Change search
Refine search result
19202122 1051 - 1070 of 1070
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1051.
    Zlatkov, Nikola
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Absence of Global Stress Regulation in Escherichia coli Promotes Pathoadaptation and Novel c-di-GMP-dependent Metabolic Capability2019In: Scientific Reports, ISSN 2045-2322, Vol. 9, article id 2600Article in journal (Refereed)
    Abstract [en]

    athoadaptive mutations linked to c-di-GMP signalling were investigated in neonatal meningitis-causing Escherichia coli (NMEC). The results indicated that NMEC strains deficient in RpoS (the global stress regulator) maintained remarkably low levels of c-di-GMP, a major bacterial sessility-motility switch. Deletion of ycgG2, shown here to encode a YcgG allozyme with c-di-GMP phosphodiesterase activity, and the restoration of RpoS led to a decrease in S-fimbriae, robustly produced in artificial urine, hinting that the urinary tract could serve as a habitat for NMEC. We showed that NMEC were skilled in aerobic citrate utilization in the presence of glucose, a property that normally does not exist in E. coli. Our data suggest that this metabolic novelty is a property of extraintestinal pathogenic E. coli since we reconstituted this ability in E. coli UTI89 (a cystitis isolate) via deactivation rpoS; additionally, a set of pyelonephritis E. coli isolates were shown here to aerobically use citrate in the presence of glucose. We found that the main reason for this metabolic capability is RpoS inactivation leading to the production of the citrate transporter CitT, exploited by NMEC for ferric citrate uptake dependent on YcgG2 (an allozyme with c-di-GMP phosphodiesterase activity).

  • 1052.
    Zlatkov, Nikola
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    C-di-GMP-mediated Morphotypic Pathoadaptability of Neonatal Meningitis Escherichia coliManuscript (preprint) (Other academic)
  • 1053. Zocher, Georg
    et al.
    Mistry, Nitesh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Frank, Martin
    Hähnlein-Schick, Irmgard
    Ekström, Jens-Ola
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Stehle, Thilo
    A sialic acid binding site in a human picornavirus2014In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 10, no 10, p. e1004401-Article in journal (Refereed)
    Abstract [en]

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 angstrom resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for alpha 2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that alpha 2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC.

  • 1054.
    Åberg, Anna
    Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
    New insights into the role of ppGpp and DksA through their effect on transcriptional regulation of housekeeping and colonization related genes of Escherichia coli2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Bacteria have the ability to sense different environmental signals. When an environmental stress is detected, bacteria rapidly adjust their gene expression profile to be able to survive and thrive. The transduction of such environmental signals often requires the coordinated involvement of several factors that constitute complex regulatory networks. Hence, depending on the combination of signals, a unique gene expression profile required to adapt to the specific stress conditions is generated. Proteins are the best-known regulatory factors. However, non-proteinaceous molecules are also important in signal-responsive control of bacterial gene expression. Alarmones are low molecular weight non-proteinaceous regulatory factors which can characteristically be rapidly turned-over to mediate instant changes in gene expression. One such alarmone is the modified nucleotide ppGpp, which directly binds to RNA polymerase to alter its activity. The levels of this alarmone are expected to rapidly increase in response to any environmental stress that result in slow proliferation. DksA, a putative ppGpp co-regulator that likewise directly targets RNA polymerase, has been suggested to be required for both the positive and negative regulation mediated by ppGpp in Escherichia coli.

    This thesis describes dissection of the role of ppGpp and DksA on transcriptional regulation, primarily using the fim genetic determinant that encodes for the type 1 fimbriae. Type 1 fimbriae are involved in adhesion to abiotic surface and initial adhesion/invasion of bladder cells, as well as in biofilm formation. We found that ppGpp regulates phase variation by increasing the sub-population of cells that express the fimbriae. The effect of ppGpp was ultimately traced to its role in transcription of the fimB gene that encodes a recombinase involved in the phase variation process (paper 1). In contrast, we unexpectedly found that lack of DksA causes an increase, rather than a decrease, in transcription from the fimB P2 promoter in vivo. However, in vitro transcription studies demonstrated that ppGpp and DksA, both independently and co-dependently, stimulate transcription from the fimB P2 promoter. These seemingly contradictory results from the in vivo and in vitro transcriptional studies were shown to be, at least in part, a consequence of the increased association of Gre-factors with RNA polymerase that can occur in the absence of DksA in vivo (paper 2).

    The results outlined above have implications for the role of ppGpp and/or DksA in global gene expression. Using gene expression profile (microarray analysis) during the transition from logarithmic to stationary phase of E. coli, we found that while most of the genes regulated by ppGpp and DksA are regulated in the same direction by the two factors, many were not. In addition to the fim genes, genes involved in flagella functioning, taxis responses, and a few genes encoding different transport systems are also differentially regulated in ppGpp- and DksA-deficient strains in vivo. Our results clearly indicate that the effect of deficiencies in ppGpp and DksA is far more complex than phenotypic similarity of the corresponding mutants anticipated by the proposed concerted action of ppGpp and DksA on gene expression (paper 2 & 3).

  • 1055.
    Åberg, Anna
    et al.
    Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
    Fernández, Jorge
    Sánchez, Alex
    Balsalobre, Carlos
    Global gene regulation by ppGpp and DksA in Escherichia coli: a transcriptomic approachManuscript (Other academic)
  • 1056.
    Åberg, Anna
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Fernández-Vázquez, Jorge
    Departament de Microbiologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain.
    Cabrer-Panes, Juan David
    Departament de Microbiologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain.
    Sánchez, Alex
    Departament d'Estadística, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain.
    Balsalobre, Carlos
    Departament de Microbiologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Spain.
    Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli2009In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 191, no 10, p. 3226-3236Article in journal (Refereed)
    Abstract [en]

    The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp(0)) and/or DksA (DeltadksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksA-deficient strains, respectively, increasing to 13% of all genes in the ppGpp(0) DeltadksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.

  • 1057.
    Åberg, Anna
    et al.
    Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
    Shingler, Victoria
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Balsalobre, Carlos
    (p)ppGpp regulates type 1 fimbriation of Escherichia coli by modulating the expression of the site-specific recombinase FimB.2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 60, no 6, p. 1520-1533Article in journal (Refereed)
    Abstract [en]

    In this report we have examined the role of the regulatory alarmone (p)ppGpp on expression of virulence determinants of uropathogenic Escherichia coli strains. The ability to form biofilms is shown to be markedly diminished in (p)ppGpp-deficient strains. We present evidence (i) that (p)ppGpp tightly regulates expression of the type 1 fimbriae in both commensal and pathogenic E. coli isolates by increasing the subpopulation of cells that express the type 1 fimbriae; and (ii) that the effect of (p)ppGpp on the number of fimbrial expressing cells can ultimately be traced to its role in transcription of the fimB recombinase gene, whose product mediates inversion of the fim promoter to the productive (ON) orientation. Primer extension analysis suggests that the effect of (p)ppGpp on transcription of fimB occurs by altering the activity of only one of the two fimB promoters. Furthermore, spontaneous mutants with properties characteristic of ppGpp(0) suppressors restore fimB transcription and consequent downstream effects in the absence of (p)ppGpp. Consistently, the rpoB3770 allele also fully restores transcription of fimB in a ppGpp(0) strain and artificially elevated levels of FimB bypass the need for (p)ppGpp for type 1 fimbriation. Our findings suggest that the (p)ppGpp-stimulated expression of type 1 fimbriae may be relevant during the interaction of pathogenic E. coli with the host.

  • 1058.
    Åberg, Anna
    et al.
    Umeå University, Faculty of Medicine, Molecular Biology (Faculty of Medicine).
    Shingler, Victoria
    Umeå University, Faculty of Science and Technology, Molecular Biology (Faculty of Science and Technology).
    Balsalobre, Carlos
    Regulation of the fimB promoter: a case of differential regulation by ppGpp and DksA in vivo2008In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 67, no 6, p. 1223-1241Article in journal (Refereed)
  • 1059.
    Åberg, Veronica
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fällman, Erik
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Axner, Ove
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Hultgren, Scott J.
    Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis,USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pilicides regulate pili expression in E. coli without affecting the functional properties of the pilus rod2007In: Molecular BioSystems, ISSN 1742-206X, Vol. 3, p. 214-218Article in journal (Refereed)
    Abstract [en]

    The infectious ability of uropathogenic Escherichia coli relies on adhesive fibers, termed pili or fimbriae, that are expressed on the bacterial surface. Pili are multi-protein structures that are formed via a highly preserved assembly and secretion system called the chaperone-usher pathway. We have earlier reported that small synthetic compounds, referred to as pilicides, disrupt both type 1 and P pilus biogenesis in E. coli. In this study, we show that the pilicides do not affect the structure, dynamics or function of the pilus rod. This was demonstrated by first suppressing the expression of P pili in E. coli by pilicide treatment and, next, measuring the biophysical properties of the pilus rod. The reduced abundance of pili was assessed with hemagglutination, atomic force microscopy and Western immunoblot analysis. The biodynamic properties of the pili fibers were determined by optical tweezers force measurements on individual pili and were found to be intact. The presented results establish a potential use of pilicides as chemical tools to study important biological processes e.g. adhesion, pilus biogenesis and the role of pili in infections and biofilm formation.

  • 1060. Åkesson, Per
    et al.
    Moritz, Linnea
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Truedsson, Mikael
    Christensson, Bertil
    von Pawel-Rammingen, Ulrich
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    IdeS, a highly specific immunoglobulin G (IgG)-cleaving enzyme from Streptococcus pyogenes, is inhibited by specific IgG antibodies generated during infection2006In: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 74, no 1, p. 497-503Article in journal (Refereed)
    Abstract [en]

    IdeS, a recently discovered cysteine proteinase secreted by the important human pathogen Streptococcus pyogenes, interferes with phagocytic killing by specifically cleaving the heavy chain of immunoglobulin G. The fact that the enzyme targets one of the key molecules of the adapted immune response raised the question of whether an antibody response against IdeS could inhibit, i.e., neutralize, enzyme activity. Paired acute- and convalescent-phase serum samples from patients with pharyngotonsillitis (n = 10), bacteremia (n = 7), and erysipelas (n = 4) were analyzed. Antibodies with the ability to neutralize IdeS enzymatic activity were already found in two-thirds of acute-phase sera. However, patients who seroconverted to IdeS, in particular patients with pharyngotonsillitis and erysipelas, developed specific antibodies during convalescence with an increased capability to efficiently neutralize the enzymatic activity of IdeS. Also, the presence of neutralizing antibodies decreased the ability of IdeS to mediate bacterial survival in human immune blood. In patients with bacteremia, several acute-phase sera contained neutralizing antibodies, but no correlation was found to severity or outcome of invasive infections. Still, the fact that the human immune response targets the enzymatic activity of IdeS supports the view that the enzyme plays an important role during streptococcal infection.

  • 1061.
    Åström, Morgan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Using 2-pyridones as molecular tools to understand chlamydiae genetics2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 1062.
    Åström, Stefan U.
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    von Pawel-Rammingen, Ulrich
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Byström, Anders S
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    The yeast initiator tRNAMet can act as an elongator tRNA(Met) in vivo1993In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 233, no 1, p. 43-58Article in journal (Refereed)
    Abstract [en]

    Saccharomyces cerevisiae uses two different methionine accepting tRNAs during protein synthesis. One, tRNA(iMet), is used exclusively during the initiation of translation whereas the other, tRNA(mMet), is used during the elongation of translation. To study the unique features of each methionine tRNA species, we constructed yeast strains with null alleles of the five elongator methionine tRNA (EMT) genes and strains with null alleles of the four initiator methionine tRNA (IMT) genes, respectively. Consequently, growth of these strains was dependent either on a tRNA(mMet) or a tRNA(iMet), respectively, encoded from a plasmid-derived gene. For both null mutants, the plasmid carrying the wild-type gene can be selected against and exchanged for another plasmid derived EMT or IMT gene (wild-type or mutant). A high gene dosage of the wild-type IMT gene could restore growth to the elongator-depleted strain. However, wild-type EMT genes in a high gene dosage never restored growth of the initiator depleted strain. Thus, the elongator tRNA(Met) is much more restricted to participate in the initiation of translation than the initiator tRNA(Met) is restricted to participate in the elongation process. Using the two null mutants, we have identified tRNA(mMet) mutants, which show reduced elongator activity, and tRNA(iMet) mutants, with improved elongator activity in the elongator depleted strain. Also, tRNA(mMet) mutants that function as an initiator tRNA in the initiator depleted strain were identified. From this mutant analysis, we showed that the conserved U/rT at position 54 of the elongator tRNA(Met) is an important determinant for an elongator tRNA. The most important determinant for an initiator was shown to be the acceptor stem and especially the conserved A1.U72 base-pair. Mutant tRNAs, with reduced activity in either process, were investigated for enhanced activity during overproduction of the alpha and beta-subunits of the eukaryotic initiation factor 2 (eIF-2) or the eukaryotic elongation factor 1 alpha (eEF-1 alpha). The data suggest that the U/rT of the elongator at position 54 is important for eEF-1 alpha recognition and that the acceptor stem of the initiator is important for eIF-2 recognition.

  • 1063.
    Östberg, Yngve
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Berg, Stefan
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Comstedt, Pär
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Wieslander, Åke
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Functional analysis of a lipid galactosyltransferase synthesizing the major envelope lipid in the Lyme disease spirochete Borrelia burgdorferi2007In: FEMS Microbiology Letters, ISSN 0378-1097, E-ISSN 1574-6968, Vol. 272, no 1, p. 22-29Article in journal (Refereed)
    Abstract [en]

    One of the major lipids in the membranes of Borrelia burgdorferi is monogalactosyl diacylglycerol (MGalDAG), a glycolipid recently shown to carry antigenic potency. Herein, it is shown that the gene mgs (TIGR designation bb0454) of B. burgdorferi encodes for the protein bbMGS that, when expressed in Escherichia coli, catalyzes the glycosylation of 1,2-diacylglycerol with specificity for the donor substrate UDP-Gal yielding MGalDAG. Related lipid enzymes were found in many Gram-positive bacteria. The presence of this galactosyltransferase activity and synthesis of a cholesteryl galactoside by another enzyme were verified in B. burgdorferi cell extract. Besides MGalDAG, phosphatidylcholine, phosphatidylglycerol, and cholesterol were also found as major lipids in the cell envelope. The high isoelectric point of bbMGS and clustered basic residues in its amino acid sequence suggest that the enzyme interacts with acidic lipids in the plasma membrane, in agreement with strong enzymatic activation of bbMGS by phosphatidylglycerol. The membrane packing and immunological properties of MGalDAG are likely to be of great importance in vivo.

  • 1064.
    Östberg, Yngve
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Bunikis, Ignas
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    The etiological agent of Lyme disease, Borrelia burgdorferi, appears to contain2004In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 186, no 24, p. 8472-8477Article in journal (Refereed)
    Abstract [en]

    Small regulatory RNAs (sRNAs) have recently been shown to be the main controllers of several regulatory pathways. The function of sRNAs depends in many cases on the RNA-binding protein Hfq, especially for sRNAs with an antisense function. In this study, the genome of Borrelia burgdorferi was subjected to different searches for sRNAs, including direct homology and comparative genomics searches and ortholog- and annotation-based search strategies. Two new sRNAs were found, one of which showed complementarity to the rpoS region, which it possibly controls by an antisense mechanism. The role of the other sRNA is unknown, although observed complementarities against particular mRNA sequences suggest an antisense mechanism. We suggest that the low level of sRNAs observed in B. burgdorferi is at least partly due to the presumed lack of both functional Hfq protein and RNase E activity.

  • 1065.
    Östberg, Yngve
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Carroll, James A
    Pinne, Marija
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Krum, Jonathan G
    Rosa, Patricia
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Pleiotropic effects of inactivating a carboxyl-terminal protease, CtpA, in Borrelia burgdorferi2004In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 186, no 7, p. 2074-2084Article in journal (Refereed)
    Abstract [en]

    The aetiological agent of Lyme disease, Borrelia burgdorferi cycles between its tick vector and mammalian hosts, implying that it can sense different environments and consequently change the expression of genes encoding several surface-associated proteins. The genome of the type strain B. burgdorferi B31 has revealed 175 different gene families. The p13 gene, situated on the chromosome, encodes a channel-forming protein that belongs to the gene family 48 consisting of eight additional paralogous genes. The heterogeneity of the P13 protein from different Lyme disease Borrelia strains was investigated. The predicted surface-exposed domains are the most heterogeneous regions and contain probable epitopes of P13. The membrane-spanning architecture of P13 was determined and a model for the location of this protein in the outer membrane is presented. The transcription of the paralogues of gene family 48 during in vitro culturing and in a mouse infection model was also analysed. The bba01 gene is the only p13 paralogue present in all three Lyme-disease-causing genospecies; it is stable during cultivation in vitro and the BBA01 protein was expressed in all Borrelia strains investigated. Conversely, paralogues bbi31, bbq06 and bbh41 were only detected in B. burgdorferi and the corresponding plasmids harbouring bbi31 and bbh41 were lost during in vitro passage. Finally, p13 and bbi31 are the only members of gene family 48 that are transcribed in mice, suggesting their importance during mammalian infection.

  • 1066.
    Östberg, Yngve
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Pinne, Marija
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Benz, Roland
    Rosa, Patricia
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Elimination of channel-forming activity by insertional inactivation of the p13 gene in Borrelia burgdorferi2002In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 184, no 24, p. 6811-6819Article in journal (Refereed)
    Abstract [en]

    P13 is a chromosomally encoded 13-kDa integral outer membrane protein of the Lyme disease agent, Borrelia burgdorferi. The aim of this study was to investigate the function of the P13 protein. Here, we inactivated the p13 gene by targeted mutagenesis and investigated the porin activities of outer membrane proteins by using lipid bilayer experiments. Channel-forming activity was lost in the p13 mutant compared to wild-type B. burgdorferi, indicating that P13 may function as a porin. We purified native P13 to homogeneity by fast performance liquid chromatography and demonstrated that pure P13 has channel-forming activity with a single-channel conductance in 1 M KCl of 3.5 nS, the same as the porin activity that was lost in the p13 mutant. Further characterization of the channel formed by P13 suggested that it is cation selective and voltage independent. In addition, no major physiological effects of the inactivated p13 gene could be detected under normal growth conditions. The inactivation of p13 is the first reported inactivation of a gene encoding an integral outer membrane protein in B. burgdorferi. Here, we describe both genetic and biophysical experiments indicating that P13 in B. burgdorferi is an outer membrane protein with porin activity.

  • 1067.
    Östman, J.
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Lundgren, E.
    Caspase independent cytotoxicity induced by oligomeric TTR- mutants in neuroblastoma cellsManuscript (Other academic)
  • 1068.
    Östman, J.
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Lundgren, E.
    Secretion of mutant amyloidogenic transthyretin bypasses cellular quality controlManuscript (Other academic)
  • 1069.
    Östman, Johan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Mechanisms involved in amyloid induced cytotoxicity2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Amyloidoses comprise a group of diseases where normal or mutated protein precipitates into amyloid fibrils. The deposition of fibrils causes dysfunction of organs and toxicity to nervous tissue. Up to date, 24 different proteins and peptides are known to be able to form amyloid fibrils. The most well known are Amyloid beta peptide and Prione protein causing Alzheimer’s disease and Creutzfeld Jacob’s disease respectively.

    The aims of this thesis were to investigate the structural properties of cytotoxic amyloid and examine the mechanisms involved. The model protein mostly used in the studies was the plasma protein transthyretin (TTR). Familial Amyloidotic Polyneuropathy (FAP) is a hereditary, autosomal-dominant neurodegenerative disease caused by point mutations in the TTR gene. One of the most common variants of FAP is a mutation in position 30 where alanine is exchanged for methonine. This gives rise to “Skellefteåsjukan” in Sweden.

    TTR is secreted into the plasma as a tetramer. Point mutations destabilize the tetramer leading to disassembled monomers, which undergo partial denaturation as an initiation step to aggregation and amyloid fibril formation. In vivo amyloidogenesis takes a long time and does not occur until late in adult life. Most of the clinical TTR mutations do not form amyloid in vitro under physiological conditions. We have created amyloidogenic TTR mutants that are prone to aggregate and form fibrils under physiological conditions. This provides us with a model system on the cellular level for studies of the mechanisms of amyloid associated cytotoxicity as we can control the aggregation process and capture defined stages in the TTR amyloidogenic pathway.

    We used Atomic Force Microscopy (AFM) to follow the morphology of aggregates during fibril formation. Initially, amorphous aggregates were formed that subsequently matured into fibrillar structures, denoted protofilaments. This observation was interpreted as an optimisation of ß-strand registers. In addition we identified a correlation between the presence of early-formed aggregates of TTR and cytotoxicity. The toxic response was mediated via an apoptotic mechanism.

    We were not able to more carefully determine the structure and size of the toxic TTR species. To address this problem we turned to another amyloidogenic protein, equine lysozyme (EL). Intermediate samples corresponding to the aggregation and growth phase of amyloid fibrils of EL were collected. These samples were subjected to cytotoxicity assays as well as monomeric starting material and mature amyloid fibrillar species. The results clearly showed that the soluble oligomers were cytotoxic in contrast to the monomers and fibrils. Our data indicate that the toxic properties of the oligomers are size dependent.

    In this thesis we asked the question whether all mutated forms of TTR can be expressed and secreted or if there is a selection against the most aggressive mutations in vivo? We transfected hematopoetic K562 cells with wild type or mutant TTR, with or without the N-terminal signal peptide, responsible for secretion, to generate both extra- and intracellular TTR. We show that the post-translational quality control of the cells does not allow intracellular mutant TTR outside the secretory pathway, possibly due to the cytotoxic effects, while translocated to the secretory pathway made it escape the quality control permitting secretion and amyloid formation outside the cells.

    We have further analyzed the cytotoxic mechanisms induced by TTR oligomers with a focus on intracellular apoptotic signalling pathways. We show that TTR oligomers bind to the surface of the target cells but are not taken up, that is in contrast to mature fibrils that do not bind them at all. The apoptotic response occurred in a caspase-independent and a free radical dependent way.

  • 1070.
    Öztokatli, Hande
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Hörnberg, Maria
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Berghard, Anna
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Bohm, Staffan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Retinoic acid receptor and CNGA2 channel signaling are part of a regulatory feedback loop controlling axonal convergence and survival of olfactory sensory neurons2012In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 26, no 2, p. 617-627Article in journal (Refereed)
    Abstract [en]

    Little is known about the identities and functions of extracellular signaling molecules that work in concert with neuronal activity to regulate refinement and maintenance of the mouse olfactory sensory map. We show that expression of a dominant negative retinoic acid receptor (RAR) in olfactory sensory neurons (OSNs) increased the number of glomeruli that incorrectly contained OSN axons expressing different odorant receptors. This phenotype became apparent postnatally, coincided with increased cell death, and was preceded by increased Neuropilin-1 and reduced Kirrel-2 expressions. Kirrel-2-mediated cell adhesion influences odorant receptor-specific axonal convergence and is regulated by odorant receptor signaling via the olfactory cyclic nucleotide-gated (CNG) ion channel. Accordingly, we found that inhibited RAR function correlated with reduced CNG channel expression. Naris occlusion experiments and analysis of CNG channel-deficient mice further indicated that RAR-regulated CNG channel levels influenced the intrinsic neuronal activity required for cell survival in the absence of odor stimulation. Finally, we showed that CNG channel activity regulated expression of the retinoic acid-degrading enzyme Cyp26B1. Combined, these results identify a novel homeostatic feedback mechanism involving retinoic acid metabolism and CNG channel activity, which influences glomerular homogeneity and maintenance of precisely connected OSNs.

19202122 1051 - 1070 of 1070
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf