representations as the teacher does. Research has shown that this is not the case and such assumptions leads to educational problems for the students and make learning physics or astronomy unnecessary difficult, or even inaccessible to the students. The students need be given the opportunity to develop their competency in discerning disciplinary-specific relevant aspects from representations; a competency referred to as Reading the Sky in an astronomy context, and described by the Anatomy of Disciplinary Discernment (Eriksson, 2014a; Eriksson et al., 2014b).

    Furthermore, physics and astronomy are subjects aiming to describe the real multidimensional world, hence involve a substantial amount of spatial thinking. The students need to learn to extrapolate three-dimensionality in their minds from two-dimensional representations, which have been shown to be challenging to students. Unfortunately, this competency is often taken for granted and rarely addressed in teaching (Eriksson et al., 2014c).

    In this talk we present a model in which we identify and describe the critical competencies needed to “read” disciplinary-specific representations; it concerns not only disciplinary discernment but also spatial thinking and disciplinary knowledge. These are combined into the Spiral of Teaching and Learning (STL), a new and powerful model for optimizing teaching and learning science (Eriksson, 2014a; Eriksson, 2015). We discuss consequences and possibilities when applying the STL model and give an example of how this model can be used in teaching and learning astronomy.

  • 179.
    Eriksson, Urban
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Undervisning på distans – framtiden för universitet och högskolor?: ett exempel från astronomiundervisning på Högskolan Kristianstad2016In: Högskolepedagogisk debatt, ISSN 2000-9216, no 1, p. 46-73Article in journal (Refereed)
    Abstract [sv]

    Dagens studenter är mycket mer flexibla i sina studier än tidigare. Idag läser många studenter kurser på olika universitet och högskolor samtidigt. Detta är möjligt genom att många kurser och program ges på distans via internet. I denna artikel diskuteras de möjligheter och begränsningar som jag anser finns med den undervisningsform som allt mer präglar undervisning vid universitet och högskolor, nationellt och internationellt; distansundervisning.

  • 180.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Lindegren, L.
    Lund Observatory, Lund University.
    Limits of ultra-high-precision optical astrometry: stellar surface structures2007In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 476, no 3, p. 1389-1400Article in journal (Refereed)
    Abstract [en]

    Aims. To investigate the astrometric effects of stellar surface structures as a practical limitation to ultra-high-precision astrometry (e.g. in the context of exoplanet searches) and to quantify the expected effects in different regions of the HR-diagram. Methods. Stellar surface structures (spots, plages, granulation, non-radial oscillations) are likely to produce fluctuations in the integrated flux and radial velocity of the star, as well as a variation of the observed photocentre, i.e. astrometric jitter. We use theoretical considerations supported by Monte Carlo simulations (using a starspot model) to derive statistical relations between the corresponding astrometric, photometric, and radial velocity effects. Based on these relations, the more easily observed photometric and radial velocity variations can be used to predict the expected size of the astrometric jitter. Also the third moment of the brightness distribution, interferometrically observable as closure phase, contains information about the astrometric jitter. Results. For most stellar types the astrometric jitter due to stellar surface structures is expected to be of the order of 10 micro-AU or greater. This is more than the astrometric displacement typically caused by an Earth-size exoplanet in the habitable zone, which is about 1-4 micro-AU for long-lived main-sequence stars. Only for stars with extremely low photometric variability (< 0.5 mmag) and low magnetic activity, comparable to that of the Sun, will the astrometric jitter be of the order of 1 micro-AU, sufficient to allow the astrometric detection of an Earth-sized planet in the habitable zone. While stellar surface structure may thus seriously impair the astrometric detection of small exoplanets, it has in general a negligible impact on the detection of large (Jupiter-size) planets and on the determination of stellar parallax and proper motion. From the starspot model we also conclude that the commonly used spot filling factor is not the most relevant parameter for quantifying the spottiness in terms of the resulting astrometric, photometric and radial velocity variations.

  • 181.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Watching the sky: new realizations, new meanings, and surprizing aspects in university level astronomy2011In: E-Book Proceedings of the ESERA 2011 Conference: Science learning and Citizenship. Part 3: Teaching and learning science / [ed] Catherine Bruguière, Andrée Tiberghien, Pierre Clément, Lyon, France: European Science Education Research Association , 2011, p. 57-63Conference paper (Refereed)
    Abstract [en]

    Learning astronomy is challenging at all levels due to the highly specialized form of communication used to share knowledge. When taking astronomy courses at different levels at university, learners are exposed to a variety of representations that are intended to help them learn about the structure and complexity of the Universe. However, not much is known about the reflective awareness that these representations evoke. Using a simulation video that provides a vivid virtual journey through our Milky Way galaxy, the nature of this awareness is captured and categorised for an array of learners (benchmark by results obtained for experts). The results illustrate how the number and nature of new things grounded in dimensionality, scale, time and perspective reflective awareness can too easily be taken for granted by both teachers and learners.

  • 182.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Introducing the anatomy of disciplinary discernment: an example from astronomy2014In: European Journal of Science and Mathematics Education, ISSN 2301-251X, E-ISSN 2301-251X, Vol. 2, no 3, p. 167-182Article in journal (Refereed)
    Abstract [en]

    Education is increasingly being framed by a competence mindset; the value of knowledge lies much more in competence performativity and innovation than in simply knowing. Reaching such competency in areas such as astronomy and physics has long been known to be challenging. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. Thus, what underpins the characteristics of the disciplinary trajectory to competence becomes an important educational consideration. In this article we report on a study involving what students and lecturers discern from the same disciplinary semiotic resource. We use this to propose an Anatomy of Disciplinary Discernment (ADD), a hierarchy of what is focused on and how it is interpreted in an appropriate, disciplinary manner, as an overarching fundamental aspect of disciplinary learning. Students and lecturers in astronomy and physics were asked to describe what they could discern from a video simulation of travel through our Galaxy and beyond. In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic interpretive study approach. The analysis resulted in the formulation of five qualitatively different categories of discernment; the ADD, reflecting a view of participants’ competence levels. The ADD reveals four increasing levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. This facilitates the identification of a clear relationship between educational level and the level of disciplinary discernment. The analytical outcomes of the study suggest how teachers of science, after using the ADD to assess the students disciplinary knowledge, may attain new insights into how to create more effective learning environments by explicitly crafting their teaching to support the crossing of boundaries in the ADD model.  

  • 183.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University & Linnéuniversitetet.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Tell me what you see: differences in what is discerned when professors and students view the same disciplinary semiotic resource2014Conference paper (Refereed)
    Abstract [en]

    Traditionally, astronomy and physics have been viewed as difficult subjects to master. The movement from everyday conceptions of the world around us to a disciplinary interpretation is fraught with pitfalls and problems. What characterises a disciplinary insider’s discernment of phenomena in astronomy and how does it compare to the views of newcomers to the field? In this paper we report on a study into what students and professors discern (cf. Eriksson et al, in press) from the same disciplinary semiotic resource and use this to propose an Anatomy of Disciplinary Discernment (ADD) as an overarching characterization of disciplinary learning.

    Students and professors in astronomy and physics were asked to describe what they could discern from a simulation video of travel through our Galaxy and beyond (Tully, 2012). In all, 137 people from nine countries participated. The descriptions were analysed using a hermeneutic, constant comparison approach (Seebohm, 2004; Strauss, 1987). Analysis culminated in the formulation of five hierarchically arranged, qualitatively different categories of discernment. This ADD modelling of the data consists of one non-disciplinary category and four levels of disciplinary discernment: Identification, Explanation, Appreciation, and Evaluation. Our analysis demonstrates a clear relationship between educational level and the level of disciplinary discernment.

     

    The analytic outcomes of the study suggest that teachers may create more effective learning environments by explicitly crafting their teaching to support the discernment of various aspects of disciplinary semiotic resources in order to facilitate the crossing of boundaries in the ADD model.

  • 184.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    The overlooked challenge of learning to extrapolate three-dimensionality2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has many learning challenges due to the highly diverse, conceptual, and theoretical thinking used in the discipline. One taken for granted challenge is the learning to 

    extrapolate three-dimensionality. Although we have the ability to see our surroundings in three- dimensional terms, beyond a distance of about 200m this ability quickly becomes very limited. So, when looking up at the night sky, learning to discern critical features that are embedded in dimensionality does not come easily. There have been several articles addressing how fruitful 3D simulations are for astronomy education, but they do not address what students discern, nor the nature of that discernment. Taking the concept of discernment to be about noticing something and assigning meaning to it, our research question is: In terms of dimensionality, what do astronomy/physics students and professors discern when engaging with a simulated video fly- through of our Galaxy and beyond?

    A web-based questionnaire was designed using links to video clips drawn from a well-regarded simulation-video of travel through our galaxy and beyond. 137 physics and astronomy university students and teaching professors, who were drawn from nine countries, completed the questionnaire. The descriptions provided by them were used to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that astronomy learning that aims at developing the ability to extrapolate three-dimensionality needs to be grounded in the creation of meaningful motion parallax experiences. Teaching and learning implications are discussed. 

  • 185.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Linder, Cedric
    Uppsala universitet.
    Airey, John
    Uppsala universitet.
    Redfors, Andreas
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    What do teachers of astronomy need to think about?2013Conference paper (Refereed)
    Abstract [en]

    Learning astronomy has exciting prospects for many students; learning about the stars in the

    sky, the planets, galaxies, etc., is often very inspiring and sets the mind on the really big

    aspects of astronomy as a science; the Universe. At the same time, learning astronomy can be

    a challenging endeavor for many students. One of the most difficult things to come to

    understand is how big the Universe is. Despite seeming trivial, size and distances, together

    with the three-dimensional (3D) structure of the Universe, probably present some of the

    biggest challenges in the teaching and learning of astronomy

    (Eriksson, Linder, Airey, &

    Redfors, in preparation; Lelliott & Rollnick, 2010). This is the starting point for every

    astronomy educator. From here, an educationally critical question to ask is: how can we best

    approach the teaching of astronomy to optimize the potential for our students attaining a

    holistic understanding about the nature of the Universe?

    Resent research indicates that to develop students’ understanding about the structure of the

    Universe, computer generated 3D simulations can be used to provide the students with an

    experience that other representations cannot easily provide (Eriksson et al., in preparation;

    Joseph, 2011). These simulations offer disciplinary affordance* through the generation of

    motion parallax for the viewer. Using this background we will present the results of a recent

    investigation that we completed looking at what students’ discern (notice with meaning)

    about the multidimensionality of the Universe. Implications for astronomy education will be

    discussed and exemplified.

    *[T]he inherent potential of [a] representation to provide access to disciplinary knowledge

    (Fredlund, Airey, & Linder, 2012, p. 658)

    Eriksson, U., Linder, C., Airey, J., & Redfors, A. (in preparation). Who needs 3D when the

    Universe is flat?

    Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an

    illustrative example from students sharing knowledge about refraction. European

    Journal of Physics, 33(3), 657.

    Joseph, N. M. (2011). Stereoscopic Visualization as a Tool For Learning Astronomy

    Concepts. (Master of Science), Purdue University, Purdue University Press Journals.

    Lelliott, A., & Rollnick, M. (2010). Big Ideas: A review of astronomy education research

    1974--2008. International Journal of Science Education, 32(13), 1771–1799

  • 186.
    Eriksson, Urban
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Linder, Cedric
    Uppsala University.
    Airey, John
    Uppsala University.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Who needs 3D when the universe is flat?2014In: Science Education, ISSN 0036-8326, E-ISSN 1098-237X, Vol. 98, no 3, p. 412-442Article in journal (Refereed)
    Abstract [en]

    An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D) simulations in astronomy education, but they have neither addressed what students discern nor the nature of that discernment. A Web-based questionnaire was designed using links to video clips drawn from a simulation video of travel through our galaxy and beyond. The questionnaire was completed by 137 participants from nine countries across a broad span of astronomy education. The descriptions provided by the participants were analyzed using hermeneutics in combination with a constant comparative approach to formulate six categories of discernment in relation to multidimensionality. These results are used to make the case that the ability to extrapolate three-dimensionality calls for the creation of meaningful motion parallax experiences.

  • 187.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Lunds universitet.
    Rosberg, Maria
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Disciplinary discernment from Hertzsprung-Russell-diagrams2017Conference paper (Other academic)
    Abstract [en]

    This paper aim at investigating what astronomy students and experts discern from the multitude of different disciplinary affordances available in Hertzsprung-Russell (HR) diagrams. HR-diagrams are central to all of astronomy and astrophysics and used extensively in teaching. However, knowledge about what students and experts discern from these disciplinary representations are not well known at present. HR-diagrams include many disciplinary affordances that may be hidden to the novice student, hence we aim at investigating and describing what astronomy students at different university levels (introductory, undergraduate, graduate), and astronomy educators/professors, discern from such representation – referred to as disciplinary discernment (Eriksson, Linder, Airey, & Redfors, 2014). Data from a web based questionnaire were analysed using the Anatomy of Disciplinary Discernment (ADD) framework by Eriksson et al. (2014). Preliminary results show (1) the developmental nature of disciplinary discernment from the HR-diagram by the participants and (2) the large discrepancy between disciplinary discernment by the astronomy educators and their students. We describe and discuss the qualitative nature of these differences and how this can have implications for teaching and learning astronomy.

  • 188.
    Eriksson, Urban
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Nationellt resurscentrum för fysik, Lunds universitet.
    Rosberg, Maria
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Disciplinary discernment in astronomy education: Hertzsprung-Russell-diagrams2017Conference paper (Other academic)
    Abstract [en]

    This paper aim at investigating what astronomy students and experts discern from the multitude of different disciplinary affordances available in Hertzsprung-Russell (HR) diagrams. HR-diagrams are central to all of astronomy and astrophysics and used extensively in teaching. However, knowledge about what students and experts discern from these disciplinary representations are not well known at present. HR-diagrams include many disciplinary affordances that may be hidden to the novice student, hence we aim at investigating and describing what astronomy students at different university levels (introductory, undergraduate, graduate), and astronomy educators/professors, discern from such representation – referred to as disciplinary discernment. Data from a web based questionnaire were analysed using the Anatomy of Disciplinary Discernment (ADD) framework by Eriksson et al.(2014). Preliminary results show (1) the developmental nature of disciplinary discernment from the HR-diagram by the participants and (2) the large discrepancy between disciplinary discernment by the astronomy educators and their students. We describe and discuss the qualitative nature of these differences and implications for teaching and learning astronomy.

  • 189.
    Ernst, Julie
    et al.
    USA.
    Blood, Nathaniel
    USA.
    Beery, Thomas
    Kristianstad University, Research environment Man & Biosphere Health (MABH). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Environmental action and student environmental leaders: exploring the influence of environmental attitudes, locus of control, and sense of personal responsibility2015In: Environmental Education Research, ISSN 1350-4622, E-ISSN 1469-5871, Vol. 23, no 2, p. 149-175Article in journal (Refereed)
    Abstract [en]

    The Student Climate and Conservation Congress (SC3) is a joint educational effort between the United States Fish and Wildlife Service and the Green Schools Alliance that aims to develop the next generation of conservation leaders through fostering action competence in youth. Data from SC3 participants was used to investigate four predictors of adult environmental behavior (environmental attitudes, locus of control, sense of personal responsibility, intention) to explore their predictability of environmental action and intention toward future involvement in environmental action in student environmental leaders. Of the four variables explored, pre-program levels of environmental attitudes was a significant predictor of environmental action. Additionally, changes in levels of environmental attitudes significantly predicted environmental action, with an increase in environmental attitudes being associated with a decrease in environmental action. Pre-program levels of environmental attitudes and sense of personal responsibility, and an interaction between the two, potentially were predictors of intention toward future involvement in environmental action. Changes in pre- and post-program levels of environmental attitudes, locus of control, and sense of personal responsibility did not significantly predict intention toward future involvement in environmental action, nor did environmental action. Implications for programming and research, in light of the study’s limitations, are discussed.

  • 190.
    Faurby, Sören
    et al.
    Danmark.
    Jönsson, K. Ingemar
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Rebecchi, L.
    Italien.
    Funch, P.
    Danmark.
    Variation in anhydrobiotic survival of two eutardigrade morphospecies: a story of cryptic species and their dispersal2008In: Journal of Zoology, ISSN 0952-8369, E-ISSN 1469-7998, Vol. 275, no 2, p. 139-145Article in journal (Refereed)
    Abstract [en]

    Studies of geographic variation in anhydrobiotic tolerance may increase our understanding of the population dynamics of terrestrial meiofauna and the relative importance of local adaptation and microhabitat niche separation. Although anhydrobiosis in tardigrades has been studied extensively, few studies have dealt with intraspecific variation in survival and none of these included genetic data to validate the intraspecific nature of the comparisons. Such data are necessary when working with meiofauna as cryptic species are common. We analysed the anhydrobiotic survival and genetic variation in cytochrome oxidase subunit I of two eutardigrades (Richtersius coronifer and Ramazzottius oberhaeuseri) from Italy and Sweden to detect possible local adaptation. Survival was analysed as a multidimensional contingency table and showed that anhydrobiotic survival was higher in Sweden for Ra. oberhaeuseri whereas no significant geographic variation was found for Ri. coronifer. Our genetic analysis indicated the coexistence of two cryptic species of Ra. oberhaeuseri in Italy, only one of which was found in Sweden. It could not be determined whether the variation in Ramazzottius is intra- or interspecific due to the presence of these cryptic species. We suggest that geographic variation in anhydrobiotic survival may be a general phenomenon in tardigrades but further research is necessary to determine the degree of intraspecific variation. The genetic analysis showed indications of long-term isolation of the individual populations of Ri. coronifer but recent dispersal in one of the cryptic species of Ramazzottius. We found higher survival in Ra. oberhaeuseri than in Ri. coronifer. These results indicate a possible coupling between anhydrobiotic survival and dispersal rate.

  • 191.
    Felton, Adam
    et al.
    Swedish University of Agricultural Sciences, Alnarp.
    Lindbladh, Matts
    Swedish University of Agricultural Sciences, Alnarp.
    Elmberg, Johan
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man and Biosphere Health (MABH).
    Felton, Annika M.
    Swedish University of Agricultural Sciences, Alnarp.
    Andersson, Erik
    Stockholm University.
    Sekercioglu, Cagan H.
    University of Utah.
    Collingham, Yvonne
    Durham University.
    Huntley, Brian
    Durham University.
    Projecting impacts of anthropogenic climatic change on the bird communities of southern Swedish spruce monocultures: will the species poor get poorer?2014In: Ornis Fennica, ISSN 0030-5685, Vol. 91, no 1, p. 1-13Article in journal (Refereed)
    Abstract [en]

    The potential impact of climatic change on bird species’ distributions in Europe was recently modeled for several scenarios of projected late 21st century climate. The results indicate mean range shifts of hundreds of kilometres north for many of European bird species. Here we consider the implications from such distributional shifts for the bird communities of Norway spruce (Picea abies) monocultures in southern Sweden, a forest type likely to remain prevalent due to forestry, despite climate change. Our assessment led us to three key findings. First, the monocultures offer suitable habitat to only two bird species projected to extend their breeding distribution northwards into southern Sweden this century. Second, species richness was projected to decline overall, which would accentuate the depauperate nature of these stands. Third, all conifer-associated arboreal granivores and three of four conifer-associated arboreal insectivores were projected not to occur, reducing both the functional richness and functional redundancy. We discuss caveats related to our approach, including the potential for bioclimatic projections – used in this study – to be hampered by the artificial retention of dominant vegetation. We also discuss the implications of our results for avian biodiversity in what is today the most prevalent forest type in southern Sweden and in many other regions of Europe.

  • 192.
    Fox, Anthony D.
    et al.
    Danmark.
    Elmberg, Johan
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Tombre, Ingunn M.
    Norge.
    Hessel, Rebecca
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Man & Biosphere Health (MABH).
    Agriculture and herbivorous waterfowl: a review of the scientific basis for improved management2017In: Biological Reviews, ISSN 1464-7931, E-ISSN 1469-185X, Vol. 92, no 2, p. 854-877Article in journal (Refereed)
    Abstract [en]

    Swans, geese and some ducks (Anatidae) are obligate herbivores, many are important quarry species and all contribute to a variety of ecosystem services. Population growth and shifting ranges have led to increasing proximity to man and thus increasing conflicts. We review and synthesize the role of these birds as herbivores on agricultural land (cropland, rotational grassland and pasture) and other terrestrial habitats where conflict with human interests may occur. A bibliographic analysis of peer-reviewed papers (N = 359) shows that publication activity peaked in 1991-2000 in North America and 2000-2010 in Europe, and has decreased since. Taxonomic and geographical biases are obvious in research to date: Snow Goose Chen caerulescens was the most studied species (N = 98), and Canada Branta canadensis, Barnacle B. leucopsis and Brent geese B. bernicla all featured in more than 40 studies; most studies originated in northwest Europe or North America, very few have been carried out in Asia and European Russia. On the basis of nutrient/energy budgets of herbivorous waterfowl, it is evident that dense single-species crops (such as rotational grassland, early-growth cereals and root crops) and spilled grain in agricultural landscapes offer elevated energetic and nutritional intake rates of food of higher quality compared to natural or semi-natural vegetation. Hence, although affected by seasonal nutritional demands, proximity to roost, field size, disturbance levels, access to water, food depletion and snow cover, agricultural landscapes tend to offer superior foraging opportunities over natural habitats, creating potential conflict with agriculture. Herbivorous waterfowl select for high protein, soluble carbohydrate and water content, high digestibility as well as low fibre and phenolic compounds, but intake rates from grazing varied with goose body and bill morphology, creating species-specific loci for conflict. Crop damage by trampling and puddling has not been demonstrated convincingly, nor do waterfowl faeces deter grazing stock, but where consumption of crops evidently reduces yields this causes conflict with farmers. Studies show that it is difficult and expensive to assess the precise impacts of waterfowl feeding on yield loss because of other sources of variation. However, less damage has been documented from winter grazing compared to spring grazing and yield loss after spring grazing on grassland appears more pronounced than losses on cereal fields. Although yield losses at national scales are trivial, individual farmers in areas of greatest waterfowl feeding concentrations suffer disproportionately, necessitating improved solutions to conflict. Accordingly, we review the efficacy of population management, disturbance, provision of alternative feeding areas, compensation and large-scale stakeholder involvement and co-management as options for resolving conflict based on the existing literature and present a framework of management advice for the future. We conclude with an assessment of the research needs for the immediate future to inform policy development, improve management of waterfowl populations and reduce conflict with agriculture.

  • 193.
    Fox, Anthony D.
    et al.
    Aarhus University.
    Jonsson, Jon Einar
    University of Iceland.
    Aarvak, Tomas
    Norwegian Ornithological Society .
    Bregnballe, Thomas
    Aarhus University.
    Christensen, Thomas Kjaer
    Aarhus University.
    Clausen, Kevin Kuhlmann
    Aarhus University.
    Clausen, Preben
    Aarhus University.
    Dalby, Lars
    Aarhus University.
    Holm, Thomas Eske
    Aarhus University.
    Pavon-Jordan, Diego
    University of Helsinki.
    Laursen, Karsten
    Aarhus University.
    Lehikoinen, Aleksi
    University of Helsinki.
    Lorentsen, Svein-Hakon
    Norwegian Institute for Nature Research.
    Moller, Anders Pape
    University of Paris .
    Nordstrom, Mikael
    Metsahallitus Pk & Wildlife, Finland.
    Ost, Markus
    Åbo Akademi University.
    Soderquist, Par
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Therkildsen, Ole Roland
    Aarhus University.
    Current and potential threats to Nordic duck populations - a horizon scanning exercise2015In: Annales Zoologici Fennici, ISSN 0003-455X, E-ISSN 1797-2450, Vol. 52, no 4, p. 193-220Article in journal (Refereed)
    Abstract [en]

    We review the current and future threats to duck populations that breed, stage, moult and/or winter in the Nordic countries. Migratory duck species are sensitive indicators of their changing environment, and their societal value confirms the need to translate signals from changes in their distribution, status and abundance into a better understanding of changes occurring in their wetland environments. We used expert opinion to highlight 25 major areas of anthropogenic change (and touch briefly on potential mitigation measures through nature restoration and reserve management projects) that we consider key issues likely to influence Nordic duck populations now and in the near future to stimulate debate, discussion and further research. We believe such reviews are essential in contributing to development of successful management policy as well as stimulating specific research to support the maintenance of duck species in favourable future conservation status in the face of multiple population pressures and drivers.

  • 194.
    Fridberg, Marie
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Children’s collaborative learning in science scaffolded by tablets2017In: Digital Childhoods: technologies and children's everyday lives / [ed] Susan Jill Danby, Marilyn Fleer, Christina Davidson, Maria Hatzigianni, Singapore: Springer, 2017Chapter in book (Other academic)
  • 195.
    Fridberg, Marie
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Naturvetenskap och datorplattor – i barnens regi2016In: Naturvetenskap i ett förskoleperspektiv: kreativa lärandeprocesser / [ed] Susanne Thulin, Malmö: Gleerups Utbildning AB, 2016, p. 105-124Chapter in book (Other academic)
  • 196.
    Fridberg, Marie
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Thulin, Susanne
    Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Children’s collaborative learning of evaporation scaffolded by iPads2015Conference paper (Refereed)
    Abstract [en]

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. iPads, can be used in pre-schools to support collaborative learning of real-life science phenomena. The importance of this is associated with the “west world” problem of current educational systems to respond to the needs of modern youth. Educational systems are currently in need of reform (Fullan, 2007, Thulin, 2011; Tytler, 2007). Research on the potential of web-based technologies to support collaborative inquiry-based science learning in schools, with a special interest in inquiry-based science learning is here continued by investigating the role of time-lapse and stop-motion animations in developing children’s understanding of science phenomena. We report on a study of groups of children working with evaporation. A video-based qualitative analysis of the communication in the pre-school groups has given rise to a number of categories used to distinguish and identify variations of children’s expressed experiences in discussions during group work in different contexts. An enhanced and focused reasoning about the natural science phenomenon in group discussions where the iPad is involved and used for stimulated recall is reported. Furthermore, it is shown that children communicate extensively about practical issues and problem solving, in stop-motion producing contexts, but less about the science phenomenon. However, when the children participate in real-time experimentation, the communication focuses more around the phenomenon itself and less about practical issues. Hence, again establishing the importance of real-time experimentation for children’s science learning. The analysis of the empirical data from the first phase of the project is on going and will be completed during the first months of 2015.  The final results will be presented at the conference.

  • 197.
    Fridberg, Marie
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Thulin, Susanne
    Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Science in early childhood education: children and tablets2016Conference paper (Refereed)
    Abstract [en]

    Research aims

    To extend current understanding of how emerging technologies, i.e tablets, can be used in pre-schools to support collaborative learning of real-life science phenomena.

    Relationship to previous research works

    We continue our study of the potential of tablets as scaffolds in collaborative inquiry-based science

    learning in preschools. We investigate the role of Timelapse photography and Slowmation production in scaffolding communication and learning during work with light and shadow. The teaching attempts to synthesise the two domains defined by Eshach (2006) for children´s science learning: content and

    investigations.

    Theoretical and conceptual framework

    The theoretical framework is primarily based on phenomenography focusing on developmental pedagogy. (Marton & Booth, 1997, Pramling Samuelsson & Asplund Carlsson, 2008).

    Paradigm, methodology and methods

    Design-based research (Barab & Squire, 2004) is used to bridge the worlds of academia with the realities of educational practice, to foster viable practices. A mixed-methods approach, including video and qualitative and quantitative data measures is used.

    Ethical Considerations

    The research will adhere to the ethical guidelines of the Swedish Research Council. All participants and children’s caregivers are informed and agree to voluntary and anonymous participation with a right to abandon participation.

    Main finding or discussion

    In this paper we report on an on-going project where children investigate light and shadow by constructing, discussing, formulating and using explanatory models during work with time-lapse and Slowmations. (Fridberg et al. 2016).

    Implications, practice or policy

    The potential of teachers, students and researchers jointly developing, enacting and evaluating learning processes supported by ubiquitous technologies in pre-school will be discussed. Slowmation production focus explanatory models of science experiences and elicits critical aspects of the learning object.

  • 198.
    Fridberg, Marie
    et al.
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Thulin, Susanne
    Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    The role of science in Swedish pre-schools: children’s collaborative learning scaffolded by iPads2014Conference paper (Refereed)
    Abstract [en]

    To extend current understanding of how emerging technologies, i.e. iPads, can be used in pre-schools to support collaborative learning of real-life science phenomena. Research on the potential of web-based technologies to support collaborative inquiry-based science learning in schools (Redfors et al. 2013) is continued by investigating the role of stop-motion animations (Fleer, 2013, Hoban, 2007) in developing children’s understanding of science phenomena, by synthesising the two domains defined by Eshach (2006) for kids’ science learning, content and investigations. The theoretical framework is primarily based on phenomenography focusing on developmental pedagogy (Marton & Booth, 1997, Pramling Samuelsson & Asplund Carlsson, 2008). Design-based research (Barab & Squire, 2004) is used to bridge the worlds of academia and theory with the realities, complexities, and constraints of educational practice, and foster viable practices. A mixed-methods approach, including video and qualitative and quantitative data measures is used. The research adheres to the ethical guidelines of the Swedish Research Council. All participants and children’s caregivers are informed and agree to voluntary and anonymous participation with a right to abandon participation. In this paper we report on the first phase of the project where videos of children’s work with constructing and discussing time-lapse and stop motion sequences of science phenomena have been analysed within our theoretical framework. Stop-motion animations (Fleer 2013) help children, teachers and students to more consciously consider concepts. We see a great potential in work where teachers, students and researchers jointly develop, enact and evaluate learning processes supported by ubiquitous technologies in pre-school.

  • 199.
    Fridberg, Marie
    et al.
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Thulin, Susanne
    Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Faculty of Education, Forskningsmiljön Barndom, Lärande och Utbildning (BALU).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Faculty of Education, Research environment Learning in Science and Mathematics (LISMA).
    Preschool children's collaborative science learning scaffolded by tablets2017In: Research in science education, ISSN 0157-244X, E-ISSN 1573-1898, Vol. 48, no 5, p. 1007-1026Article in journal (Refereed)
    Abstract [en]

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  • 200.
    Fridberg, Marie
    et al.
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap.
    Thulin, Susanne
    Kristianstad University, Research environment Learning in Science and Mathematics (LISMA). Kristianstad University, School of Education and Environment, Avdelningen för Pedagogik. Kristianstad University, Forskningsmiljön Barndom, Lärande och Utbildning (BALU).
    Redfors, Andreas
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Research environment Learning in Science and Mathematics (LISMA).
    Preschool children’s collaborative science learning scaffolded by tablets: a teachers view2017Conference paper (Other academic)
1234567 151 - 200 of 695
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf