Change search
Refine search result
1234567 151 - 200 of 1303
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151. Bykova, Natalia V.
    et al.
    Møller, Ian M.
    Gardeström, Per
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Igamberdiev, Abir U.
    The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products2014In: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 19, p. 357-364Article in journal (Refereed)
    Abstract [en]

    Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction. 

  • 152.
    Bærholm Schnell, Ida
    et al.
    Centre for GeoGenetics, Natural History Museum of Denmark,.
    Fraser, Magdalena
    Gotland University, School of Culture, Energy and Environment.
    Willerslev, Eske
    Centre for GeoGenetics, Natural History Museum of Denmark,.
    Gilbert, M. Thomas P.
    Centre for GeoGenetics, Natural History Museum of Denmark,.
    Characterisation of insect and plant origins using DNA extracted from small volumes of bee honey2010In: Arthropod-Plant Interactions, ISSN 1872-8855, E-ISSN 1872-8847, Vol. 4, no 2, p. 107-116Article in journal (Refereed)
    Abstract [en]

    A DNA-based tool was validated that potentially enables the characterisation of both plant and insect of origin of small (approximately 1 ml) samples of bee honey. Using this method, mitochondrial, nuclear and chloroplast DNA (mtDNA, nuDNA, cpDNA) markers were successfully extracted, PCR amplified, and sequenced from a range of honeys, and the relative amount of plant nuDNA and cpDNA, and bee mtDNA in the samples was quantified using quantitative real-time PCR.

    Short, but taxonomically informative lengths of insect and plant organelle DNA could be routinely recovered from all honey samples tested, and longer organelle, and nuclear DNA sequences can be recovered from many. The data also enabled preliminary characterisation of the quality of these different DNA sources in honey. Although the absolute quantity of the different genetic markers varied considerably between sample, a general trend was observed of insect mtDNA dominating over plant organelle DNA, and with plant nuclear DNA at the lowest levels. Furthermore there was a clear correlation between the plant DNA content and the success of the PCR assays. To maximise successful characterisation of samples, future studies are recommended to focus on the use of organelle markers, and limit the size of PCR amplicons targeted, although with appropriate sample selection and assay optimisation, other approaches may be possible.

  • 153.
    Bélteky, Johan
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Chicken domestication: Effects of tameness on brain gene expression and DNA methylation2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Domestication greatly increases phenotypic variation in a short time span, with selection for a single phenotype and a plethora of associated phenotypic changes as an outcome of the process. The domestication process influences the underlying genomic architecture of a species, and the success and speed of the process is likely influenced by it. The main aims of my thesis was to study how domestication affects the brain of chickens: specifically changes in morphology, gene expression, and DNA methylation. Differences in gene expression and DNA methylation between White Leghorn and Red Junglefowl chickens were mapped, and inheritance of these patterns were quantified, indicating a faithful transmission of breed-specific epigenetic markers. Selection on the behavioral trait fearfulness, generated high and low fearful lines of Red Junglefowl. Both the parental population and the fifth selected generation were used for the analyses in this thesis. One experiment studied morphological changes in the brain and other vital organs, and found that relative total brain size increased in high fearful birds, as a consequence of an increase in cerebral hemisphere size in high fearful birds and not in low fearful birds. Also, the relative heart, liver, spleen and testis size increased in high fearful birds, indicating correlated morphological changes with selection for fearfulness. Two additional experiments examined differential gene expression in the hypothalamus and the anterior cerebral hemisphere. The hypothalamus differed in expression of genes with reproductive and immunological functions, whilst the cerebral hemisphere differed in expression of genes related to social behaviors and neurological functions especially those upregulated in low fearful birds.  These results indicate the occurrence of tissue- and species-specific changes in gene expression as overlap with other domestication events were nearly nonexistent. A fourth experiment sought to associate the change in fear levels and gene expression differences with DNA methylation. Chromosomal regions with differential DNA methylation between high and low fearful birds were identified, and genes in these regions had annotated functions relevant to phenotypic differences between the selection lines. This thesis is the first to study the genetic alterations of domestication using the wild ancestor of an already domesticated species to repeat the domestication process selecting against fear of humans. The findings corroborate results from previous comparisons of wild and domestic animals, and further support the theory that rigorous selection for a behavioral trait can cause a cascade of genetic and epigenetic changes facilitating the domestication of a population.

  • 154.
    Bélteky, Johan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Agnvall, Beatrix
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Bektic, Lejla
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Höglund, Andrey
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Jensen, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Guerrero Bosagna, Carlos
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Epigenetics and early domestication: differences in hypothalamic DNA methylation between red junglefowl divergently selected for high or low fear of humans2018In: Genetics Selection Evolution, ISSN 0999-193X, E-ISSN 1297-9686, Vol. 50, article id 13Article in journal (Refereed)
    Abstract [en]

    Background: Domestication of animals leads to large phenotypic alterations within a short evolutionary time-period. Such alterations are caused by genomic variations, yet the prevalence of modified traits is higher than expected if they were caused only by classical genetics and mutations. Epigenetic mechanisms may also be important in driving domesticated phenotypes such as behavior traits. Gene expression can be modulated epigenetically by mechanisms such as DNA methylation, resulting in modifications that are not only variable and susceptible to environmental stimuli, but also sometimes transgenerationally stable. To study such mechanisms in early domestication, we used as model two selected lines of red junglefowl (ancestors of modern chickens) that were bred for either high or low fear of humans over five generations, and investigated differences in hypothalamic DNA methylation between the two populations. Results: Twenty-two 1-kb windows were differentially methylated between the two selected lines at p amp;lt; 0.05 after false discovery rate correction. The annotated functions of the genes within these windows indicated epigenetic regulation of metabolic and signaling pathways, which agrees with the changes in gene expression that were previously reported for the same tissue and animals. Conclusions: Our results show that selection for an important domestication-related behavioral trait such as tameness can cause divergent epigenetic patterns within only five generations, and that these changes could have an important role in chicken domestication.

  • 155.
    Bürglin, Thomas R.
    Södertörn University, School of Life Sciences.
    Evolution of hedgehog and hedgehog-related genes, their origin from Hog proteins in ancestral eukaryotes and discovery of a novel Hint motif2008In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 9, p. 127-Article in journal (Refereed)
    Abstract [en]

    Background: The Hedgehog (Hh) signaling pathway plays important roles in human and animal development as well as in carcinogenesis. Hh molecules have been found in both protostomes and deuterostomes, but curiously the nematode Caenorhabditis elegans lacks a bona-fide Hh. Instead a series of Hh-related proteins are found, which share the Hint/Hog domain with Hh, but have distinct N-termini. Results: We performed extensive genome searches such as the cnidarian Nematostella vectensis and several nematodes to gain further insights into Hh evolution. We found six genes in N. vectensis with a relationship to Hh: two Hh genes, one gene with a Hh N-terminal domain fused to a Willebrand factor type A domain (VWA), and three genes containing Hint/Hog domains with distinct novel N-termini. In the nematode Brugia malayi we find the same types of hh-related genes as in C. elegans. In the more distantly related Enoplea nematodes Xiphinema and Trichinella spiralis we find a bona-fide Hh. In addition, T. spiralis also has a quahog gene like C. elegans, and there are several additional hh-related genes, some of which have secreted N-terminal domains of only 15 to 25 residues. Examination of other Hh pathway components revealed that T. spiralis - like C. elegans - lacks some of these components. Extending our search to all eukaryotes, we recovered genes containing a Hog domain similar to Hh from many different groups of protists. In addition, we identified a novel Hint gene family present in many eukaryote groups that encodes a VWA domain fused to a distinct Hint domain we call Vint. Further members of a poorly characterized Hint family were also retrieved from bacteria. Conclusion: In Cnidaria and nematodes the evolution of hh genes occurred in parallel to the evolution of other genes that contain a Hog domain but have different N-termini. The fact that Hog genes comprising a secreted N-terminus and a Hog domain are found in many protists indicates that this gene family must have arisen in very early eukaryotic evolution, and gave rise eventually to hh and hh-related genes in animals. The results indicate a hitherto unsuspected ability of Hog domain encoding genes to evolve new N-termini. In one instance in Cnidaria, the Hh N-terminal signaling domain is associated with a VWA domain and lacks a Hog domain, suggesting a modular mode of evolution also for the N-terminal domain. The Hog domain proteins, the inteins and VWA-Vint proteins are three families of Hint domain proteins that evolved in parallel in eukaryotes.

  • 156.
    Camus, M. Florencia
    et al.
    Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia..
    Wolf, Jochen B. W.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Morrow, Edward H.
    Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England..
    Dowling, Damian K.
    Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia..
    Single Nucleotides in the mtDNA Sequence Modify Mitochondrial Molecular Function and Are Associated with Sex-Specific Effects on Fertility and Aging2015In: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 25, no 20, p. 2717-2722Article in journal (Refereed)
    Abstract [en]

    Mitochondria underpin energy conversion in eukaryotes. Their small genomes have been the subject of increasing attention, and there is evidence that mitochondrial genetic variation can affect evolutionary trajectories and shape the expression of life-history traits considered to be key human health indicators [1, 2]. However, it is not understood how genetic variation across a diminutive genome, which in most species harbors only about a dozen protein-coding genes, can exert broad-scale effects on the organisnnal phenotype [2, 3]. Such effects are particularly puzzling given that the mitochondrial genes involved are under strong evolutionary constraint and that mitochondrial gene expression is highly conserved across diverse taxa [4]. We used replicated genetic lines in the fruit fly, Drosophila melanogaster, each characterized by a distinct and naturally occurring mitochondrial haplotype placed alongside an isogenic nuclear background. We demonstrate that sequence variation within the mitochondria! DNA (mtDNA) affects both the copy number of mitochondrial genomes and patterns of gene expression across key mitochondrial protein-coding genes. In several cases, haplotype-mediated patterns of gene expression were gene-specific, even for genes from within the same transcriptional units. This invokes post-transcriptional processing of RNA in the regulation of mitochondrial genetic effects on organismal phenotypes. Notably, the haplotype-mediated effects on gene expression could be traced backward to the level of individual nucleotides and forward to sex-specific effects on fertility and longevity. Our study thus elucidates how small-scale sequence changes in the mitochondrial genome can achieve broad-scale regulation of health-related phenotypes and even contribute to sex-related differences in longevity.

  • 157.
    Cao, Hao
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Kimari, Moses
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Maronitis, George
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Williams, Michael J.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Schiöth, Helgi B.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Pharmacology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Functional Pharmacology.
    Multidrug-Resistance like Protein 1 activity in Malpighian tubules regulates lipid homeostasis in DrosophilaManuscript (preprint) (Other academic)
    Abstract [en]

    Multidrug-Resistance like Proteins (MRPs) are ubiquitously expressed essential transporters required for many biological processes. Previous studies revealed that MRPs are pivotal for transporting endo- and xenobiotics, conferring resistance to anti-cancer agents and contributing to clearance of oxidative products. Nonetheless, their functions in other biological processes are still unclear. In our investigation, we suppress the expression of Drosophila Multidrug resistance like Protein 1 (MRP) in Malpighian tubules, the functional equivalent to the human kidney, and find this is sufficient to cause abnormal lipid accumulation, as well as disrupt normal feeding patterns. In addition, we suggest that the elevation of lipid contents may be a result of increasing Hr96 (homolog of human Pregnane X receptor) expression, which is known to play a role in detoxification and lipid metabolism processes. Finally, we validate that Malpighian tubules-specific MRP deficiency increases oxidative resistance in fruit flies. In summary, our results demonstrate that inadequate MRP expression in Malpighian tubules can lead to disrupted lipid homeostasis and feeding behavior. However, it may also elevate the oxidative resistance of the flies.

  • 158.
    Caputo, Andrea
    Stockholm University, Faculty of Science, Department of Ecology, Environment and Plant Sciences.
    Genomic and morphological diversity of marine planktonic diatom-diazotroph associations: a continuum of integration and diversification through geological time2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Symbioses between eukaryotes and nitrogen (N2)-fixing cyanobacteria (or diazotrophs) are quite common in the plankton community. A few genera of diatoms (Bacillariophyceae) such as Rhizosolenia, Hemiaulus and Chaetoceros are well known to form symbioses with the heterocystous diazotrophic cyanobacteria Richelia intracellularis and Calothrix rhizosoleniae. The latter are also called diatom-diazotroph associations, or DDAs. Up to now, the prokaryotic partners have been morphologically and genetically characterized, and the phylogenetic reconstruction of the well conserved nifH gene (encodes for the nitrogenase enzyme) placed the symbionts in 3 clusters based on their host-specificity, i.e. het-1 (Rhizosolenia-R. intracellularis), het-2 (Hemiaulus-R. intracellularis), and het-3 (Chaetoceros-C- rhizosoleniae). Conversely, the diatom-hosts, major representative of the phytoplankton community and crucial contributors to the carbon (C) biogeochemical cycle, have been understudied.

    The first aim of this thesis was to genetically and morphologically characterize the diatom-hosts, and to reconstruct the evolutionary background of the partnerships and the symbiont integration in the host. The molecular-clock analysis reconstruction showed the ancient appearance of the DDAs, and the traits characterizing the ancestors. In addition, diatom-hosts bearing internal symbionts (with more eroded draft genomes) appeared earlier than diatom-hosts with external symbionts. Finally a blast survey highlighted a broader distribution of the DDAs than expected.

    The second aim of this thesis was to compare genetic and physiological characteristics of the DDAs symbionts with the other eukaryote-diazotroph symbiosis, i.e. prymnesiophyte-UCYN-A (or Candidatus Atelocyanobacterium thalassa). The genome comparison highlighted more genes for transporters in het-3 (external symbiont) and in the UCYN-A based symbiosis, suggesting that symbiont location might be relevant also for metabolic exchanges and interactions with the host and/or environment. Moreover, a summary of methodological biases that brought to an underestimation of the DDAs is reported.

    The third aim of this thesis was to determine the distribution of the DDAs in the South Pacific Ocean using a quantitative polymerase chain reaction (qPCR) approach and to outline the environmental drivers of such distribution. Among the het-groups, het-1 was the most abundant/detected and co-occurred with the other 2 symbiotic strains, all responding similarly to the influence of abiotic factors, such as temperature and salinity (positive and negative correlation, respectively). Globally, Trichodesmium dominated the qPCR detections, followed by UCYN-B. UCYN-A phylotypes (A-1, A-2) were detected without their proposed hosts, for which new oligonucleotides were designed. The latter suggested a facultative symbiosis. Finally, microscopy observations of the het-groups highlighted a discrepancy with the qPCR counts (i.e. the former were several order of magnitudes lower), leading to the idea of developing a new approach to quantify the DDAs.  

    The fourth aim of this thesis was to develop highly specific in situ hybridization assays (CARD-FISH) to determine the presence of alternative life-stages and/or free-living partners. The new assays were applied to samples collected in the South China Sea and compared with abundance estimates from qPCR assays for the 3 symbiotic strains. Free-living cells were indeed detected along the transect, mainly at deeper depths. Free-living symbionts had two morphotypes: trichomes and single-cells. The latter were interpreted as temporary life-stages. Consistent co-occurrence of the 3 het-groups was also found in the SCS and application of a SEM model predicted positive interactions between the het groups. We interpreted the positive interaction as absence of intra-specific competition, and consistent with the previous study, temperature and salinity were predicted as major drivers of the DDAs distribution.

  • 159.
    Cardemil, Carina
    Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden.
    Effects of antiresorptive agents on inflammation and bone regeneration in different osseous sites - experimental and clinical studies2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The biological mechanisms involved in bone regeneration in osteoporotic bone and the effect of antiresorptive drugs in relation to surgically inserted biomaterials are not fully understood. Improved osseointegration of titanium implants but also adverse effects of antiresorptive therapies, such as osteonecrotic jaw have been described in the literature. The aims of this research project were, firstly, to investigate and to understand the biological events determining bone regeneration and implant integration, after administration of antiresorptive agents; secondly, to determine the cellular and molecular patterns of bone regeneration at implants and synthetic bone substitutes under osteoporotic conditions and, thirdly, to determine how different skeletal sites are affected. The present research included a study of jawbone morphology and gene expression in patients treated with systemic bisphosphonates. When compared to controls, higher gene expression levels of IL-1β was observed in bisphosphonate treated patients with osteonecrosis while bisphosphonate treated patients without necrosis showed lower expression levels of caspase 8, an apoptosis marker involved in the immune response. In ovariectomised rats, zoledronic acid resulted in site-specific differences in the rate of osseointegration and also of gene expression involved in bone healing and regeneration. Strontium-doped calcium phosphate inserted in the rat femur induced lower expression of osteoclastic markers compared to hydroxyapatite and higher bone formation in the periphery of the defects. Whereas major structural changes were demonstrated in the long bones of the ovariectomised rat, less structural alterations were shown in the mandible. However, ovariectomy resulted in lower expression of genes coding for bone formation and angiogenesis in the mandible. In conclusion, the present study shows that the mandible is differently affected by experimentally induced estrogen deficiency than the long bones. Bisphosphonates, administered systemically to estrogen deficient animals, impair osseointegration in the mandible, at least partly related to a downregulation of genes important for the osteogenic process. These observations may have implications for understanding the mechanisms involved in the deranged bone healing observed in the jawbone of bisphosphonate treated patients.

  • 160.
    Cardoso Palacios, Carlos
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Site-specific recombination in P2-like coliphages2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The scope of these studies has been to investigate the site-specific recombination systems of P2-like coliphages, both in an evolutionary perspective by a comparative analysis of related phages as well as in a functional perspective.

    Surveys of P2-like phages in Escherichia coli isolated from nature reveal the existence of seven discrete immunity classes and three integration sites, one of them previously unknown. Phylogenetic analysis of the repressor proteins and other analyses show that homologous recombination plays a role in the appearance of new immunities. Other studies of P2-like prophages from sequenced genomes from public databases show that the P2-like phages grow in different γ-proteobacteria. Based on the type of immunity and site-specific recombination system they can be roughly subdivided in two distinct subgroups and some new host integration sites could be identified. Some of the host attachment sites have a high identity to the sequences in the human genome, making them interesting as potential tools for targeted gene insertions into unmodified human cells.

    The functional studies have been focused on the identification of the determinants for site specificity, which is important for the use of the enzyme for targeted gene insertions into unmodified genomes. Two approaches have been used. In one, we have performed a structure-function analysis of P2 Int that has identified several presumptive residues involved in specific binding to the core sequence, all of them located in the same alpha-helix. This knowledge could be a base for an in vitro evolution of the integrase to enable it to accept new DNA targets with a high affinity. With respect to the excisionases from P2-like coliphages integrating in different sites, we found that they share some common features when they bind and bend to their DNA targets, but there are also significant differences, especially those related to the number of binding sites and the distribution of these and the IHF binding sites in the attP regions. In the other approach we have started to characterize the site-specific recombination system of another P2-like phage, ΦD145, that has a host target with a high identity to a site in the human genome. This looks promising since the human sequence can be used in vivo in E. coli with a rather high efficiency.

  • 161.
    Cardoso-Palacios, Carlos
    et al.
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Sylwan, Lina
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Mandali, Sridhar
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Frumerie, Clara
    Stockholm University, Faculty of Science, Department of Molecular Biology and Functional Genomics.
    Haggård-Ljungquist, Elisabeth
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    A structure-function analysis of P2 integraseManuscript (preprint) (Other academic)
    Abstract [en]

    Bacteriophage P2 integrase catalyzes site-specific recombination between the phage DNA and the host chromosome thereby promoting integration or excision of the phage genome. P2 integrase belongs to the large tyrosine family of integrases that shows little sequence identity besides some conserved boxes and patches in the catalytic domain. However, the overall structure of the tyrosine family of integrases seems to be similar. Phage integrases have the potential as tools for site-specific gene insertions into eukaryotic genomes provided that target sequences are available. To elucidate the possibility of evolving the P2 integrase to accept new targets, we have in this work initiated a structure-function analysis of the P2 integrase using two approaches based on a comparison of the predicted secondary structure of P2 integrase with that determined for the lambda integrase. First, we have made hybrids between P2 integrase and the related WΦ integrase that has a different host DNA target, to locate the region promoting specificity between the integrases. This, however, has not been possible, the N-terminal domains can be exchanged without losing biological activity and this will not affect the specificity. All other hybrids made were biological inactive. Next we have made an alanine scanning of the alpha helices believed to be involved in specific interactions with the target, and four amino acids have been identified as candidates for sequence-specific interactions with the core.

  • 162.
    Caren, Helena
    et al.
    University of Gothenburg, Sweden.
    Erichsen, Jennie
    University of Gothenburg, Sweden.
    Olsson, Linda
    University of Gothenburg, Sweden.
    Enerbäck, Charlotta
    University of Gothenburg, Sweden.
    Sjoberg, Rose-Marie
    University of Gothenburg, Sweden.
    Abrahamsson, Jonas
    University of Gothenburg, Sweden.
    Kogner, Per
    Childhood Canc Res Unit, SE-17176 Stockholm, Sweden .
    Martinsson, Tommy
    University of Gothenburg, Sweden.
    High-resolution array copy number analyses for detection of deletion, gain, amplification and copy-neutral LOH in primary neuroblastoma tumors: Four cases of homozygous deletions of the CDKN2A gene2008In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 9, no 353Article in journal (Refereed)
    Abstract [en]

    Background: Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets. Results: Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors. Conclusion: SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10-12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.

  • 163.
    Carlborg, Örjan
    et al.
    Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Kerje, Susanne
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Schutz, K
    Jacobsson, L
    Jensen, P
    Andersson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    A global search reveals epistatic interaction between QTL for early growthin the chicken2003In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 13, p. 413-421Article in journal (Refereed)
  • 164.
    Carlsson, Fredrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Koch, Christin
    Edman, Mattias
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Holm, Svante
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Testing the probability of finding major decomposing basidiomycetes in logs with T-RFLP - implications for field samplingManuscript (preprint) (Other academic)
    Abstract [en]

    In this article we examine the limitations and potential of T-RFLP for the accurate detection of fungal species in dead wood. We collected cross-sections of decayed logs to evaluate the number of fungal species domains that are likely to be hit when drilling a sawdust sample from a log. We used these estimates to simulate the number of species that would be found using a certain number of samples. We found that in 99% of the simulations, 4 or fewer species would be contained in a sample. Based on these results we tested the probability of detecting two species of wood-decaying basidiomycetes at three different DNA concentration ratios: 1:1, 1:5 and 1:20. An additional experiment was done with 3-5 species. It was possible to detect all species at ratios higher than 1:20 but lower than 1:5; in this range all peaks were easily detected. We were able to detect all species in the mixtures of 3-5 species, with extracts from both pure cultures and wood.

  • 165.
    Carlsson, Fredrik
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Olsson, Jörgen
    Holm, Svante
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Strong clustering in a SNP study of Phlebiopsis gigantea in swedenManuscript (preprint) (Other academic)
    Abstract [en]

    The population structures of wood decaying basidomycetes depend on several factors; one is dispersal pattern of spores, another is age structure including lifespan and also environmental impacts like forest fires. Phlebiopsis gigantea has been shown to be in the group of basidomycetes that have a well developed tolerance to heat, is long-distance wind dispersed and whose fruit body show up early in succession on fallen logs. In a study of 132 individuals from 3 pairs of locations, 350 km apart, in middle to northern Sweden we used 26 SNP-markers in 6 loci to make a genetic clustering study using STRUCTURE (v. 2.3.4.). The hypothesis; first, clustering should follow the geographic sampling locations with more gene flow between geographically close locations, second; that genetic distance between different clusters should be low due to the long distance dispersal of spores, third; as markers are random we don’t expect to find a correlation between locations affected by forest fires and locations not affected by forest fires. In the study we found 5 clusters (Pr[K= 1]) with moderate to high Fst values (0,0697-03939). Clusters had a poor geographical correlation to sampled populations indicating a complicated population structure. Out of 132 individuals 119 had a private genotype showing a large genetic variation over the total area and a low level of clones in the field.         

  • 166.
    Carneiro, Miguel
    et al.
    Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal.;Univ Porto, Fac Ciencias, Dept Biol, P-4169007 Oporto, Portugal..
    Hu, Dou
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Archer, John
    Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal..
    Feng, Chungang
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Afonso, Sandra
    Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal..
    Chen, Congying
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Jiangxi Agr Univ, State Key Lab Pig Genet Improvement & Prod Techno, Nanchang 330045, Jiangxi, Peoples R China..
    Blanco-Aguiar, Jose A.
    Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal.;Inst Invest Recursos Cineget IREC CSIC UCLM JCCM, Ciudad Real 13071, Spain..
    Garreau, Herve
    Univ Toulouse, INRA, Genet Physiol & Syst Elevage UMR1388, F-31326 Castanet Tolosan, France..
    Boucher, Samuel
    FFC, F-75009 Paris, France..
    Ferreira, Paula G.
    Univ Porto, ICBAS, Dept Anat, P-4050343 Oporto, Portugal.;Univ Porto, UMIB, P-4050343 Oporto, Portugal..
    Ferrand, Nuno
    Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, P-4485661 Vairao, Portugal.;Univ Porto, Fac Ciencias, Dept Biol, P-4169007 Oporto, Portugal.;Univ Johannesburg, Fac Sci, Dept Zool, ZA-2006 Auckland Pk, South Africa..
    Rubin, Carl-Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Andersson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Swedish Univ Agr Sci, Dept Anim Breeding & Genet, SE-75007 Uppsala, Sweden.;Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Vet Integrat Biosci, College Stn, TX 77843 USA. ETH, Inst Anim Sci, CH-8092 Zurich, Switzerland..
    Dwarfism and Altered Craniofacial Development in Rabbits Is Caused by a 12.1 kb Deletion at the HMGA2 Locus2017In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 205, no 2, p. 955-965Article in journal (Refereed)
    Abstract [en]

    The dwarf phenotype characterizes the smallest of rabbit breeds and is governed largely by the effects of a single dwarfing allele with an incompletely dominant effect on growth. Dwarf rabbits typically weigh under 1 kg and have altered craniofacial morphology. The dwarf allele is recessive lethal and dwarf homozygotes die within a few days of birth. The dwarf phenotype is expressed in heterozygous individuals and rabbits from dwarf breeds homozygous for the wild-type allele are normal, although smaller when compared to other breeds. Here, we show that the dwarf allele constitutes a similar to 12.1 kb deletion overlapping the promoter region and first three exons of the HMGA2 gene leading to inactivation of this gene. HMGA2 has been frequently associated with variation in body size across species. Homozygotes for null alleles are viable in mice but not in rabbits and probably not in humans. RNA-sequencing analysis of rabbit embryos showed that very few genes (4-29 genes) were differentially expressed among the three HMGA2/dwarf genotypes, suggesting that dwarfism and inviability in rabbits are caused by modest changes in gene expression. Our results show that HMGA2 is critical for normal expression of IGF2BP2, which encodes an RNA-binding protein. Finally, we report a catalog of regions of elevated genetic differentiation between dwarf and normal-size rabbits, including LCORL-NCAPG, STC2, HOXD cluster, and IGF2BP2. Levels and patterns of genetic diversity at the LCORL-NCAPG locus further suggest that small size in dwarf breeds was enhanced by crosses with wild rabbits. Overall, our results imply that small size in dwarf rabbits results from a large effect, loss-of-function (LOF) mutation in HMGA2 combined with polygenic selection.

  • 167. Carneiro, Miguel
    et al.
    Rubin, Carl-Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Di Palma, Federica
    Albert, Frank W.
    Alfoeldi, Jessica
    Barrio, Alvaro Martinez
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Pielberg, Gerli
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Rafati, Nima
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Sayyab, Shumaila
    Turner-Maier, Jason
    Younis, Shady
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Afonso, Sandra
    Aken, Bronwen
    Alves, Joel M.
    Barrell, Daniel
    Bolet, Gerard
    Boucher, Samuel
    Burbano, Hernan A.
    Campos, Rita
    Chang, Jean L.
    Duranthon, Veronique
    Fontanesi, Luca
    Garreau, Herve
    Heiman, David
    Johnson, Jeremy
    Mage, Rose G.
    Peng, Ze
    Queney, Guillaume
    Rogel-Gaillard, Claire
    Ruffier, Magali
    Searle, Steve
    Villafuerte, Rafael
    Xiong, Anqi
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Young, Sarah
    Forsberg-Nilsson, Karin
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology.
    Good, Jeffrey M.
    Lander, Eric S.
    Ferrand, Nuno
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Andersson, Leif
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication2014In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 345, no 6200, p. 1074-1079Article in journal (Refereed)
    Abstract [en]

    The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.

  • 168. Castelain, Mathieu
    et al.
    Le Hir, Rozenn
    Bellini, Catherine
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis2012In: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 145, no 3, p. 450-460Article in journal (Refereed)
    Abstract [en]

    Plant basic Helix-loop-helix (bHLH) proteins are transcription factors that are involved in many developmental mechanisms, including light signaling and hormone homeostasis. Some of them are non-DNA-binding proteins and could act as dominant negative regulators of other bHLH proteins by forming heterodimers, in a similar way to animal inhibitor of DNA-binding proteins. It has been recently reported that several non-DNA-binding bHLHs are involved in light signaling (KDR/PRE6), gibberellic acid signaling (PRE1/BNQ1/bHLH136) or brassinosteroid signaling (ATBS1). Here we report that Arabidopsis lines overexpressing the PRE3/bHLH135/ATBS1/TMO7 gene are less responsive to red, far-red and blue light than wild-type which is likely to explain the light hyposensitive phenotype displayed when grown under white light conditions. Using quantitative polymerase chain reaction, we show that the expression of PRE3 and KDR/PRE6 genes is regulated by light and that light-related genes are deregulated in the PRE3-ox lines. We show that PRE3 is expressed in the shoot and root meristems and that PRE3-ox lines also have a defect in lateral root development. Our results not only suggest that PRE3 is involved in the regulation of light signaling, but also support the hypothesis that non-DNA-binding bHLH genes are promiscuous genes regulating a wide range of both overlapping and specific regulatory pathways.

  • 169.
    Castensson, Anja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolutionary Biology, Evolutionary Biology.
    Emilsson, Lina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Preece, Paul
    Jazin, Elena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies2000In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 10, no 8, p. 1219-29Article in journal (Refereed)
    Abstract [en]

    Quantification of mRNA levels in human cortical brain biopsies and autopsies was performed using a fluorogenic 5' nuclease assay. The reproducibility of the assay using replica plates was 97%-99%. Relative quantities of mRNA from 16 different genes were evaluated using a statistical approach based on ANCOVA analysis. Comparison of the relative mRNA levels between two groups of samples with different time postmortem revealed unchanged relative expression levels for most genes. Only CYP26A1 mRNA levels showed a significant decrease with prolonged time postmortem (p = 0.00004). Also, there was a general decrease in measured mRNA levels for all genes in autopsies compared to biopsies; however, on comparing mRNA levels after adjusting with reference genes, no significant differences were found between mRNA levels in autopsies and biopsies. This observation indicates that studies of postmortem material can be performed to reveal the relative in vivo mRNA levels of genes. Power calculations were done to determine the number of individuals necessary to detect differences in mRNA levels of 1.5-fold to tenfold using the strategy described here. This analysis showed that samples from at least 50 individuals per group, patients and controls, are required for high-resolution ( approximately twofold changes) differential expression screenings in the human brain. Experiments done on ten individuals per group will result in a resolution of approximately fivefold changes in expression levels. In general, the sensitivity and resolution of any differential expression study will depend on the sample size used and the between-individual variability of the genes analyzed.

  • 170.
    Castensson, Anja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolutionary Biology, Evolutionary Biology.
    Emilsson, Lina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Sundberg, Rolf
    Jazin, Elena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Decrease of serotonin receptor 2C in schizophrenia brains identified by high-resolution mRNA expression analysis2003In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 54, no 11, p. 1212-1221Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: RNA expression profiling can provide hints for the selection of candidate susceptibility genes, for formulation of hypotheses about the development of a disease, and/or for selection of candidate gene targets for novel drug development. We measured messenger RNA expression levels of 16 candidate genes in brain samples from 55 schizophrenia patients and 55 controls. This is the largest sample so far used to identify genes differentially expressed in schizophrenia brains. METHODS: We used a sensitive real-time polymerase chain reaction methodology and a novel statistical approach, including the development of a linear model of analysis of covariance type. RESULTS: We found two genes differentially expressed: monoamine oxidase B was significantly increased in schizophrenia brain (p =.001), whereas one of the serotonin receptor genes, serotonin receptor 2C, was significantly decreased (p =.001). Other genes, previously proposed to be differentially expressed in schizophrenia brain, were invariant in our analysis. CONCLUSIONS:The differential expression of serotonin receptor 2C is particularly relevant for the development of new atypical antipsychotic drugs. The strategy presented here is useful to evaluate hypothesizes for the development of the disease proposed by other investigators.

  • 171.
    Castensson, Anja
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Åberg, Karolina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    McCarthy, Shane
    Saetre, Peter
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Andersson, Björn
    Jazin, Elena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Serotonin Receptor 2C (HTR2C) and Schizophrenia: Examination of Possible Medication and Genetic Influences on Expression Levels2005In: American Journal of Medical Genetics, ISSN 0148-7299, E-ISSN 1096-8628, Vol. 134B, p. 84-89Article in journal (Refereed)
    Abstract [en]

    The serotonin receptor 2C (HTR2C) gene is of interest in schizophrenia due to its involvement in regulation of dopamine activity in the prefrontal cortex. We have previously reported a decreased expression of HTR2C mRNA levels in the prefrontal cortex of schizophrenia patients. The variability in mRNA expression levels is evaluated here more closely in relation to promoter haplotypes and neuroleptic treatment received by the patients. The decrease in HTR2C mRNA was present in neuroleptic treated individuals and in patients untreated at death, indicating that the lower expression is not a short-term medication effect. Three promoter polymorphisms were used to construct haplotypes. No SNP displayed genotypic or haplotypic association with the disease. Gene expression of HTR2C was not affected by haplotype and the expression decrease in schizophrenia patients was similar in all haplotype combinations (diplotypes). We conclude that the decrease in HTR2C expression in schizophrenia may be related to the disease mechanism rather than to drug treatment. The disease related changes in HTR2C expression are not related to the promoter variants typed in our sample, but could be due to other regulatory variants or trans-acting factors.

  • 172.
    Castroviejo-Fisher, Santiago
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Skoglund, Pontus
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Valadez, Raul
    Laboratorio de Paleozoología, Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México.
    Vilá, Carles
    Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC).
    Leonard, Jennifer A.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Vanishing Native American dog lineages2011In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 11, p. 73-Article in journal (Refereed)
    Abstract [en]

    Background: Dogs were an important element in many native American cultures at the time Europeans arrived. Although previous ancient DNA studies revealed the existence of unique native American mitochondrial sequences, these have not been found in modern dogs, mainly purebred, studied so far.

    Results: We identified many previously undescribed mitochondrial control region sequences in 400 dogs from rural and isolated areas as well as street dogs from across the Americas. However, sequences of native American origin proved to be exceedingly rare, and we estimate that the native population contributed only a minor fraction of the gene pool that constitutes the modern population.

    Conclusions: The high number of previously unidentified haplotypes in our sample suggests that a lot of unsampled genetic variation exists in non-breed dogs. Our results also suggest that the arrival of European colonists to the Americas may have led to an extensive replacement of the native American dog population by the dogs of the invaders.

  • 173. Catania, Francesco
    et al.
    Gao, Xiang
    Scofield, Douglas
    Endogenous Mechanisms for the Origins of Spliceosomal Introns2009In: Journal of Heredity, ISSN 0022-1503, E-ISSN 1465-7333, Vol. 100, no 5, p. 591-596Article in journal (Refereed)
    Abstract [en]

    Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted genes of the last eukaryotic common ancestor (LECA) and proliferated by “insertion” events. Although this is a possible explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of spliceosomal introns in eukaryotes without invoking an exogenous source.

  • 174. Cavelier, L
    et al.
    Erikson, I
    Tammi, M
    Jalonen, P
    Lindholm, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Jazin, Elena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
    Smith, P
    Luthman, H
    Gyllensten, U
    MtDNA mutations in maternally inherited diabetes: presence of the 3397 ND1 mutation previously associated with Alzheimer's and Parkinson's disease2001In: Hereditas, ISSN 0018-0661, E-ISSN 1601-5223, Vol. 135, no 1, p. 65-70Article in journal (Refereed)
    Abstract [en]

    Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors.

  • 175.
    Cederlöf, Martin
    et al.
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Pettersson, Erik
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Sariaslan, Amir
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Larsson, Henrik
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Östberg, Per
    Division of Speech and Language Pathology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Speech and Language Pathology, Karolinska University Hospital, Stockholm, Sweden.
    Kelleher, Ian
    Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
    Långström, Niklas
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; R&D unit, Swedish Prison and Probation Service, Stockholm, Sweden.
    Gumpert, Clara Hellner
    Centre for Psychiatry Research & Education, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm County Council, Stockholm, Sweden.
    Lundström, Sebastian
    Centre for Ethics, Law and Mental Health (CELAM), University of Gothenburg, Gothenburg, Sweden; Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden.
    Lichtenstein, Paul
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    The association between childhood autistic traits and adolescent psychotic experiences is explained by general neuropsychiatric problems.2016In: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, ISSN 1552-4841, E-ISSN 1552-485X, Vol. 171, no 2, p. 153-159Article in journal (Refereed)
    Abstract [en]

    Studies suggest associations between childhood autistic traits and adolescent psychotic experiences. However, recent research suggests that a general neuropsychiatric problems factor predicts adverse outcomes better than specific diagnostic entities. To examine if the alleged association between autistic traits and psychotic experiences could rather be explained by a general neuropsychiatric problems factor comprising symptoms of ADHD, tic disorder, developmental coordination disorder, and learning disorder, we conducted a prospective cohort study based on the Child and Adolescent Twin Study in Sweden. In addition, we examined the genetic and environmental influences on the associations. A total of 9,282 twins with data on childhood autistic traits and other neuropsychiatric problems, and follow-up data on psychotic experiences at ages 15 and/or 18 years were included. First, psychotic experiences were regressed on autistic traits and second, the general neuropsychiatric problems factor was added to the model. Auditory hallucinations were analyzed separately from the other psychotic experiences. Finally, twin analyses were employed to disentangle genetic from environmental influences in the observed associations. Replicating prior research, significant associations were found between autistic traits in childhood and auditory hallucinations at ages 15 and 18. However, after controlling for the general neuropsychiatric problems factor, the associations between autistic traits and auditory hallucinations disappeared, whereas the association between the general neuropsychiatric problems factor and auditory hallucinations persisted after controlling for autistic traits. Twin analyses revealed that the association between the general neuropsychiatric problems factor and auditory hallucinations was driven by shared genetic influences. .

  • 176.
    Celorio-Mancera, Maria de la Paz
    et al.
    Stockholm University, Faculty of Science, Department of Zoology.
    Ahn, Seung-Joon
    Vogel, Heiko
    Heckel, David G.
    Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera2011In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 12, p. 575-Article in journal (Refereed)
    Abstract [en]

    Background: Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, Helicoverpa armigera, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses. Results: Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as beta-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose. Conclusions: This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. H. armigera's transcriptional response to gossypol feeding is tissue-and dose-dependent and involves diverse detoxifying mechanisms not only to alleviate direct effects of gossypol but also indirect damage such as pH disturbance and oxygen radical formation. Genes discovered through this transcriptional approach may be additional candidates for understanding gossypol detoxification and coping with gossypol-induced stress. In a generalist herbivore that has evolved transcriptionally-regulated responses to a variety of different plant compounds, hormesis may be due to a lower induction threshold of growth-promoting, stress-coping responses and a higher induction threshold of detoxification pathways that are costly and cause collateral damage to the cell.

  • 177.
    Ceplitis, H.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Ellegren, H.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Adaptive molecula evolution in HINTW, a female-specific gene in birds.2004In: Molecular Biology and Evolution, no 21, p. 249-254Article in journal (Refereed)
  • 178.
    Chaillou, Thomas
    et al.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Malgoyre, A.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Banzet, S.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Chapot, R.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Koulmann, N.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Pugnière, P.
    Genomic Core Facility, IRBA La Tronche, La Tronche, France.
    Beaudry, M.
    Laboratoire Réponses Cellulaires et Fonctionnelles À l'Hypoxie, Université Paris, Bobigny, France.
    Bigard, X.
    Operational environments, IRBA La Tronche, La Tronche, France.
    Peinnequin, A.
    Genomic Core Facility, IRBA La Tronche, La Tronche, France.
    Pitfalls in target mRNA quantification for real-time quantitative RT-PCR in overload-induced skeletal muscle hypertrophy2011In: Physiological Genomics, ISSN 1094-8341, E-ISSN 1531-2267, Vol. 43, no 4, p. 228-235Article in journal (Refereed)
    Abstract [en]

    Quantifying target mRNA using real-time quantitative reverse transcription-polymerase chain reaction requires an accurate normalization method. Determination of normalization factors (NFs) based on validated reference genes according to their relative stability is currently the best standard method in most usual situations. This method controls for technical errors, but its physiological relevance requires constant NF values for a fixed weight of tissue. In the functional overload model, the increase in the total RNA concentration must be considered in determining the NF values. Here, we pointed out a limitation of the classical geNorm-derived normalization. geNorm software selected reference genes despite that the NF values extensively varied under experiment. Only the NF values calculated from four intentionally selected genes were constant between groups. However, a normalization based on these genes is questionable. Indeed, three out of four genes belong to the same functional class (negative regulator of muscle mass), and their use is physiological nonsense in a hypertrophic model. Thus, we proposed guidelines for optimizing target mRNA normalization and quantification, useful in models of muscle mass modulation. In our study, the normalization method by multiple reference genes was not appropriate to compare target mRNA levels between overloaded and control muscles. A solution should be to use an absolute quantification of target mRNAs per unit weight of tissue, without any internal normalization. Even if the technical variations will stay present as a part of the intergroup variations, leading to less statistical power, we consider this method acceptable because it will not generate misleading results.

  • 179.
    Charpentier, Emmanuelle
    et al.
    Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology.
    Hess, Wolfgang R
    RNA in bacteria: biogenesis, regulatory mechanisms and functions2015In: FEMS Microbiology Reviews, ISSN 0168-6445, E-ISSN 1574-6976, Vol. 39, no 3, p. 277-279Article in journal (Refereed)
  • 180.
    Chen, Changchun
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Huang, Bo
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Anderson, James T
    Byström, Anders S
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Unexpected accumulation of ncm5U and ncm5s2U in a trm9 mutant suggests an additional step in the synthesis of mcm5U and mcm5s2U.2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 6, p. e20783-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Transfer RNAs are synthesized as a primary transcript that is processed to produce a mature tRNA. As part of the maturation process, a subset of the nucleosides are modified. Modifications in the anticodon region often modulate the decoding ability of the tRNA. At position 34, the majority of yeast cytosolic tRNA species that have a uridine are modified to 5-carbamoylmethyluridine (ncm(5)U), 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um), 5-methoxycarbonylmethyl-uridine (mcm(5)U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). The formation of mcm(5) and ncm(5) side chains involves a complex pathway, where the last step in formation of mcm(5) is a methyl esterification of cm(5) dependent on the Trm9 and Trm112 proteins.

    METHODOLOGY AND PRINCIPAL FINDINGS: Both Trm9 and Trm112 are required for the last step in formation of mcm(5) side chains at wobble uridines. By co-expressing a histidine-tagged Trm9p together with a native Trm112p in E. coli, these two proteins purified as a complex. The presence of Trm112p dramatically improves the methyltransferase activity of Trm9p in vitro. Single tRNA species that normally contain mcm(5)U or mcm(5)s(2)U nucleosides were isolated from trm9Δ or trm112Δ mutants and the presence of modified nucleosides was analyzed by HPLC. In both mutants, mcm(5)U and mcm(5)s(2)U nucleosides are absent in tRNAs and the major intermediates accumulating were ncm(5)U and ncm(5)s(2)U, not the expected cm(5)U and cm(5)s(2)U.

    CONCLUSIONS: Trm9p and Trm112p function together at the final step in formation of mcm(5)U in tRNA by using the intermediate cm(5)U as a substrate. In tRNA isolated from trm9Δ and trm112Δ strains, ncm(5)U and ncm(5)s(2)U nucleosides accumulate, questioning the order of nucleoside intermediate formation of the mcm(5) side chain. We propose two alternative explanations for this observation. One is that the intermediate cm(5)U is generated from ncm(5)U by a yet unknown mechanism and the other is that cm(5)U is formed before ncm(5)U and mcm(5)U.

  • 181.
    Chen, Changchun
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Huang, Bo
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Eliasson, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Rydén, Patrik
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Byström, Anders S
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Elongator Complex Influences Telomeric Gene Silencing and DNA Damage Response by Its Role in Wobble Uridine tRNA Modification2011In: PLoS genetics, ISSN 1553-7404, Vol. 7, no 9, p. e1002258-Article in journal (Refereed)
    Abstract [en]

    Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm(5)U(34)), 5-methoxycarbonylmethyluridine (mcm(5)U(34)), and 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNA(Lys) (s(2) ) (UUU), tRNA(Gln) (s(2) ) (UUG), and tRNA(Glu) (s(2) ) (UUC), which in a wild-type background contain the mcm(5)s(2)U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U(34). Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm(5)s(2)U nucleoside in tRNA(Lys) (mcm(5) (s(2) ) (UUU) ), tRNA(Gln) (mcm(5) (s(2) ) (UUG) ), and tRNA(Glu) (mcm(5) (s(2) ) (UUC) ). These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U(34) are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.

  • 182.
    Chen, Jenny
    et al.
    Broad Inst MIT & Harvard, Cambridge, MA 02142 USA;MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA.
    Swofford, Ross
    Broad Inst MIT & Harvard, Cambridge, MA 02142 USA.
    Johnson, Jeremy
    Broad Inst MIT & Harvard, Cambridge, MA 02142 USA.
    Cummings, Beryl B.
    Broad Inst MIT & Harvard, Cambridge, MA 02142 USA;Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA.
    Rogel, Noga
    Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA.
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Inst MIT & Harvard, Cambridge, MA 02142 USA.
    Haerty, Wilfried
    Earlham Inst, Norwich NR4 7UZ, Norfolk, England.
    di Palma, Federica
    Earlham Inst, Norwich NR4 7UZ, Norfolk, England;Univ East Anglia, Dept Biol & Med Sci, Norwich NR4 7TJ, Norfolk, England.
    Regev, Aviv
    Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA;MIT, Dept Biol, Cambridge, MA 02142 USA;MIT, Koch Inst, Cambridge, MA 02142 USA;Howard Hughes Med Inst, Chevy Chase, MD 20815 USA.
    A quantitative framework for characterizing the evolutionary history of mammalian gene expression2019In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 29, no 1, p. 53-63Article in journal (Refereed)
    Abstract [en]

    The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence conservation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that expression evolution across mammals is accurately modeled by the Ornstein-Uhlenbeck process, a commonly proposed model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection on a gene's expression, parameterize the distribution of each gene's optimal expression level, and detect deleterious expression levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression data across species and in disease.

    The full text will be freely available from 2019-06-15 10:50
  • 183.
    Chen, Jun
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Conifer Evolution, from Demography and Local Adaptation to Evolutionary Rates: Examples from the Picea genus2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Evolutionary process can be inferred at three different levels: the species level, the population level and the molecular level. In this thesis, I applied approaches at these three levels and aimed to get a comprehensive picture of conifer evolution, from speciation and demography to geographic variation and local adaptation, and then to the molecular evolution of proteins and small regulatory RNAs.

    Spruce species have been observed to possess a large number of trans-species shared polymorphisms. Using an “Isolation with migration” model, we found that the large effective population size of spruce retained these shared polymorphisms, inheriting them from the common ancestor. Post-divergence gene flow only existed between Picea abies and P. glauca, and between P. wilsonii and P. schrenkiana. The combination of Tajima’s D and Fay & Wu’s H at most of loci suggested an ancient and severe bottleneck for most species except P. breweriana.

    Furthermore, I investigated the effect of local selection in two parallel clines, which is one of the major forces that can cause divergence or even speciation. The timing of bud set and growth cessation was found correlated with latitude in populations of P. abies and P. obovata. Using allele frequency spectrum analyses we identified three genes under local selection in both species including two circadian-clock genes GI and PRR7, and one photoperiodic gene FTL2. This indicated that parallel evolution could occur through groups of genes within related pathways. Clinal variation at expression level provided stronger evidence of selection in FTL2, which has previously been associated with bud set in P. abies.

    Finally we focused on the molecular evolution of mRNA and small regulatory RNAs in P. abies. With the help of Next-Generation sequencing, we have achieved in spruce the first de novel assembly of the needle transcriptome and a preliminary characterization of sRNA populations. Along with features common in plants, spruce also exhibited novelties in many aspects including lower substitution rate and protein evolutionary rate, dominance of 21-nt sRNA, and a large proportion of TIR-NBS-LRR genes as sRNA sources and targets.

  • 184.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Ma, Xiaofei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Gyllenstrand, Niclas
    Zaina, Giusi
    Morgante, Michele
    Bousquet, Jean
    Eckert, Andrew
    Wegrzyn, Jill
    Neale, David
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (Picea abies)2012In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 191, no 3, p. 865-881Article in journal (Refereed)
    Abstract [en]

    Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.

  • 185.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Ma, Xiao-Fei
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Chinese Acad Sci, Key Lab Stress Physiol & Ecol Cold & Arid Reg, Lanzhou, Peoples R China..
    Zaina, Giusi
    Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy..
    Morgante, Michele
    Univ Udine, Dept Agr Food Environm & Anim Sci, I-33100 Udine, Italy..
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies2016In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 6, no 7, p. 1979-1989Article in journal (Refereed)
    Abstract [en]

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower F-ST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both F-ST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI.

  • 186.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Kallman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Xu, Nannan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Karkkainen, Katri
    Huotari, Tea
    Semerikov, Vladimir L.
    Vendramin, Giovanni G.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Clinal Variation at Phenology-Related Genes in Spruce: Parallel Evolution in FTL2 and Gigantea?2014In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 197, no 3, p. 1025-1038Article in journal (Refereed)
    Abstract [en]

    Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56 N to latitude 67 N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.

  • 187.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    CNR, Plant Genetics Institute, Sesto Fiorentino, Firenze, Italy.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Semerikov, Vladimir
    Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Sciences.
    Vendramin, Giovanni
    CNR, Plant Genetics Institute, Sesto Fiorentino, Firenze, Italy.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Clinal variation in allele frequency at photoperiodic genes in Siberian spruce: an example of convergent evolution?Manuscript (preprint) (Other academic)
  • 188.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Tsuda, Yoshiaki
    CNR, Plant Genetics Institute, Sesto Fiorentino, Firenze, Italy.
    Stocks, Michael
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Xu, Nannan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Semerikov, Vladimir
    Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Sciences.
    Vendramin, Giovanni
    CNR, Plant Genetics Institute, Sesto Fiorentino, Firenze, Italy.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Clinal variation in allele frequency and gene expression at photoperiodic and circadian genes in Siberian spruce: an example of parallel evolution?Manuscript (preprint) (Other academic)
  • 189.
    Chen, Jun
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Uebbing, Severin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Gyllenstrand, Niclas
    Department of Plant Biology and Forest Genetics, Swedish University of Agriculture Science.
    Lagercrantz, Ulf
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Lascoux, Martin
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Källman, Thomas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms compared to angiosperms2012In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 13, p. 589-Article in journal (Other academic)
    Abstract [en]

    Background: A detailed knowledge about which genes are expressed in which tissues and at which developmental stage is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now give both a snap-shot of the transcribed part of a species genome and simultaneously estimate levels of gene expression.

    Results: mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads were, together with publicly available expressed sequence tag (EST) data from Norway spruce, used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 59% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression difference between samples collected during dark and light conditions.

    Conclusions: Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10-09 and 1.1 × 10-09) is an order of magnitude smaller than values reported for angiosperm herbs, but if one takes generation time in to account, most of this difference disappear. The estimates of the non-synonymous over the synonymous divergence (dN/dS ratio) reported here is in general much lower than 1 and only a few genes showed a ratio larger than 1.

  • 190.
    Chen, Junfeng
    et al.
    Texas A&M Univ, Coll Vet Med, Dept Vet Pathobiol, College Stn, TX 77843 USA..
    Huddleston, John
    Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA.;Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA..
    Buckley, Reuben M.
    Univ Adelaide, Sch Biol Sci, Adelaide, SA 5005, Australia..
    Malig, Maika
    Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA..
    Lawhon, Sara D.
    Texas A&M Univ, Coll Vet Med, Dept Vet Pathobiol, College Stn, TX 77843 USA..
    Skow, Loren C.
    Texas A&M Univ, Coll Vet Med, Dept Vet Integrat Biosci, College Stn, TX 77843 USA..
    Lee, Mi Ok
    Texas A&M Univ, Coll Vet Med, Dept Vet Pathobiol, College Stn, TX 77843 USA..
    Eichler, Evan E.
    Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA.;Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA..
    Andersson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Texas A&M Univ, Coll Vet Med, Dept Vet Integrat Biosci, College Stn, TX 77843 USA.;Swedish Univ Agr Sci, Dept Anim Breeding & Genet, SE-75007 Uppsala, Sweden..
    Womack, James E.
    Texas A&M Univ, Coll Vet Med, Dept Vet Pathobiol, College Stn, TX 77843 USA..
    Bovine NK-lysin: Copy number variation and functional diversification2015In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, no 52, p. E7223-E7229Article in journal (Refereed)
    Abstract [en]

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in similar to 30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.

  • 191.
    Chen, Lei
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Molecular Tools for Biomarker Detection2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The advance of biological research promotes the emerging of new methods and solutions to answer the biological questions. This thesis describes several new molecular tools and their applications for the detection of genomic and proteomic information with extremely high sensitivity and specificity or simplify such detection procedures without compromising the performance.

    In paper I, we described a general method namely super RCA, for highly specific counting of single DNA molecules. Individual products of a range of molecular detection reactions are magnified to Giga-Dalton levels that are easily detected for counting one by one, using methods such as low-magnification microscopy, flow cytometry, or using a mobile phone camera. The sRCA-flow cytometry readout presents extremely high counting precision and the assay’s coefficient of variation can be as low as 0.5%. sRCA-flow cytometry readout can be applied to detect the tumor mutations down to 1/100,000 in the circulating tumor cell-free DNA.

    In paper II, we applied the super RCA method into the in situ sequencing protocol to enhance the amplified mRNA detection tags for better signal-to-noise ratios. The sRCA products co-localize with primary RCA products generated from the gene specific padlock probes and remain as a single individual object in during the sequencing step. The enhanced sRCA products is 100% brighter than regular RCA products and the detection efficiency at least doubled with preserved specificity using sRCA compared to standard RCA.

    In paper III, we described a highly specific and efficient molecular switch mechanism namely RCA reporter. The switch will initiate the rolling circle amplification only in the presence of correct target sequences. The RCA reporter mechanism can be applied to recognize single stranded DNA sequences, mRNA sequences and sequences embedded in the RCA products.

    In paper IV, we established the solid phase Proximity Ligation Assay against the SOX10 protein using poly clonal antibodies. Using this assay, we found elevated SOX10 in serum at high frequency among vitiligo and melanoma patients. While the healthy donors below the threshold.

  • 192.
    Chen, Lei
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology. Uppsala University.
    Björkesten, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Wu, Di
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Mathot, Lucy
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    liebs, Sandra
    Haybaeck, Johannes
    Sjöblom, Tobias
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Landegren, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    A molecular approach for single molecule counting and rare mutation detection in blood plasmaManuscript (preprint) (Other academic)
    Abstract [en]

    Problems in biology and medicine frequently require the ability to observe, evaluate, and count even extremely rare macromolecules directly in biological samples. Examples include the detection of mutant DNA or RNA molecules in plasma or distributed in tissues in tumor patients, and highly precise, digital enumeration of proteins and other molecules of interest in clinical specimens. We describe herein a general means to magnify detection signals from individual molecules to easily recorded levels via a highly specific process - super rolling circle amplification (sRCA). We demonstrate the ability of this technique to vastly enhance in situ detection, to count individual molecules by flow cytometry or using a mobile phone camera, and to enumerate tumor-specific sequence variants in plasma from patients at very high efficiency, with specificity adequate to detect single nucleotide mutant sequences among 100,000 copies of the normal sequence. 

  • 193. Chen, Nansheng
    et al.
    Mah, Allan
    Blacque, Oliver E.
    Chu, Jeffrey
    Phgora, Kiran
    Bakhoum, Mathieu W.
    Newbury, C. Rebecca Hunt
    Khattra, Jaswinder
    Chan, Susanna
    Go, Anne
    Efimenko, Evgeni
    Södertörn University, School of Life Sciences. Karolinska Institute.
    Johnsen, Robert
    Phirke, Prasad
    Södertörn University, School of Life Sciences. Karolinska Institute.
    Swoboda, Peter
    Södertörn University, School of Life Sciences. Karolinska Institute.
    Marra, Marco
    Moerman, Donald G.
    Leroux, Michel R.
    Baillie, David L.
    Stein, Lincoln D.
    Identification of ciliary and ciliopathy genes in Caenorhabditis elegans through comparative genomics2006In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 7, no 12, p. R126-Article in journal (Refereed)
    Abstract [en]

    Background: The recent availability of genome sequences of multiple related Caenorhabditis species has made it possible to identify, using comparative genomics, similarly transcribed genes in Caenorhabditis elegans and its sister species. Taking this approach, we have identified numerous novel ciliary genes in C. elegans, some of which may be orthologs of unidentified human ciliopathy genes. Results: By screening for genes possessing canonical X-box sequences in promoters of three Caenorhabditis species, namely C. elegans, C. briggsae and C. remanei, we identified 93 genes ( including known X-box regulated genes) that encode putative components of ciliated neurons in C. elegans and are subject to the same regulatory control. For many of these genes, restricted anatomical expression in ciliated cells was confirmed, and control of transcription by the ciliogenic DAF-19 RFX transcription factor was demonstrated by comparative transcriptional profiling of different tissue types and of daf-19(+) and daf-19(-) animals. Finally, we demonstrate that the dye-filling defect of dyf-5( mn400) animals, which is indicative of compromised exposure of cilia to the environment, is caused by a nonsense mutation in the serine/threonine protein kinase gene M04C9.5. Conclusion: Our comparative genomics-based predictions may be useful for identifying genes involved in human ciliopathies, including Bardet-Biedl Syndrome ( BBS), since the C. elegans orthologs of known human BBS genes contain X-box motifs and are required for normal dye filling in C. elegans ciliated neurons.

  • 194. Chen, Peng
    et al.
    Jäger, Gunilla
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Zheng, Bo
    Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana2010In: BMC Plant Biology, ISSN 1471-2229, E-ISSN 1471-2229, Vol. 10, article id 201Article in journal (Refereed)
    Abstract [en]

    Background: In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development. Results: In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula x tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family. Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots. Conclusions: Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.

  • 195.
    Chen, Sa
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Expression and function of Suppressor of zeste 12 in Drosophila melanogaster2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of animals and plants needs a higher order of regulation of gene expression to maintain proper cell state. The mechanisms that control what, when and where a gene should (or should not) be expressed are essential for correct organism development. The Polycomb group (PcG) is a family of genes responsible for maintaining gene silencing and Suppressor of zeste 12 (Su(z)12) is one of the core components in the PcG. The gene is highly conserved in organisms ranging from plants to humans, however, the specific function is not well known. The main tasks of this thesis was to investigate the function of Su(z)12 and its expression at different stages of Drosophila development.

    In polytene chromosomes of larval salivary glands, Su(z)12 binds to about 90 specific euchromatic sites. The binding along the chromosome arms is mostly in interbands, which are the most DNA de-condensed regions. The binding sites of Su(z)12 in polytene chromosomes correlate precisely with those of the Enhancer-of-zeste (E(z)) protein, indicating that Su(z)12 mainly exists within the Polycomb Repressive Complex 2 (PRC2). However, the binding pattern does not overlap well with Histone 3 lysine 27 tri-methylations (H3K27me3), the specific chromatin mark created by PRC2. The Su(z)12 binding to chromatin is dynamically regulated during mitotic and meiotic cell division. The two different Su(z)12 isoforms: Su(z)12-A and Su(z)12-B (resulting from alternative RNA splicing), have very different expression patterns during development. Functional analyses indicate that they also have different functions he Su(z)12-B form is the main mediator of silencing. Furthermore, a neuron specific localization pattern in larval brain and a giant larval phenotype in transgenic lines reveal a potential function of Su(z)12-A in neuron development.  In some aspects the isoforms seem to be able to substitute for each other.

    The histone methyltransferase activity of PRC2 is due to the E(z) protein. However, Su(z)12 is also necessary for H3K27me3 methylation in vivo, and it is thus a core component of PRC2. Clonal over-expression of Su(z)12 in imaginal wing discs results in an increased H3K27me3 activity, indicating that Su(z)12 is a limiting factor for silencing. When PcG function is lost, target genes normally become de-repressed. The segment polarity gene engrailed, encoding a transcription factor, is a target for PRC2 silencing. However, we found that it was not activated when PRC2 function was deleted. We show that the Ultrabithorax protein, encoded by another PcG target gene, also acts as an inhibitor of engrailed and that de-regulation of this gene causes a continued repression of engrailed. The conclusion is that a gene can have several negative regulators working in parallel and that secondary effects have to be taken into consideration, when analyzing effects of mutants.

    PcG silencing affects very many cellular processes and a large quantity of knowledge is gathered on the overall mechanisms of PcG regulation. However, little is known about how individual genes are silenced and how cells “remember” their fate through cell generations.

  • 196.
    Chen, Tian-Jiao
    et al.
    Institute of Child and Adolescent Health, School of Public Health, Health Science Center, Peking University, Beijing, China.
    Ji, Cheng-Ye
    Institute of Child and Adolescent Health, School of Public Health, Health Science Center, Peking University, Beijing, China.
    Wang, Shang-Shang
    Institute of Child and Adolescent Health, School of Public Health, Health Science Center, Peking University, Beijing, China.
    Lichtenstein, Paul
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Larsson, Henrik
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Chang, Zheng
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Genetic and environmental influences on the relationship between ADHD symptoms and internalizing problems: A Chinese twin study2016In: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, ISSN 1552-4841, E-ISSN 1552-485X, Vol. 171, no 7, p. 931-937Article in journal (Refereed)
    Abstract [en]

    Several twin studies have investigated the overlap between attention deficit hyperactivity disorder (ADHD) and externalizing problems; however, limited information is known regarding the genetic and environmental contribution to the overlap between ADHD and internalizing problems. This study examined the genetic and environmental influences on the variation in and covariation between ADHD symptoms and internalizing problems by using the Child Behavior Checklist (CBCL). We investigated 1,316 child and adolescent twins, including 780 monozygotic twins and 536 dizygotic twins, aged 6 years to 18 years from the Chinese Child and Adolescent Twin Registry. ADHD symptoms and internalizing problems were quantified through parent rating by using the Attention Problems Scale and other three scales, which include Anxious/Depressed, Withdrawn, and Somatic Complaints of CBCL. Genetic and environmental susceptibilities common to ADHD symptoms and internalizing problems were examined through bivariate twin modeling. Results showed that genetic factors substantially influenced the ADHD symptoms with a heritability of 72%. Modest genetic influences and substantial shared environmental influences (20-77%) were observed in the three internalizing problem scales. Common genetic and shared environmental influences were essential for the overlap between ADHD and the three internalizing problems respectively. Approximately one-fifth of the genetic variance of ADHD symptoms was shared with anxiety/depression. In conclusion, substantial genetic and shared environmental influences on ADHD symptoms and internalizing problems were observed in Chinese children and adolescents. Our finding supports a common etiology between ADHD and internalizing problems. This finding can also help explain the co-existence of these behavior problems. © 2015 Wiley Periodicals, Inc.

  • 197. Chen, Xinyu
    et al.
    Yuan, Huwei
    Hu, Xiange
    Meng, Jingxiang
    Zhou, Xianqing
    Wang, Xiao-Ru
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. National Engineering Laboratory for Forest Tree Breeding, Key Laboratory of Genetic and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People’s Republic of China.
    Li, Yue
    Variations in electrical impedance and phase angle among seedlings of Pinus densata and parental species in Pinus tabuliformis habitat environment2015In: Journal of Forestry Research, ISSN 1007-662X, E-ISSN 1993-0607, Vol. 26, no 3, p. 777-783Article in journal (Refereed)
    Abstract [en]

    Electrical impedance (EI) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, EI and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were significant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novel reference methodology for future studies in evolution and genetic variation of tree species.

  • 198.
    Cherif, E.
    et al.
    Ctr IRD, UMR DIADE, IRD CIRAD Palm Grp F2F, 911 Ave Agropolis, F-34394 Montpellier, France.;Univ Tunis El Manar, Fac Sci Tunis, Lab Genet Mol Immunol & Biotechnol, El Manar, Tunisia..
    Zehdi-Azouzi, S.
    Univ Tunis El Manar, Fac Sci Tunis, Lab Genet Mol Immunol & Biotechnol, El Manar, Tunisia..
    Crabos, A.
    Ctr IRD, UMR DIADE, IRD CIRAD Palm Grp F2F, 911 Ave Agropolis, F-34394 Montpellier, France..
    Castillo, K.
    Ctr IRD, UMR DIADE, IRD CIRAD Palm Grp F2F, 911 Ave Agropolis, F-34394 Montpellier, France..
    Chabrillange, N.
    Ctr IRD, UMR DIADE, IRD CIRAD Palm Grp F2F, 911 Ave Agropolis, F-34394 Montpellier, France..
    Pintaud, J. -C
    Salhi-Hannachi, A.
    Univ Tunis El Manar, Fac Sci Tunis, Lab Genet Mol Immunol & Biotechnol, El Manar, Tunisia..
    Glemin, Sylvain
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution. Unite Mixte Rech 5554 Univ Montpellier CNRS IRD E, Inst Sci Evolut Montpellier, Montpellier, France..
    Aberlenc-Bertossi, F.
    Ctr IRD, UMR DIADE, IRD CIRAD Palm Grp F2F, 911 Ave Agropolis, F-34394 Montpellier, France..
    Evolution of sex chromosomes prior to speciation in the dioecious Phoenix species2016In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 29, no 8, p. 1513-1522Article in journal (Refereed)
    Abstract [en]

    Understanding the driving forces and molecular processes underlying dioecy and sex chromosome evolution, leading from hermaphroditism to the occurrence of male and female individuals, is of considerable interest in fundamental and applied research. The genus Phoenix, belonging to the Arecaceae family, consists uniquely of dioecious species. Phylogenetic data suggest that the genus Phoenix has diverged from a hermaphroditic ancestor which is also shared with its closest relatives. We have investigated the cessation of recombination in the sex-determination region within the genus Phoenix as a whole by extending the analysis of P.dactylifera SSR sex-related loci to eight other species within the genus. Phylogenetic analysis of a date palm sex-linked PdMYB1 gene in these species has revealed that sex-linked alleles have not clustered in a species-dependent way but rather in X and Y-allele clusters. Our data show that sex chromosomes evolved from a common autosomal origin before the diversification of the extant dioecious species.

  • 199.
    Christophersen, Ingrid E.
    et al.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA.;Vestre Viken Hosp Trust, Baerum Hosp, Dept Med Res, Rud, Norway..
    Rienstra, Michiel
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Roselli, Carolina
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Genet Epidemiol, Neuherberg, Germany.;Ludwig Maximilians Univ Munchen, Genet Epidemiol, Inst Med Informat Biometry & Epidemiol, Munich, Germany..
    Yin, Xiaoyan
    NHLBI, Framingham, MA USA.;Boston Univ Framingham Heart Study, Framingham, MA USA.;Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA..
    Geelhoed, Bastiaan
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Barnard, John
    Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Mol Cardiol, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA..
    Lin, Honghuang
    NHLBI, Framingham, MA USA.;Boston Univ Framingham Heart Study, Framingham, MA USA.;Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA..
    Arking, Dan E.
    Johns Hopkins Univ Sch Med, McKusick Nathans Inst Genet Med, Baltimore, MD USA..
    Smith, Albert V.
    Iceland Heart Assoc, Kopavogur, Iceland.;Univ Iceland, Fac Med, Reykjavik, Iceland..
    Albert, Christine M.
    Brigham & Womens Hosp, Div Prevent Med, 75 Francis St, Boston, MA 02115 USA.;Harvard Med Sch, Boston, MA USA.;Brigham & Womens Hosp, Div Cardiovasc Med, 75 Francis St, Boston, MA 02115 USA..
    Chaffin, Mark
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA..
    Tucker, Nathan R.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA..
    Li, Molong
    Klarin, Derek
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA..
    Bihlmeyer, Nathan A.
    Johns Hopkins Univ Sch Med, McKusick Nathans Inst Genet Med, Predoctoral Training Program Human Genet, Baltimore, MD USA..
    Low, Siew-Kee
    RIKEN, Ctr Integrat Med Sci, Lab Stat Anal, Yokohama, Kanagawa, Japan..
    Weeke, Peter E.
    Vanderbilt Univ, Med Ctr, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA.;Copenhagen Univ Hosp, Rigshosp, Dept Cardiol, Heart Ctr, Copenhagen, Denmark..
    Mueller-Nurasyid, Martina
    Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Genet Epidemiol, Neuherberg, Germany.;Univ Hosp Munich, Ludwig Maximilians Univ, Dept Med 1, Munich, Germany.;DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany..
    Smith, J. Gustav
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Lund Univ, Clin Sci, Molecular Epidemiol & Cardiol, Lund, Sweden..
    Brody, Jennifer A.
    Univ Washington, Dept Med, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA..
    Niemeijer, Maartje N.
    Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands..
    Doerr, Marcus
    Univ Med Greifswald, Dept Internal Med B, Greifswald, Germany.;DZHK German Ctr Cardiovasc Res, Greifswald, Germany..
    Trompet, Stella
    Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands..
    Huffman, Jennifer
    Univ Edinburgh, Inst Genet & Mol Med, MRC, Human Genet Unit, Edinburgh, Midlothian, Scotland..
    Gustafsson, Stefan
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology.
    Schurmann, Claudia
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA.;Icahn Sch Med Mt Sinai, Genet Obes & Related Metab Traits Program, New York, NY 10029 USA..
    Kleber, Marcus E.
    Heidelberg Univ, Med Fac Mannheim, Dept Med 5, Heidelberg, Germany..
    Lyytikainen, Leo-Pekka
    Fimlab Labs, Dept Clin Chem, Tampere, Finland.;Univ Tampere, Sch Med, Tampere, Finland..
    Seppala, Ilkka
    Fimlab Labs, Dept Clin Chem, Tampere, Finland.;Univ Tampere, Sch Med, Tampere, Finland..
    Malik, Rainer
    Klinikum Univ Munchen, Inst Stroke & Dementia Res, Ludwig Maximilians Univ, Munich, Germany..
    Horimoto, Andrea R. V. R.
    Univ Sao Paulo, Heart Inst, Lab Genet & Mol Cardiol, Sao Paulo, Brazil..
    Perez, Marco
    Stanford Univ, Dept Cardiovasc Med, Stanford, CA 94305 USA..
    Sinisalo, Juha
    Univ Helsinki, Cent Hosp, Heart & Lung Ctr HUS, Helsinki, Finland..
    Aeschbacher, Stefanie
    Univ Basel Hosp, Dept Med, Basel, Switzerland.;Cardiovasc Res Inst Basel, Basel, Switzerland..
    Theriault, Sebastien
    Populat Hlth Res Inst, Hamilton, ON, Canada.;McMaster Univ, Dept Pathol & Mol Med, Hamilton, ON, Canada..
    Yao, Jie
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Radmanesh, Farid
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA..
    Weiss, Stefan
    DZHK German Ctr Cardiovasc Res, Greifswald, Germany.;Univ Med, Interfac Inst Genet & Funct Gen, Greifswald, Germany.;Ernst Moritz Arndt Univ Greifswald, Greifswald, Germany..
    Teumer, Alexander
    DZHK German Ctr Cardiovasc Res, Greifswald, Germany.;Univ Med Greifswald, Inst Community Med, Greifswald, Germany..
    Choi, Seung Hoan
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA..
    Weng, Lu-Chen
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA..
    Clauss, Sebastian
    Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA.;Univ Hosp Munich, Ludwig Maximilians Univ, Dept Med 1, Munich, Germany.;DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany..
    Deo, Rajat
    Univ Penn, Perelman Sch Med, Dept Med, Div Cardiovasc Med, Philadelphia, PA 19104 USA..
    Rader, Daniel J.
    Univ Penn, Perelman Sch Med, Dept Med, Div Cardiovasc Med, Philadelphia, PA 19104 USA..
    Shah, Svati H.
    Duke Univ, Sch Med, Dept Med, Div Cardiol, Durham, NC 27706 USA..
    Sun, Albert
    Duke Univ, Sch Med, Dept Med, Div Cardiol, Durham, NC 27706 USA..
    Hopewell, Jemma C.
    Univ Oxford, CTSU Nuffield Dept Populat Hlth, Oxford, England..
    Debette, Stephanie
    Bordeaux Populat Hlth Ctr, INSERM U1219, Bordeaux, France.;Univ Bordeaux, Bordeaux, France.;Bordeaux Univ Hosp, Dept Neurol, Bordeaux, France.;Boston Univ, Sch Med, Dept Neurol, Boston, MA 02215 USA..
    Chauhan, Ganesh
    Bordeaux Populat Hlth Ctr, INSERM U1219, Bordeaux, France.;Univ Bordeaux, Bordeaux, France..
    Yang, Qiong
    Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA..
    Worrall, Bradford B.
    Univ Virginia Hlth Syst, Dept Neurol, Charlottesville, VA USA.;Univ Virginia Hlth Syst, Dept Publ Hlth Sci, Charlottesville, VA USA..
    Pare, Guillaume
    Populat Hlth Res Inst, Hamilton, ON, Canada.;McMaster Univ, Dept Pathol & Mol Med, Hamilton, ON, Canada..
    Kamatani, Yoichiro
    RIKEN, Ctr Integrat Med Sci, Lab Stat Anal, Yokohama, Kanagawa, Japan..
    Hagemeijer, Yanick P.
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Verweij, Niek
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Siland, Joylene E.
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Kubo, Michiaki
    RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa, Japan..
    Smith, Jonathan D.
    Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Mol Cardiol, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA..
    Van Wagoner, David R.
    Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Mol Cardiol, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA..
    Bis, Joshua C.
    Univ Washington, Dept Med, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA..
    Perz, Siegfried
    Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Epidemiol 2, Neuherberg, Germany..
    Psaty, Bruce M.
    Univ Washington, Dept Med, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA.;Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA.;Univ Washington, Cardiovasc Hlth Res Unit, Washington, DC USA.;Grp Hlth Cooperat Puget Sound, Grp Hlth Res Inst, Seattle, WA USA.;Univ Washington, Dept Hlth Serv, Seattle, WA 98195 USA..
    Ridker, Paul M.
    Brigham & Womens Hosp, Div Prevent Med, 75 Francis St, Boston, MA 02115 USA.;Harvard Med Sch, Boston, MA USA.;Brigham & Womens Hosp, Div Cardiovasc Med, 75 Francis St, Boston, MA 02115 USA..
    Magnani, Jared W.
    NHLBI, Framingham, MA USA.;Boston Univ Framingham Heart Study, Framingham, MA USA.;Boston Univ, Sch Med, Dept Med, Boston, MA 02215 USA..
    Harris, Tamara B.
    Natl Inst Aging, Lab Epidemiol Demog & Biometry, Bethesda, MD USA..
    Launer, Lenore J.
    Natl Inst Aging, Lab Epidemiol Demog & Biometry, Bethesda, MD USA..
    Shoemaker, M. Benjamin
    Vanderbilt Univ, Med Ctr, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA..
    Padmanabhan, Sandosh
    Univ Glasgow, BHF Glasgow Cardiovasc Res Ctr, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland..
    Haessler, Jeffrey
    Univ Washington, Fred Hutchinson Canc Res Ctr, Seattle, WA 98195 USA..
    Bartz, Traci M.
    Univ Washington, Dept Med, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA.;Univ Washington, Dept Biostat, Cardiovasc Hlth Res Unit, Seattle, WA 98195 USA..
    Waldenberger, Melanie
    DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany.;Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Epidemiol 2, Neuherberg, Germany.;Helmholtz Zentrum Munchen German Res Ctr Environm, Res Unit Mol Epidemiol, Neuherberg, Germany..
    Lichtner, Peter
    Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Human Genet, Neuherberg, Germany..
    Arendt, Marina
    Univ Hosp Essen, Inst Med Informat Biometry & Epidemiol, Essen, Germany..
    Krieger, Jose E.
    Univ Sao Paulo, Heart Inst, Lab Genet & Mol Cardiol, Sao Paulo, Brazil..
    Kahonen, Mika
    Univ Tampere, Sch Med, Tampere, Finland.;Tampere Univ Hosp, Dept Clin Physiol, Tampere, Finland..
    Risch, Lorenz
    Univ Bern, Univ Inst Clin Chem, Bern, Switzerland.;Labormed Zentrum Dr Risch, Schaan, Liechtenstein..
    Mansur, Alfredo J.
    Univ Sao Paulo, Heart Inst, Sao Paulo, Brazil..
    Peters, Annette
    DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany.;Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Epidemiol 2, Neuherberg, Germany.;German Ctr Diabet Res, Neuherberg, Germany..
    Smith, Blair H.
    Univ Dundee, Div Populat Hlth Sci, Dundee, Scotland..
    Lind, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cardiovascular epidemiology.
    Scott, Stuart A.
    Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA..
    Lu, Yingchang
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA.;Icahn Sch Med Mt Sinai, Genet Obes & Related Metab Traits Program, New York, NY 10029 USA..
    Bottinger, Erwin B.
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA.;Icahn Sch Med Mt Sinai, Dept Pharmacol & Syst Therapeut, New York, NY 10029 USA..
    Hernesniemi, Jussi
    Fimlab Labs, Dept Clin Chem, Tampere, Finland.;Univ Tampere, Sch Med, Tampere, Finland.;Tampere Univ Hosp, Heart Hosp, Dept Cardiol, Tampere, Finland..
    Lindgren, Cecilia M.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England..
    Wong, Jorge A.
    McMaster Univ, Div Cardiol Hamilton Hlth Sci, Hamilton, ON, Canada..
    Huang, Jie
    Boston VA Res Inst Inc, Boston, MA USA..
    Eskola, Markku
    Univ Tampere, Sch Med, Tampere, Finland.;Tampere Univ Hosp, Heart Hosp, Dept Cardiol, Tampere, Finland..
    Morris, Andrew P.
    Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England.;Univ Liverpool, Dept Biostat, Liverpool, Merseyside, England..
    Ford, Ian
    Univ Glasgow, Robertson Ctr Biostat, Glasgow, Lanark, Scotland..
    Reiner, Alex P.
    Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA.;Univ Glasgow, BHF Glasgow Cardiovasc Res Ctr, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland..
    Delgado, Graciela
    Heidelberg Univ, Med Fac Mannheim, Dept Med 5, Heidelberg, Germany..
    Chen, Lin Y.
    Univ Minnesota, Dept Med, Med Sch, Cardiovasc Div, Box 736 UMHC, Minneapolis, MN 55455 USA..
    Chen, Yii-Der Ida
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Sandhu, Roopinder K.
    Univ Alberta, Div Cardiol, Edmonton, AB, Canada..
    Li, Man
    Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA.;Johns Hopkins Univ, Dept Epidemiol, Baltimore, MD USA.;Univ Utah, Sch Med, Div Nephrol & Hypertens, Internal Med, Salt Lake City, UT USA..
    Boerwinkle, Eric
    Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA..
    Eisele, Lewin
    Univ Hosp Essen, Inst Med Informat Biometry & Epidemiol, Essen, Germany..
    Lannfelt, Lars
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Public Health and Caring Sciences, Geriatrics.
    Rost, Natalia
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Acute Stroke Serv, Boston, MA 02114 USA..
    Anderson, Christopher D.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA..
    Taylor, Kent D.
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Campbell, Archie
    Univ Edinburgh, Inst Genet & Mol Med, Ctr Genom & Expt Med, Generat Scotland, Edinburgh, Midlothian, Scotland..
    Magnusson, Patrik K.
    Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden..
    Porteous, David
    Univ Edinburgh, Inst Genet & Mol Med, Ctr Genom & Expt Med, Generat Scotland, Edinburgh, Midlothian, Scotland..
    Hocking, Lynne J.
    Univ Aberdeen, Div Appl Med, Musculoskeletal Res Programme, Aberdeen, Scotland..
    Vlachopoulou, Efthymia
    Univ Helsinki, Medicum, Transplantat Lab, Helsinki, Finland..
    Pedersen, Nancy L.
    Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden..
    Nikus, Kjell
    Univ Tampere, Sch Med, Tampere, Finland.;Tampere Univ Hosp, Heart Hosp, Dept Cardiol, Tampere, Finland..
    Orho-Melander, Marju
    Lund Univ, Dept Clin Sci, Malmo, Sweden..
    Hamsten, Anders
    Karolinska Inst, Dept Med Solna, Atherosclerosis Res Unit, Cardiovasc Genet & Genom Grp, Stockholm, Sweden..
    Heeringa, Jan
    Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands..
    Denny, Joshua C.
    Vanderbilt Univ, Med Ctr, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA..
    Kriebel, Jennifer
    Helmholtz Zentrum Munchen German Res Ctr Environm, Inst Epidemiol 2, Neuherberg, Germany.;Helmholtz Zentrum Munchen German Res Ctr Environm, Res Unit Mol Epidemiol, Neuherberg, Germany.;German Ctr Diabet Res, Neuherberg, Germany..
    Darbar, Dawood
    Univ Illinois, Dept Med & Pharmacol, Chicago, IL USA..
    Newton-Cheh, Christopher
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA..
    Shaffer, Christian
    Vanderbilt Univ, Med Ctr, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA..
    Macfarlane, Peter W.
    Univ Glasgow, Coll Med Vet & Sci, Inst Hlth & Wellbeing, Glasgow, Lanark, Scotland..
    Heilmann-Heimbach, Stefanie
    Univ Bonn, Inst Human Genet, Bonn, Germany.;Univ Bonn, Life & Brain Res Ctr, Dept Gen, Bonn, Germany..
    Almgren, Peter
    Lund Univ, Dept Clin Sci, Malmo, Sweden..
    Huang, Paul L.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA..
    Sotoodehnia, Nona
    Univ Washington, Cardiovasc Hlth Res Unit, Washington, DC USA..
    Soliman, Elsayed Z.
    Wake Forest Sch Med, Epidemiol Cardiol Res Ctr EPICARE, Winston Salem, NC USA..
    Uitterlinden, Andre G.
    Erasmus MC, Dept Epidemiol & Internal Med, Rotterdam, Netherlands..
    Hofman, Albert
    Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands..
    Franco, Oscar H.
    Erasmus MC, Dept Epidemiol, Rotterdam, Netherlands..
    Voelker, Uwe
    DZHK German Ctr Cardiovasc Res, Greifswald, Germany.;Univ Med, Interfac Inst Genet & Funct Gen, Greifswald, Germany.;Ernst Moritz Arndt Univ Greifswald, Greifswald, Germany..
    Joeckel, Karl-Heinz
    Univ Hosp Essen, Inst Med Informat Biometry & Epidemiol, Essen, Germany..
    Sinner, Moritz F.
    Univ Hosp Munich, Ludwig Maximilians Univ, Dept Med 1, Munich, Germany.;DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany..
    Lin, Henry J.
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Guo, Xiuqing
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Dichgans, Martin
    Klinikum Univ Munchen, Inst Stroke & Dementia Res, Ludwig Maximilians Univ, Munich, Germany.;Munich Cluster Syst Neurol SyNergy, Munich, Germany.;German Ctr Neurodegenerat Dis DZNE, Munich, Germany..
    Ingelsson, Erik
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology.
    Kooperberg, Charles
    Univ Washington, Fred Hutchinson Canc Res Ctr, Seattle, WA 98195 USA..
    Melander, Olle
    Lund Univ, Clin Sci, Dept Internal Med, Malmo, Sweden..
    Loos, Ruth J. F.
    Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY 10029 USA.;Icahn Sch Med Mt Sinai, Genet Obes & Related Metab Traits Program, New York, NY 10029 USA.;Icahn Sch Med Mt Sinai, Mindich Child Hlth & Dev Inst, New York, NY 10029 USA..
    Laurikka, Jari
    Univ Tampere, Sch Med, Tampere, Finland.;Tampere Univ Hosp, Heart Hosp, Dept Cardio Thorac Surg, Tampere, Finland..
    Conen, David
    Univ Basel Hosp, Dept Med, Basel, Switzerland.;Cardiovasc Res Inst Basel, Basel, Switzerland..
    Rosand, Jonathan
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA..
    van der Harst, Pim
    Univ Groningen, Dept Cardiol, Univ Med Ctr Groningen, Groningen, Netherlands..
    Lokki, Marja-Liisa
    Univ Helsinki, Medicum, Transplantat Lab, Helsinki, Finland..
    Kathiresan, Sekar
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA..
    Pereira, Alexandre
    Univ Sao Paulo, Heart Inst, Lab Genet & Mol Cardiol, Sao Paulo, Brazil.;Harvard Med Sch, Dept Genet, Boston, MA USA..
    Jukema, J. Wouter
    Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands.;Durrer Ctr Cardiogenet Res, Amsterdam, Netherlands.;Interuniv Cardiol Inst Netherlands, Utrecht, Netherlands..
    Hayward, Caroline
    Univ Edinburgh, Inst Genet & Mol Med, MRC, Human Genet Unit, Edinburgh, Midlothian, Scotland..
    Rotter, Jerome I.
    Harbor UCLA Med Ctr, LABioMed, Dept Pediat, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA.;Harbor UCLA Med Ctr, LABioMed, Dept Med, Inst Translat Genom & Populat Sci, Torrance, CA 90509 USA..
    Maerz, Winfried
    Med Univ Graz, Inst Clin Med, Graz, Austria.;Med Univ Graz, Chem Lab Diagnost, Graz, Austria.;Synlab Holding Deutschland GmbH, Synlab Acad, Mannheim, Germany.;Synlab Holding Deutschland GmbH, Synlab Acad, Augsburg, Germany..
    Lehtimaki, Terho
    Fimlab Labs, Dept Clin Chem, Tampere, Finland.;Univ Tampere, Sch Med, Tampere, Finland..
    Stricker, Bruno H.
    Erasmus MC, Dept Epidemiol & Internal Med, Rotterdam, Netherlands.;Inspectorate Hlth Care, Utrecht, Netherlands..
    Chung, Mina K.
    Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Mol Cardiol, Cleveland, OH 44106 USA.;Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA..
    Felix, Stephan B.
    Univ Med Greifswald, Dept Internal Med B, Greifswald, Germany.;DZHK German Ctr Cardiovasc Res, Greifswald, Germany..
    Gudnason, Vilmundur
    Iceland Heart Assoc, Kopavogur, Iceland.;Univ Iceland, Fac Med, Reykjavik, Iceland..
    Alonso, Alvaro
    Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA..
    Roden, Dan M.
    Vanderbilt Univ, Med Ctr, Dept Med, 221 Kirkland Hall, Nashville, TN 37235 USA..
    Kaeaeb, Stefan
    Univ Hosp Munich, Ludwig Maximilians Univ, Dept Med 1, Munich, Germany.;DZHK German Ctr Cardiovasc Res, Munich Heart Alliance, Munich, Germany..
    Chasman, Daniel I.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Brigham & Womens Hosp, Div Prevent Med, 75 Francis St, Boston, MA 02115 USA.;Harvard Med Sch, Boston, MA USA.;Brigham & Womens Hosp, Div Genet, 75 Francis St, Boston, MA 02115 USA..
    Heckbert, Susan R.
    Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA.;Univ Washington, Cardiovasc Hlth Res Unit, Washington, DC USA.;Grp Hlth Cooperat Puget Sound, Grp Hlth Res Inst, Seattle, WA USA..
    Benjamin, Emelia J.
    NHLBI, Framingham, MA USA.;Boston Univ Framingham Heart Study, Framingham, MA USA.;Boston Univ, Sch Med, Dept Med, Boston, MA 02215 USA.;Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02215 USA..
    Tanaka, Toshihiro
    RIKEN, Ctr Integrat Med Sci, Lab Cardiovasc Dis, Yokohama, Kanagawa, Japan.;Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Human Genet & Dis Divers, Tokyo, Japan..
    Lunetta, Kathryn L.
    NHLBI, Framingham, MA USA.;Boston Univ Framingham Heart Study, Framingham, MA USA..
    Lubitz, Steven A.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA.;Massachusetts Gen Hosp, Cardiac Arrhythmia Serv, Boston, MA 02114 USA..
    Ellinor, Patrick T.
    Broad Inst & Harvard, Program Med & Populat Genet, Cambridge, MA USA.;Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA.;Massachusetts Gen Hosp, Cardiac Arrhythmia Serv, Boston, MA 02114 USA..
    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation2017In: Nature Genetics, ISSN 1061-4036, E-ISSN 1546-1718, Vol. 49, no 6, p. 946-+Article in journal (Refereed)
    Abstract [en]

    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death(1,2). Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups(3-7). To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery(8).

  • 200.
    Chylenski, Maciej
    et al.
    Adam Mickiewicz Univ, Fac Hist, Inst Archaeol, Umultowska 89D, PL-61614 Poznan, Poland..
    Juras, Anna
    Adam Mickiewicz Univ, Fac Biol, Inst Anthropol, Dept Human Evolutionary Biol, Umultowska 89, PL-61614 Poznan, Poland..
    Ehler, Edvard
    Adam Mickiewicz Univ, Fac Biol, Inst Anthropol, Dept Human Evolutionary Biol, Umultowska 89, PL-61614 Poznan, Poland.;Charles Univ Prague, Fac Educ, Dept Biol & Environm Studies, Magdaleny Rettigove 4, Prague 11639, Czech Republic..
    Malmström, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Piontek, Janusz
    Adam Mickiewicz Univ, Fac Biol, Inst Anthropol, Dept Human Evolutionary Biol, Umultowska 89, PL-61614 Poznan, Poland..
    Jakobsson, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Evolution and Developmental Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Marciniak, Arkadiusz
    Adam Mickiewicz Univ, Fac Hist, Inst Archaeol, Umultowska 89D, PL-61614 Poznan, Poland..
    Dabert, Miroslawa
    Adam Mickiewicz Univ, Fac Biol, Mol Biol Techn Lab, Umultowska 89, PL-61614 Poznan, Poland..
    Late Danubian mitochondrial genomes shed light into the Neolithisation of Central Europe in the 5th millennium BC2017In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 17, article id 80Article in journal (Refereed)
    Abstract [en]

    Background: Recent aDNA studies are progressively focusing on various Neolithic and Hunter-Gatherer (HG) populations, providing arguments in favor of major migrations accompanying European Neolithisation. The major focus was so far on the Linear Pottery Culture (LBK), which introduced the Neolithic way of life in Central Europe in the second half of 6th millennium BC. It is widely agreed that people of this culture were genetically different from local HGs and no genetic exchange is seen between the two groups. From the other hand some degree of resurgence of HGs genetic component is seen in late Neolithic groups belonging to the complex of the Funnel Beaker Cultures (TRB). Less attention is brought to various middle Neolithic cultures belonging to Late Danubian sequence which chronologically fall in between those two abovementioned groups. We suspected that genetic influx from HG to farming communities might have happened in Late Danubian cultures since archaeologists see extensive contacts between those two communities. Results: Here we address this issue by presenting 5 complete mitochondrial genomes of various late Danubian individuals from modern-day Poland and combining it with available published data. Our data show that Late Danubian cultures are maternally closely related to Funnel Beaker groups instead of culturally similar LBK. Conclusions: We assume that it is an effect of the presence of individuals belonging to U5 haplogroup both in Late Danubians and the TRB. The U5 haplogroup is thought to be a typical for HGs of Europe and therefore we argue that it is an additional evidence of genetic exchange between farming and HG groups taking place at least as far back as in middle Neolithic, in the Late Danubian communities.

1234567 151 - 200 of 1303
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf