Change search
Refine search result
1234567 101 - 150 of 2262
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    Department of Earth Sciences, College of Science, Baghdad University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Flow of River Tigris and its Effect on the Bed Sediment within Baghdad, Iraq Open Engineering2015In: Open Engineering (Formerly Central European J. of Engineering), ISSN 2391-5439, Vol. 5, p. 465-477Article in journal (Refereed)
    Abstract [en]

    River Tigris is a major river in Iraq. Sediment at the bed of the river within a reach of about 18 km starting at the center of Baghdad upstream was investigated. Sixty five cross sections were surveyed and 46 sediment samples were collected and analyzed. It was noticed that fine sand was dominating the bed (90.74%). The average median size within the reach was 2.49 phi (0.177mm) while the mean size was 2.58 phi (0.16mm). In addition the sediments were moderately sorted, fine skewed and leptokurtic. The size of the bed sediment relatively decreased compared to older investigations due to the construction of Adhaim dam on tributary which used to be the main sediment supplier to the Tigris River before entering Baghdad. Furthermore, the discharge of the Tigris River for the period 1983-2013 (715m3/s) had decreased by about 40% and 30% since 1983 compared with the period 1931-1956 (1208 m3/s) and 1956-1980 (1015 m3/s ) respectively. This had decreased the capacity and competence of the river. The bed elevation had increased compared to previous surveys. It was noticed that dredging operations and obstacles (e.g. fallen bridges and islands) disturbed the flow of the river and sediment characteristics in several sites.

  • 102.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Iraq Water Resources Planning: Perspectives and Prognoses2015Conference paper (Refereed)
    Abstract [en]

    Iraq is located in the Middle East. It covers an areaof 433,970 square kilometres populated by about 32 millioninhabitants. Iraq greatly relies in its water resources on the Tigrisand Euphrates Rivers. Recently, Iraq is suffering from watershortage problems. This is due to external and internal factors. Theformer includes global warming and water resources policies ofneighbouring countries while the latter includes mismanagement ofits water resources.The supply and demand are predicted to be 43 and 66.8 BillionCubic Meters (BCM) respectively in 2015, while in 2025 it will be17.61 and 77 BCM respectively. In addition, future predictionsuggests that Tigris and Euphrates Rivers will be completely dry in2040.To overcome this problem, prudent water management policiesare to be adopted. This includes Strategic Water ManagementVision, development of irrigation techniques, reduction of waterlosses, use of non-conventional water resources and research anddevelopment planning.

  • 103.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Present conditions and future challenges of water resources problems in Iraq2014In: Journal of Water Resource and Protection, ISSN 1945-3094, E-ISSN 1945-3108, Vol. 6, no 12, p. 1066-1098Article in journal (Refereed)
    Abstract [en]

    Iraq is part of the Middle East and North Africa (MENA region). It greatly relies in its water re-sources on the Tigris and Euphrates Rivers. Iraq was considered rich in its water resources till 1970s. After that problems due to water scarcity aroused. Recently, it is expected that water shortage problems will be more serious. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77BCM respec-tively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040.To overcome this problem, prudent water management plan is to be adopted. It should include Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning.

  • 104.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Alibrahiem, Naief
    Al al-Bayt University.
    Alsaman, Marwan
    Al al-Bayt University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Supply Network Losses in Jordan2014In: Journal of Water Resource and Protection, ISSN 1945-3094, E-ISSN 1945-3108, Vol. 6, no 2, p. 83-96Article in journal (Refereed)
    Abstract [en]

    Water supply network losses are an international problem especially in countries suffering from water scarcitylike Jordan. Jordan is one of the poorest countries in its water resources and it is estimated to be below the waterpoverty line. Jordan is located in the Middle East and has a surface area of approximately 90,000 km2. Its populationis around 6.3 million and it is estimated that the population will be 7.8 million in 2022. The gap betweenwater supply and demand is widening due to development and a relatively high population growth rate. In addition,global climate change is expected to intensify the water shortage problem in Jordan. Thirteen years of completerecords obtained from the Ministry of Water and Irrigation were analyzed. According to these records,water losses in Jordan reach about 50%. In view of the evaluation of the data and the case study conducted inthis research, it is believed that Jordan can overcome the water shortage problem by adopting a water demandmanagement strategy. In this context, efforts should be focused on reducing water losses. If this is achieved, itwill save huge quantities of water and revenue.

  • 105.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    AlJawad, Sadeq
    Expert and Consultant Hydrogeologists, Baghdad, Iraq .
    Adamo, Nasrat
    LTU team.
    Sissakian, Varoujan K.
    University of Kurdistan, Howler, KRG, Iraq and Private Con sultant Geologist, Erbil, Iraq.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Quality within the Tigris and Euphrates Catchments2018In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 8, no 3, p. 95-121Article in journal (Refereed)
    Abstract [en]

    Euphrates and Tigris Rivers are the longest two rivers in southwest Asia. The Basins of these rivers cover an area of 917 103 km2 which is occupied by about 46 million inhabitants. Four countries (Turkey, Iran, Iraq and Syria) share the basin area of the Tigris River and the other four (Turkey, Syria, Iraq and Saudi Arabia) share the catchment area of the Euphrates River. The flow of the two rivers is decreasing with time due to construction of dams in the upstream part of the basins and climate change. This has impacted the water quality of the two rivers. Iraq is highly affected followed by Syria. The salinity of Tigris Rivers has become alarming downstream Baghdad while the Euphrates water quality deteriorates before entering the Iraqi border. To overcome water quality deterioration, international, regional and national cooperation is required to reach prudent planning for water resources management of the two basins.

  • 106.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Depleted uranium: its nature, characteristics and risks of the military uses on humans and the Environment2011Conference paper (Other academic)
    Abstract [en]

    Great Development in the military industry had been witnessed in the past two decades, especially in depleted uranium weapons. These weapons were first used by USA and its allies in 1991 in Iraq. Later they were used in Bosnia (1995), Kosovo and Serbia (1999) Afghanistan (2001) and finally Iraq (2003). The manufactures and users of these weapons continued to blackout the nature of these weapons and deny the harm caused on the public health, animals and the environment. After a short period of time, facts were revealed by the investigations and research executed by large number of scientists and investigators. This paper highlights the important effects caused by the use of depleted uranium weapons on human health and environment.

  • 107.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Oun, Salem
    Al al-Bayt University.
    Hadad, Wafa
    Al al-Bayt University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water loss in Mafraq governorate, Jordan2013In: Natural Science, ISSN 2150-4091, E-ISSN 2150-4105, Vol. 5, no 3, p. 333-340Article in journal (Refereed)
    Abstract [en]

    Jordan is located in the Middle East and covers an area of 89,342 km2. The total population of Jordan is 6,508,271. Jordan is rapidly facing a severe water supply crisis due to greater demands on a finite quantity of available water. If current trends continue, it has been estimated that the country will experience a chronic water shortage by 2020. Despite these shortages, water loss in the distribution network is relatively high where it reaches 46%. Mafraq Governorate has the maximum water loss. Continuous records and data for the period 1999-2004 for Mafraq water authority were investigated for the water supply and lose. Water losses were evaluated, and suggestions were given to minimize the loss.

  • 108.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Alroubai, Ali
    Basrah University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Bathymetry and sediment survey for two old water harvesting schemes, Jordan2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 2, p. 13-23Article in journal (Refereed)
    Abstract [en]

    Jordan is among the least countries in its water resources and about 85% of its area is desertic. Due to this reason the inhabitants of the Badia region used centuries ago water harvesting techniques to augment water for human and animal use. Two ancient water harvesting schemes (Burqu and Dier Al-Kahf) were investigated. Bathymetric survey was conducted and both bottom and water samples were collected to study the nature of sediments in these schemes. The calculated volume of Burqu and Deir Al-Kahf reservoirs were 629505 and 12071m³ respectively. Sediments entering these reservoirs are mainly fine sand derived from the main and side valleys entering the reservoirs during rain events. The sediments at Burqu reservoir have a mean grain size of 0.1 mm, very poorly sorted and negatively skewed. The sand: silt: clay ratios were 70:17:13 respectively. At Deir Al-Kahf reservoir, the sediment mean grain size was 0.11mm and they were very poorly sorted and they were finely skewed. The sand: silt: clay ratios were 69: 23: 8 respectively. Annual rates of sediments deposited in these reservoirs were 29016 m3 for Burqu and 29016 m3 for Deir Al-Kahaf.

  • 109.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Alroubai, Ali
    Basrah University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sedimentation rates in two water harvesting schemes at the Jordanian Badia2012In: International Journal of Ecology and Environmental Sciences, ISSN 0377-015X, E-ISSN 2320-5199, Vol. 3, no 3, p. 82-86Article in journal (Refereed)
    Abstract [en]

    Jordan is among the least countries in its water resources and about 85% of its area is desertic which is referred to as the Badia region. Only 5% of the population of Jordan occupies this area. The growing power of urban communities during the twentieth century has affected the local inhabitants (Bedouin) social life and the physical environment of arid lands in which they live in Jordan. The 15% of the total area of the country (urban areas) are not able anymore to absorb the expanding population. Therefore, people have started to move to the Badia. This area is very poor in its surface water resources. Due to this reason the Jordanian government started a development program for the region. Part of the program is providing water resources by establishing water harvesting schemes. It is of prime importance to maintain these schemes to support the growing development in the area.In this research, two of these schemes had been investigated for their sediment characteristics and rate of deposition. They are Beqawiya (constructed 1994) and Suweied (constructed 1995). The sediments in both schemes were generally fine sand which is poorly sorted and negatively skewed. The rate of sedimentation was found to be 1679 and 1583 m3/ year in Beqawiya and Suweied respectively.

  • 110.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ezz-Aldeen, Mohammad
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Application of swat model to estimate the sediment load from the left bank of Mosul dam2013In: Journal of Advanced Science and Engineering Research, ISSN 2231-8844, Vol. 3, no 1, p. 47-61Article in journal (Refereed)
    Abstract [en]

    Mosul dam is the biggest dam in Iraq on Tigris River. It is a multipurpose dam with a designed storage capacity of 11.11*109 m3. The Soil and Water Assessment Tool (SWAT) working with Geographical Information System (GIS) was applied to simulate the daily runoff and sediment yield from the seven valleys entering the reservoir from the left side. The model was applied for the period 1988-2008 based on daily climatic data of Mosul city and Mosul Dam Stations. The results indicated that the average yearly water flow was 13.8 *106 m3. It varies with time and among the valleys depending on the soil type, land watershed topography, watershed area in addition the other effective factors, and rainfall depth of that year. The resultant average annual sediment yield was 702*106 ton from these valleys. The sediment yield from each valley depends on runoff coefficient of the valley, soil type and plant cover. These factors affect soil detachment and rainfall properties (depth and intensity) that in turn affect rainfall detachment force. The total sediment yield for the considered period was 14753*103 ton. This represent about 0.42% of the dead storage of the reservoir (2.9*109m3) which is about 0.11% of the total reservoir storage capacity.

  • 111.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ezz-Aldeen, Mohammad
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Zakaria, Saleh
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water harvesting and reservoir optimization in selected areas of south Sinjar Mountain, Iraq2013In: Journal of hydrologic engineering, ISSN 1084-0699, E-ISSN 1943-5584, Vol. 18, no 12, p. 1607-1616Article in journal (Refereed)
    Abstract [en]

    Iraq is experiencing water resource shortages which are expected to become more severe in the future. It is believed that rain water harvesting will be one of the solutions to overcome this problem. In this paper rain water harvest modeling techniques were applied to the Sinjar area of Northwest Iraq for agricultural purposes. A watershed modeling system (WMS) and linear programming (LP) optimization techniques were applied to maximize the irrigated area which could be supplied by each selected reservoir for the period 1990-2009. This technique proved to be efficient for solving large scale water supply problems with multiple parameters and constraints, including the required input data for the model. Two scenarios of operation were considered for each main basin. In the first, each reservoir was operated as a separate unit while, in the second, all reservoirs within the basin were operated as one system. Both scenarios gave encouraging results but scenario two provided better results.

  • 112.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ibrahim, Naeif
    Al al-Bayt University.
    Alsaman, Marwan
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Water Demand Management in Jordan2014In: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 6, no 1, p. 19-26Article in journal (Refereed)
    Abstract [en]

    Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is one of the fourth driest countries in the World and water demand exceeds Jordan's available water resources.Annual per capita water availability has declined from 3600m3/year in 1946 to 145 m3/year today. It is estimated that the population will continue to grow from about 5.87 million in 2008 to over 7.80 million by 2022. Total projected water demand will be 1673 million cubic meters by 2022.Fifteen years of complete records for water consumption was studied to see the supply and demand variation with time. It had been noticed that water demand management will address the actual needs for water. This management program will ensure further reduction in water use, reduce water loses through the distribution supply net, prevent pollution and waste water disposal in nature, efficient use of available water resources, prudent future planning for new water re-sources and finally imposing real cost for water supply that would be acceptable. In addition to the above, public awareness program is to be put in action. Such a program should be used in schools as well as the media. The public are to be aware of the problem and how they can assist to overcome the water shortage crisis.

  • 113.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa E
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Nature of the Distributed of the Bed Sediment within Mosul Dam Reservoir, Iraq2013Conference paper (Refereed)
    Abstract [en]

    Mosul Dam is one of the biggest hydraulic structures in Iraq. It was constructed in 1986 on the Tigris River in the north of Iraq. The initial storage capacity and water surface area of its reservoir reaches 11.11 km3 and 380 km2 respectively at the maximum operation level 330 m a.s.l. The dam was operated in 1986. A total of 56 samples were collected from the bottom of Mosul reservoir covering most of the reservoir area. The results of the analysis of these samples revealed that they were composed of gravel (3.8%), sand (15%), silt (55.5%) and clay (25.7%). The distribution of these sediments indicates that the silt portion represents the highest followed by clay and then sand. However, sand percentages are the highest in the northern zone of the reservoir where the River Tigris enters the reservoir and decreases gradually toward the dam site. In the meantime, silt percentage decreases toward the dam site while the finer fraction (i.e. clay) increases.

  • 114.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa E
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sherwani, Govand
    Ministry of Higher Education, KRG.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sedimentation in the Mosul reservoir of northern Iraq2013In: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 21, no 7, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Mosul Dam is one of the biggest hydraulic structures in Iraq. It was constructed in 1986 on the Tigris River in the north of Iraq for multiple purposes: irrigation, flood control and power generation. The initial storage capacity and water surface area of its reservoir reaches 11.11 km3 and 380 km2 respectively at the maximum operation level 330 m a.s.l. The dam was operated in 1986. Blockage of the intakes of the pump station for North Al-Jazira Irrigation Project in Mosul Dam reservoir has highlighted the importance of sedimentation problems within the reservoir. A total of 56 samples were collected from the bottom of Mosul reservoir covering most of the reservoir area. The results of the analysis of these samples revealed that they were composed of gravel (3.8%), sand (15%), silt (55.5%) and clay (25.7%). The distribution of these sediments indicates that the silt portion represents the highest 77% of the bottom sediments of this reservoir followed by clay (13.5%) and then sand (9.5%). However, sand percentages are the highest in the northern zone of the reservoir where the River Tigris enters the reservoir and decreases gradually toward the dam site. In the meantime, silt percentage decreases toward the dam site while the finer fraction (i.e. clay) increases. Statistically, the average median and mean sizes of the sediments are 2.81 phi (0.142 mm) and 6.1 phi (0.0146 mm) respectively. In addition, the sediments are poorly sorted, nearly symmetrical in skewness and leptokurtic, very leptokurtic, to mesocratic. Finally, it is believed that the geometry and hydrodynamics of the Mosul reservoir, the location of the River Tigris entrance together with the side tributary valleys have played the most important role in the sediments distribution and their characteristics.

  • 115.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Issa, Issa
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Consultant Geologist, Erbil.
    Adamo, Nasrat
    LTU team.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mystery of Mosul Dam the most Dangerous Dam in the World: The project2015In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 5, no 3, p. 15-31Article in journal (Refereed)
    Abstract [en]

    Mosul Dam is an earthfill multipurpose dam. It is located on the River Tigris in northwestern Iraq. The dam is 3.65 km long and its crest elevation is at 341 m above sea level. The storage capacity at normal operation level (330 m above sea level) is 11.11km3. The work to build the dam started on 25thJanuary, 1981 and finished on 24thJuly, 1986. The total cost of the development was estimated at 2.6 billion US$.The foundation of the dam lies on the Fatha Formation. This formation is composed of alternating beds of marls, limestone, gypsum and claystone. It is highly karstified, which has which created a lot of problems during the construction, impounding and operation phases.

  • 116.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Possibilities of restoring the Iraqi marshes known as the Garden of Eden2011Conference paper (Refereed)
  • 117.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Reduction of the storage capacity of two small reservoirs in Jordan2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 1, p. 17-27Article in journal (Refereed)
    Abstract [en]

    Scarcity of water resources in the Middle East represents a prime factor in the stability of the region and its economic development and prosperity. Accordingly, augmenting water is considered very important. Therefore, building of dams is an important mean to achieve such a goal. Despite the fact that number of dams had been built but maintenance operations and reduction of siltation rates are still not up the standards. Two small reservoirs north west Jordan were investigated. Sad Wadi Alarab reservoir constructed in 1986 (storage capacity of 20x106 m3). The second, Alghadeer Alabyadh, was constructed 1966(storage capacity 7 x105 m3). The actual storage capacities of these reservoirs were calculated using echo-sounding traverses. Data obtained were used in special computer software to construct the bathymetric maps and calculate the existing storage volume. The results showed that the reservoir storage capacities were reduced at an average annual rate of 0.3 x106 and 1.7 x104 m3 respectively. This implies that Sad Wadi Alarab reservoir will be filled with sediment within 38 years, while Alghadeer Alabyadh reservoir is already filled with sediment now. Bottom sediments of the reservoirs were collected and analyzed. In all the cases, sand, silt and clay were the dominant sediment components.

  • 118.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Toward prudent management of water resources in Iraq2011In: Journal of Advanced Science and Engineering Research, Vol. 2011, no 1, p. 53-67Article in journal (Refereed)
    Abstract [en]

    In 1977 the Turkish Government started to utilize the water of Tigris and Euphrates Rivers through South-eastern Anatolia Project (GAP). The project includes 22 dams and 19 hydraulic power plants which are to irrigate 17 103 km2 of land with a total storage capacity of 100 km3 which is three times more than the overall capacity of Iraq and Syrian reservoirs Prior to 1990, Syria used to receive 21 km3/year of the Euphrates water which dropped to 12km3 in 2000 onward and for Iraq it dropped from 29 km3 before 1990 to 4,4km3 (90% reduction) now. This reduced agricultural land in both countries from 650 103 to 240 103 hectares. Iraq used to receive 20.9 km3/year of water from the Tigris River and once Ilisu dam is constructed, this is likely to drop to 9.7 km3 which means that 47% of the river flow will be depleted. This means that 696 103 hectares of agricultural land will be abandoned due to water scarcity. The reduction of flow in the Tigris and Euphrates Rivers in Iraq is considered to be national crises and will have severe negative consequences on health and on environmental, industrial and economic development. It is believed that the Iraqi Government should take solid and fast measures to ensure prudent management of its water resources and to secure the life of huge sector of its society and protect the environment.

  • 119.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Restoring the Garden of Eden, Iraq2012In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 2, no 1, p. 53-88Article in journal (Refereed)
    Abstract [en]

    The Iraqi marsh lands, which are known as the Garden of Eden, cover an area about 15-20 103. km2 in the lower part of the Mesopotamian basin where the Tigris and Euphrates Rivers flow. The area had played a prominent part in the history of man kind and was inhabited since the dawn of civilization. The area was considered among the largest wetlands in the world and the greatest in west Asia. Saddam regime began to drain the marsh lands for military and political reasons. Accordingly, at 2000 less than 10% of the marshes remained. The consequences were that most of the marsh dwellers left their places and some animals and plants are eradicated now. After the fall of Saddam regime in 2003, the process of restoration and rehabilitation of Iraqi marshes started. There are number of difficulties encountered in the process. Some of them are land use changes, climatic variations and changes, soil and water salinity as well as ecological fragmentation where many species were affected as well as the marsh dwellers.In this research we would like to explore the possibilities of restoring the Iraqi marshes. It is believed that 70- 75% of the original areas of the marshes can be restored. This implies that 13 km3 water should be available to achieve this goal keeping the water quality as it is. To evaluate the water quality in the marshes, 154 samples were collected at 48 stations during summer, spring and winter. All the results indicate that the water quality was bad. To improve the water quality, then 18.86 km3 of water is required. This requires plenty of efforts and international cooperation to overcome the existing obstacles.

  • 120.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Engineering solution for Radioactive Waste in IRAQ2014In: Journal of Advanced Science and Engineering Research, ISSN 2231-8844, Vol. 4, no 1, p. 18-36Article in journal (Refereed)
    Abstract [en]

    Depleted uranium (DU) is a by-product of the enrichment of natural uranium for nuclear reactor-grade or nuclear weapons-grade uranium. DU is chemically identical to natural uranium. Depleted uranium is chemically identical to natural uranium. DU is depleted with isotope of U235 and its radioactivity is 60% of the natural uranium and increases to 80% after few months and is usually considered as low level radioactive waste (LLW).Iraq experienced two devastating wars in 1991 and 2003, during which massive amounts of new weapons and sophisticated manufactured nuclear weapons were used -called Depleted Uranium (DU).During the second Gulf war in 2003 U.S. and British troops have reportedly used more than five times as many DU bombs and shells as the total number used during the 1991 war for the invasion and occupation of Iraq. It was estimated that more than 1100 to 2200 tons of DU was used. As a consequence the ruminants of wars are affecting the people (30 million) and environment. There are hundreds of sites contaminated with nuclear radiation.There is no Iraqi strategy and/or national program, not even well thought out plans and scientific personnel and technical equipment required to clean Iraq of these wastes. The aim of this work is to high light the environmental implications of the two Gulf wars on Iraq and suggest possible solutions to the problem.

  • 121.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The environmental implications of depleted uranium in Iraq and the principles of isolating it2014In: Waste Management and the Environment VII / [ed] C.A. Beribba; G. Passerini; H. Itoh, Southanpton: WIT Press, 2014, p. 367-376Conference paper (Refereed)
    Abstract [en]

    Iraq experienced two devastating wars in 1991 and 2003, during which massiveamounts of new weapons and sophisticated manufactured nuclear weaponscalled depleted uranium (DU) were used. DU is a by-product of the enrichmentof natural uranium for nuclear reactor-grade or nuclear weapons-grade uranium. Depleted uranium is chemically identical to natural uranium. During the second Gulf war in 2003 U.S. and British troops used more than 1100 to 2200 tons of DU. As a consequence the ruminants of wars are reported to have seriously affected people and the environment, causing cancer and abnormal birth defects. The water and soil all over most of Iraq is contaminated. There is no strategy, national or international program for cleaning Iraq of DU wastes. Site selection criteria have been suggested for the disposal of radioactive waste but no principle of designing and constructing disposals. The present paper describes a large geological feature, a deep natural depression, which would be useful for isolating DU by isolating it in smectitic Iraqi clay.

  • 122.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Sissakian, Varoujan
    Fouad, Saffa
    Deformational Style of the Soft Sediment (SEISMITES) within the Uppermost Part of the Euphrates Formation, Western Iraq2014In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 4, no 4, p. 71-86Article in journal (Refereed)
    Abstract [en]

    The Euphrates Formation (Early Miocene) is wide spread formations in central western part of Iraq. It consists of basal conglomerate, well bedded, grey, fossiliferous and hard limestones (Lower Member), chalky like dolomitic limestone, white and massive, green marl, and deformed, brecciated dolomitic limestone and well bedded undulated limestone (Upper Member). The thickness of the formation Iraq is 35-110 m.The uppermost part of the Euphrates Formation includes Brecciated Unit. The fragments (size 1 – 3 cm) are semi angular to semi rounded, consist of very finely crystalline, silicified limestone, arranged in systematic form, which is parallel to the deformations and undulations that are present in both the brecciated mass and the overlying Undulated Limestone Unit. These characteristics of the fragments indicate that the breccia is not formed due to break in sedimentation, but it is syn-sedimentary breccia.The genesis and deformation style of the breccia is discussed in this study. The results indicate the seismic effect on the development of the breccia, during the deposition, which means syn-sedimentary origin of the breccia, most probably due to tectonic unrest, which has caused seismic shocks in the depositional area; such sediments are called "seismites".

  • 123.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Zakaria, Salih
    Mosul University.
    Ezz-Aldeen, Mohammad
    Mosul University.
    Feasibility of using small dams in water harvesting, Northern Iraq2015Conference paper (Refereed)
    Abstract [en]

    Iraq is experiencing water-resource shortages which are expected to become more severe in the future. Water harvesting techniques (WH) will definitely help to overcome or minimize the effect of this problem. Two areas (northwestern and northeastern part of Iraq) were tested for the feasibility of WH using small dams not more than 6m height. The locations of the dams and reservoirs were selected depending on the drainage area, the cross section of the valley (to ensure minimum construction material to be used for building the dams) and to minimize evaporation losses and insure the required storage was obtained; the ratio of surface area to storage volume was kept to a minimum. Watershed modeling system (WMS) and linear programming (LP) optimization techniques were applied to maximize the irrigated area, which could be supplied by each selected reservoir for the period 1990–2009.In northeastern part of Iraq, the technique was applied in Erbil and Sulaimaniyah. In the former, 22 dams (catchment areas ranged between 3.34 to 111.63 km2) were tested. While in the latter, five separated dams were used with total catchment area of 176.79 km2. Their area ranged between 7.35 to 98.08 km2. In northwestern part of Iraq, the technique was applied in Sinjar Mountain. At northern Sinjar Mountain, ten dams were selected, their catchment area ranged between 43.48 to197.7 km2.The results obtained from all areas were encouraging.

  • 124.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Suggested landfill sites for hazardous waste in Iraq2013In: Natural Science, ISSN 2150-4091, E-ISSN 2150-4105, Vol. 5, no 4, p. 463-477Article in journal (Refereed)
    Abstract [en]

    Iraq experienced two devastating wars in 1991 and 2003, during which massive amounts of new weapons and sophisticated manufactured nuclear weapons were used called Depleted Uranium (DU). As a consequence of the radioactive contamination; the humans are suffering from various disease like cancer and the environment is polluted.In practice, there is no strategy and/or national program, not even well thought out plans and scientific personnel and technical equipment required to clean Iraq of these wastes. Reviewing the geological, topographical and hydrological data, it had been noticed that Umm Chaimin depression is a good candidate site to dump all contaminated radioactive scrap and soil. The suggested design of the landfill will ensure safe containment of the waste for hundreds of thousands of years even if significant climatic changes will take place.

  • 125.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Effective isolation of radioactive military wastes in Iraq: a necessary humanitarian action2011Conference paper (Other academic)
    Abstract [en]

    Iraq has been subject to a series of wars for more than fifty years, the latest one leaving large amounts of wrecked tanks, vehicles, weapons and ammunition. A considerable part of the waste has the form of, or contains, depleted uranium (DU), that is concluded to have cancerogenic effects through its radioactivity and toxicity. The DU exists in significant concentrations in areas where combat took place, mostly in and around the cities of Bagdad and Basra, the total number of particularly encountered areas being about 15. The way of long-term isolation of DU that is proposed in this paper is to construct relatively simple landfills of sandwiched contaminated soil and clay or clayey soil, covered by sand/gravel and erosion-resistant coarser material on top. The very low annual precipitation and long draught in the deserts, implying significant evaporation, means that the system of tight soil interlayered with contaminated soil, embedding wrecked military objects, minimizes percolation and release of DU, keeping it adsorbed on the finest soil particles. The clay-based material must be composed in a way that, i/ desiccation fractures are not formed in periods of long draught and ii/ not swell uncontrolled and loose strength in wet periods. The DU-contaminated soil is proposed to be scraped off and transported in closed trucks to four desert sites where landfills of the sandwich-type are proposed to be constructed.

  • 126.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Isolation of radioactive military wastes in Iraq2013In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 3, no 3, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Iraq has been subject to a series of wars for more than fifty years, the latest one leaving large amounts of wrecked tanks, vehicles, weapons and ammunition. A considerable part of the waste has the form of, or contains, depleted uranium (DU), that is concluded to have cancerogenic effects through its radioactivity and toxicity. The DU exists in significant concentrations in areas where combat took place, mostly in and around the cities of Bagdad and Basra, the total number of particularly encountered areas being about 15. The way of long-term isolation of DU that is proposed in this paper is to construct relatively simple landfills of sandwiched contaminated soil and clay or clayey soil, covered by sand/gravel and erosion-resistant coarser material on top. The very low annual precipitation and long draught in the deserts, implying significant evaporation, means that the system of tight soil interlayered with contaminated soil, embedding wrecked military objects, minimizes percolation and release of DU, keeping it adsorbed on the finest soil particles. The clay-based material must be composed in a way that, i/ desiccation fractures are not formed in periods of long draught and ii/ not swell uncontrolled and loose strength in wet periods. The DU-contaminated soil is proposed to be scraped off and transported in closed trucks to four desert sites where landfills of the sandwich-type are proposed to be constructed.

  • 127.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Pusch, Roland
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Almuqdadi, Kadhim
    Arab Academy-Denmark.
    Saving Iraqi civilians and their environment from catastrophic implications of depleted uranium used in Gulf wars I and II2011Report (Other academic)
    Abstract [en]

    Depleted uranium (DU) was used twice by the Americans and allied forces against Iraqi troops and personnel in 1991 and 2003. The largest single radionuclide contamination occurred in the Gulf during Gulf War II, 1991, where depleted uranium was used as an amour-penetrating ordnance. Due to this use the countryside of Iraq was contaminated to a significant extent and thus chronically exposed the civilian population and military personnel to different environmental loads i.e. DU dust, vapors, and aerosols etc. In addition to the radioactive contamination due to military activities in Gulf wars, other dangerous source of contamination has been reported from the material and equipment at the Iraqi Energy Authority. After the fall of the Baath regime in 2003, the Iraqi Energy Authority, like all other Ministries and governmental organizations, sustained immense losses due to the turmoil and looting. As an example the Middle East Media Research Institute (MEMI) reported in 2003 that uranium (as yellow cakes) as well as byproducts from processing activities in addition to tons of radioactive waste was stored in barrels. Simple citizens stole these barrels and used them for storing water. The radioactive materials in these barrels were in this way either spread in large quantities on the ground or taken to their homes. Other examples of how DU material is spread are given in the report as well. This report is highlighting the effect of radioactive waste on the people and the environment of Iraq and trying to find possible solutions to the problem. Special concerns are directed to the question of finding sustainable, environmentally acceptable and safe landfills for the final deposition of DU contaminated material.

  • 128.
    Al-Ansari, Nadhir
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Zakaria, Saleh
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Mustafa, Yaseen
    University of Zakho.
    Ahmad, Payman
    Koya University.
    Ghafour, Bahra
    Koya University.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Development of Water Resources in Koya City, Iraq2013In: First International Symposium on Urban Development, UK: WIT Press, 2013, p. 91-98Conference paper (Refereed)
    Abstract [en]

    Iraq is facing water shortage problem, which is becoming more severe with time. Rain Water Harvesting (RWH) can help to minimize the water shortage problem. Seven years of rainfall records was used to find out the quantity of water that can be harvested using a Watershed modeling system (WMS).Koya city is located in the northern part of Iraq. The population of the city is about 39484.The application of the WMS model for rainfall records of seven years (2002-3 to 2010-11) showed that 275.51 million cubic meters of water can be harvested. This implies that annual average of rain harvested water is 39.4 million cubic meters and the allocation per capita to be 997 cubic meters per year. This amount of water can greatly help to the development of industry and agriculture in the city.

  • 129. Alawaji, H.
    et al.
    Runesson, K.
    Chalmers University of Technology.
    Sture, S
    Axelsson, Kennet
    Luleå tekniska universitet.
    Implicit integration in soil plasticity under mixed control for drained and undrained response1992In: International journal for numerical and analytical methods in geomechanics (Print), ISSN 0363-9061, E-ISSN 1096-9853, Vol. 16, no 10, p. 737-756Article in journal (Refereed)
    Abstract [en]

    An algorithm is outlined for the implicit integration of isotropic plasticity models for an arbitrary choice of mixed stress and strain control variables. Drained as well as undrained behaviour is considered. The closest-point-projection method in conjunction with a completely strain-driven format is used in a core algorithm. In the drained case strain response variables are determined via iterations to satisfy equilibrium of prescribed and calculated stresses that correspond to the strain response variables. In the undrained case, on the other hand, strains and pore pressure are determined via simultaneous iterations to satisfy equilibrium and the incompressibility condition. The algorithm is applied to a new generalized cam-clay model, and various iteration techniques are assessed. In particular, Newton iterations which employ the matrix of algorithmic tangent stiffness moduli are shown to compete favourably with more conventional methods.

  • 130.
    Alcalá Perales, Diego
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics. UPV.
    Spatial variation in uplift pressure and correlation with rock mass conditions under two buttress dams: A case study of Ramsele and Storfinnforsen dams2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Uplift water pressure is one of the dominating forces with signicant impact acting on a dam. It is usually measured with piezometers installed along the dam. However, the value of the pressure along the dam is often hard to measure due to the limited number of piezometers available (Bernstone et al., 2009). Furthermore, uplift pressure can oscillate substantially in a single hole both with time and also spatially under the dam due to the combination of rock mass characteristics in the foundation, loads and temperature variations.There is still a lack of information regarding the magnitude and variation of the uplift pressure. The aim of this thesis is to investigate the spatial variation of the uplift pressure based on uplift pressure measurements taken from Storfinnforsen and Ramsele dams. The aim is also to investigate how the uplift pressure depends on the rock mass conditions. The two dams Storfinnforsen and Ramsele provides a unique opportunity due to the signicant amount of piezometers, 270 in total, installed along the rock foundation for the new monitoring programme at the monoliths of both dams.Based on the measured uplift pressure, a probabilistic distribution has been assigned to the uplift pressure. In addition, a possible correlation between the rock mass quality and the uplift pressure as well as the joint aperture and the uplift pressure was analysed.

  • 131.
    Al-Dahan, Saadi
    et al.
    Department of Geology, Faculty of Science, University of Kufa.
    Alabidi, Abdelkadhum
    Department of Geology, Faculty of Science, University of Kufa.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Relationship between Selected Hydrochemical Parameters in Springs of Najaf Province, Iraq2015In: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 7, no 6, p. 337-346Article in journal (Refereed)
    Abstract [en]

    Several springs exist at the south-western desert of Iraq in Najaf Province at latitude 31˚00' -32˚15' and longitude 43˚30' - 44˚30'. They are almost parallel to Euphrates River on the eastern edge of western desert. General direction for the distribution of springs coincides with that of faults running northwest-southeast. The Hydrogen sulfide, temperature, pH and electrical conductivity were investigated in these springs. The analyses indicated that the concentration of H2S decreased from northwest toward southeast which is attributed to the escape of this gas to the atmosphere during the flow of groundwater near or on the earth surface. The surrounding geologic conditions did not affect the temperature and pH of the springs. Electrical conductivity showed an increase from northwest towards southeast which reflects dissolving more ions from the rocks of the aquifer. The electrical conductivity and hydrogen sulfide concentration had reverse relationship.

  • 132.
    al-Dahan, Saadi
    et al.
    Department of Geology, Faculty of Science, University of Kufa.
    M., Hussain Hussain
    Department of Geology, Faculty of Science, University of Kufa.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Hydrochemistry of springs, Najaf area, Iraq2015In: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 23, article id 3Article in journal (Refereed)
    Abstract [en]

    Springs exist in southwestern Iraq at Najaf area in southwestern desert (latitude 31º 00 ̄ – 32º 15 ̄ and longitude 43º 30 ̄ – 44º 30 ̄). Two aquifers exist in the area. The first is composed of recent deposits while the second aquifer is of Miocene deposits. The latter is important because it contains huge quantities of groundwater. Water of these springs is slightly brackish and very hard. The predominant salt in the water of these springs is magnesium sulfate (MgSO4) and sodium chloride (NaCl). The water type is sulfate. Most of water springs (70%) are of marine water origin, while the minority (30%) are of continental water origin.

  • 133.
    Algmark, Carl
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Eskilsson, Mattias
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Omgivningspåverkan vid sänkhammarborrning2014Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Sänkhammarborrning är en metod som används för att utföra grundläggning med stålpålar. Metoden blir allt vanligare i Svenska tätbebyggda miljöer där krav ställs på låg omgivningspåverkan. Vid sänkhammarborrning borras ett foderrör av stål ner genom jordlagren till avsett djup, oftast till bärkraftigt berg. Foderröret lämnas sedan kvar, armeras, gjuts och utgör sedan själva pålen. Borrmaskinen består bland annat av en hammare som arbetar nere i hålet och drivs av antingen vatten eller luft. Borrföretagen har ofta tillgång till flera olika borrsystem men det saknas ibland underlag och forskning för hur olika borrsystem och metoder påverkar mark och omgivning vilket kan skapa en osäkerhet i projekteringsfasen och oförutsedda problem i utförandestadiet. Sänkhammarborrning anses ha en mindre massförträngande effekt men ger ändå en viss omgivningspåverkan både ovan och under mark. I den här studien har omgivningspåverkan under mark behandlats. Tre störningskällor har undersökts; vibrationer, uppspolning och trycksättning. Syftet har varit att teoretiskt undersöka hur vattendrivet- och luftdrivet sänkhammarborrsystem påverkar undergrunden i samband med att stålrörspålar installeras. För att nå syftet har en litteraturstudie och en intervjustudie genomförts. Även två fältbesök har gjorts. Litteratur och intervjuer har sedan analyserats med utgångspunkt i de tre nämnda fenomenen. Resultatet visar att de viktigaste faktorerna som påverkar hur stor omgivningspåverkan blir är markförutsättningar, maskinutrustning och utförandet. Vattendriven borrning visar sig löpa mindre risk att påverka omgivningen när det gäller uppspolning och trycksättning men om borrningen utförs på rätt sätt kan omgivningspåverkan undvikas även vid luftdriven borrning. De två borrsystemen har olika slagenergier och slagfrekvenser dock kan inga slutsatser dras av hur detta påverkar vibrationsnivåerna. Ett antal åtgärder finns för att minimera omgivningspåverkan, det handlar framförallt om att välja rätt borrsystem samt att borrningen utförs på rätt sätt.

  • 134.
    Al-Haidarey, Mohammed
    et al.
    Department of Ecology, Faculty of Science, University of Kufa.
    Abdumunem, Ibtihal
    Department of Biology, College of Science, Muthanna University.
    Abbas, Muhson
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The Trophic State Index of Bahr Al-Najaf Depression reservoir, Iraq2016In: Journal of Environmental Hydrology, ISSN 1058-3912, E-ISSN 1996-7918, Vol. 24, article id 1Article in journal (Refereed)
    Abstract [en]

    Bahr Al-Najaf Depression Reservoir (BNDR) is located 5 kilometers south-southwest of Najaf city in central Iraq. It covers an area of approximately 360 square kilometers. Carlson’s Trophic State Index (CTSI) was applied to the BNDR. To do so, Chlorophyll (A), total phosphorus (TP), Secchi disc depth Transparency (SD) and some physiochemical parameters were measured. The mean value of Chl-a was 1,06 (±1,33), the maximum and minimum values of TSI based on total Chl-a were recorded during summer and spring respectively. The classification of trophic state using TSI (TP) and TSI (SD) was closed, but by using TSI (Chl-a) it was much higher, the value of TSI (Chl-a) > TSI (TP) >TSI (SD), the CTSI value of BNDR was between 35.11-71.33 (r2 = -27, 53), the highest value of CTSI was in summer while the lowest values were during winter, the average of physiochemical parameters (±standard deviation) were: 26,5 (±1,42), 7,6 (±0,88), 0,1 (±0,16), 71 (±16,57), 10100 (±5591), 1,55 (±2,26), 53350 (±24143), 243299 (±358773), 30752 (±44649), 20 (±13), 2499 (±1819), 2659 (±2561), 0,22 (±0,02), 0,32 (±0,06) for temperature, pH, DO, Ec, HCO- 3, TN, TH, Cl- SO= 4 , TOC, Na+, K+, Fe+, and Mn+ respectively. According to CTSI, BNDR can be classified as eutrophic. CTSI results were very close to those of lakes Sawa and Al-Razzazah, while there were some slight differences when compared with Al-Habbanayh and Derbandikhan lakes, where the level of trophic index was decreasing (56, and 52 for Al-Habbanayh lake and Derbandikhan lake respectively).

  • 135.
    Al-Hashimi, Shaymaa A.M.
    et al.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Madhloom, Huda M.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering. Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Khalaf, Rasul M.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Nahi, Thameen N.
    Department of Civil Engineering, Al-Mustansiriayah University, Baghdad 1001, Iraq.
    Al-Ansari, Nadhir A.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Flow over Broad Crested Weirs: Comparison of 2D and 3D Models2017In: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, no 8, p. 769-779Article in journal (Refereed)
    Abstract [en]

    The flow over broad-crested weirs was simulated by computational fluid dynamic model. The water surface profile over broad crested weir was measured in a laboratory model and validated using two and three dimensional Fluent programs. The Reynolds Averaged Navier-Stokes equations coupled with the turbulent standard (k-ε) model and volume of fluid method were applied to estimate the water surface profile. The results of numerical model were compared with experimental results to evaluate the ability of model in describing the behaviour of water surface profile over the weir. The results indicated that the 3D required more time in comparison with 2D results and the flow over weir changed from subcritical flow at the upstream (U/S) face of weir to critical flow over the crest and to supercritical flow at downstream (D/S). A reasonable agreement was noticed between numerical results and experimental observations with mean error less than 2 %.

  • 136.
    Al-Hashimi, Shaymaa
    et al.
    Department of Civil Engineering, Al -Mustansiriayah University, Baghdad.
    Madhloom, Huda
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Nahi, Thameen N.
    Department of Civil Engineering, Al -Mustansiriayah University, Baghdad.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Channel Slope Effect on Energy Dissipation of Flow over Broad Crested Weirs: Channel Slope Effect on Energy Dissipation of Flow over Broad Crested Weirs2016In: Engineering, ISSN 1947-3931, Vol. 8, no 12, p. 837-851Article in journal (Refereed)
    Abstract [en]

    The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study a new performance was added to this weir, by making a step at downstream (D/S) of weir. The energy dissipation, the height of the weir/ the upstream water height ratio and Froude number relationships  (E% - P/h – Fr) for three range of flume slop S=0.0, 0.002 and 0.004 were simulated. The experiments were performed in a laboratory horizontal channel of 4.6 m length, 0.3 m width and   0.3 m depth for a wide range of discharge. The D/S step height of the weir was 7.5 cm. FLUENT software was used as numerical model which represent a type of Computational Fluid Dynamics (CFD) model in order to simulate flow over weirs. The Volume of Fluid (VOF) method with the Standard k–ε turbulence model was used to estimate the free surface profile and the structured mesh with high concentration near the wall regions. The experimental results of the water surface profile gave a high agreement with the results of the numerical models. The maximum value 28.78 of E % was obtained in single step broad crested weir in the experimental result and 27.35 in numerical result at S=0.004. Finally, the range of the relative error of the energy dissipation between experimental and numerical results was achieved and the maximum was 6.76 in all runs.

  • 137.
    Al-Hasnawi, Salwan
    et al.
    Chemistry Department, Collage of Science, Mustansirya University, Baghdad.
    Hussain, Hussain M.
    Department of Geology, Faculty of Science, University of Kufa.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    The Effect of the Industrial Activities on Air Pollution at Baiji and its surrounding areas, Iraq2016In: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 8, no 1, p. 34-44Article in journal (Refereed)
    Abstract [en]

    The polluters of total suspended particles (TSP) and some heavy metals (Cd, Co, and Ni) concentrations were studied in the areas of Al-Fatha, Al-Alam and Baiji, Iraq. These concentrations were measured for selected 22 sample locations for two periods, January and July 2013. The analyzed values of (TSP) and (Cd) exceeded the limits of Iraqi National and the World Health Organization (WHO) for the two periods. Also, (Ni) values exceeded the limits for July only, while (Co) values were under the limits for the two periods. The difference between the two periods reflects the effect of the wind speed and direction, rainfall, and the intensity of the dust storms during the two months respectively. GIS technique makes optimal predictions possible by examining the relationships between all the sample points and producing a continuous surface of polluter’s concentration. Therefore, GIS was used to produce predictions and probabilities maps for the critical polluter values in the study area

  • 138.
    Ali, Ammar
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Three Dimensional Hydro-Morphological Modeling of Tigris River2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The River Tigris is a major river in Iraq. It divides Baghdad, the capital of Iraq, in two parts. The reach of the river within Baghdad is about 60 km long. The climate change within the region and the construction of hydraulic structures upstream of Baghdad has reduced the water discharge of the river by 44%. Despite the fact that huge volumes of sediment have been trapped in the constructed headwater reservoirs, substantial changes have occurred in the topography of the Tigris River within Baghdad City and the number of depositions is increasing. The debris of the destroyed bridges from the wars of 1991 and 2003 and their subsequent reconstruction have contributed to the development of these depositions. As a consequence, the ability of the river to carry the peak flood waters has been reduced. This has led to a potential increase of flooding in parts of the city. To predict the maximum flood capacity for the river, the bathymetric survey that was conducted for 50 km of the Tigris River by the Ministry of Water Resources in 2008 has been used with the one-dimensional flow model “HEC-RAS”. Calibration of the model was carried out using field measurements for water levels along the last 15 km of the reach, and the water level observations at the Sarai Baghdad gauging station for the last 10 years were used to validate the model. The model showed a significant reduction in the river’s capacity compared with what the river had carried during the floods of 1971 and 1988. This result agrees with previous surveys conducted on the same reach indicating that the ability of the river to convey high water has decreased. To overcome this problem, dredging operations started along most of the Tigris River inside Baghdad City to remove many islands and side bars, as well as cleaning water intakes. An examination for the dredging plan currently in progress and two additional proposed plans was conducted using the ‘HEC-RAS’ model for the 50 km long river reach to investigate whether the designed flooding capacity of the river can be recovered and how much it can be improved. Comparing the historical records of water level and discharge for the last three decades, some improvement of flood capacity was achieved. Cautions about the water intakes should be considered to maintain their functionalities with the expected drop in water levels due to dredging operations. Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180 cross sections. A riverbed topography map was established from these cross sections. Sediment transport rates and bed composition were investigated by collecting three different types of sediment samples at the quartiles of 16 cross sections along this reach. The Helley-Smith sampler was used to collect 288 bedload samples, a suction pump was used to collect 212 suspended load samples from different depths. The Van Veen grab was used to collect 46 bed material samples. The velocity profiles and the water discharges were measured using ADCP at the sampling sections. Bed sediment compositions were investigated by analysing the collected bed material samples. It was noticed that fine sand dominated the riverbed (90.74%). The average median size within the reach was 2.49 phi (0.177mm) whilst the mean size was 2.58 phi (0.16mm). In addition, the sediments were moderately sorted, fine skewed and leptokurtic. The size of the bed sediment relatively decreased compared to older investigations due to the decrease of the competence of the river. The bed elevation had increased compared to previous surveys. It was noticed that dredging operations and obstacles (e.g. fallen bridges and islands) disturbed the flow of the river and the sediment characteristics in several sites. Bedload rates were computed using the weights of the collected bedload samples. The spatial distribution of sampling cross sections took into consideration the variance of river topography where 7 meanders, 2 islands and several bank depositions characterize the geometry of the river reach. Twenty bedload predictors were applied to the same reach. The annual transported quantities of the bedload were estimated to be 36 and 50 thousand tons in 2009 and 2013 respectively. The total load discharge rate in the northern reach of the Tigris River was computed using the sediment concentrations of the collected suspended load samples after adding the bedload rate at each of the sampling cross sections. The results indicated that the suspended load is the dominant mode in the total load with a minimum percentage of 93.5%. The total load ranged from 29.1 to 190.3 kg/s. A total load rating curve of the power function was established. The associated errors from using the proposed rating curve are within reassuring levels and less than the errors produced from most of the other twenty-two total load formulas, which were applied to the same reach. The scattering of the results from the other formulas can be attributed to the spatial variance in the topography of the riverbed. According to the final results obtained, it is recommended to use the proposed procedure for establishing a spatial total load rating curve to estimate sediment rates for morphologically complicated rivers. The annual transported quantities of the total load were estimated at 2.47 and 4.23 million tons for 2009 and 2013 respectively. The three-dimensional morphodynamic model (Simulation of Sediment movements In water Intakes with Multiblock option - SSIIM) was used to simulate the velocity field and the water surface profile along the northern reach of the Tigris River using the findings of the current bathymetric survey of the river. The model was calibrated for the water levels, the velocity profiles and the sediment concentration profiles using different combinations of parameters and algorithms, those available in the model. The set of parameters that gave a minimum root mean square error (RMSE) was used for the validation process using another set of field measurements. The calibration and the validation results showed good agreement with field measurements, and the model was used to predict the future changes in river hydro-morphology for a period of 14 months. The results of the future predictions showed increases in depositions on the shallow part of the cross section having lower velocity and, on the other hand, the river deepens the incised route to fit its current hydrologic condition leaving the former wide section as a floodplain for the newer river. The net deposition/erosion rate was 67.44 kg/s in average and the total deposition quantity was 2.12 million tons annually. The locations of depositions are compatible with those of the river in the real world. An expansion in the size of current islands was predicted. An indication of the potential threats of the river banks’ collapse and the bridge piers’ instability was given by high erosion along the thalweg line.Keywords: Flood capacity, Dredging, HEC-RAS, Bathymetric survey, Bed sediment, Bedload, Total load, Helley-Smith sampler, Sediment transport, ADCP, Prediction formulas, 3-D morphodynamic model, Bed changes, SSIIM, underfit river, regulated river, Tigris River, Baghdad.

  • 139.
    Ali, Ammar A.
    et al.
    Water Resources, College of Engineering, University of Baghdad.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    Earth Sciences, College of Science, University of Baghdad, Iraq.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Spatial Measurement of Bed Load Transport in Tigris River2017In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 7, no 4, p. 55-75Article in journal (Refereed)
    Abstract [en]

    Using Helley-Smith sampler, 288 bed load samples were collected from 16 cross sections along 18 km reach length of Tigris River within Baghdad. The spatial distribution of sampling along the reach took into consideration the variance of river topography where 7 meanders, 2 islands and several bank depositions characterize the geometry of the river. The implemented regulation schemes on Tigris River have reduced 44% of water discharges compared to previous period. The spatial variance in topography was effectively scattering the results of the applied twenty bed load formulas. The study results indicated that the complicated geometry of the river reach makes finding a unique representative bed load formula along the study reach rather difficult, and there is no grantee to have good agreement with measurements in the irregular cross sections (meanders, sand bars, etc.). The closest bed load prediction formulas were van Rijn1984. The annual transported quantities of bed load were estimated to be 30 thousand tons (minimum) in 2009 and 50 thousand tons (maximum) in 2013.

  • 140.
    Ali, Ammar A.
    et al.
    College of Engineering, University of Baghdad, Baghdad, Iraq .
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    College of Science, University of Baghdad, Baghdad, Iraq.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Spatial total load rating curve for a large river: A Case study of the Tigris River at Baghdad2019In: International Journal of River Basin Management, ISSN 1571-5124, E-ISSN 1814-2060Article in journal (Refereed)
    Abstract [en]

    The Tigris River in Baghdad is a large sand-bed river, supply-limited because of the implementation of a water flow regulation scheme comprising a series of reservoirs and barrages.  The significant reduction in the water discharge has affected the hydraulic performance of the river and turned it into an under-fit river of complicated morphology where many islands and bank deposits have been showed up across an 18km reach in addition to the essential sinuosity. Measuring sediment load at individual cross-sections in the river gives misleading estimates and the corresponding sediment rating curve has a locally limited using. A spatially sediment rating by investigating sediment loads over the complicated reach is required to overcome the local limitations. Sediment transport rates have been investigated at 16 cross-sections along the study reach by collecting suspended load, bed load and bed material samples. Velocity profiles were measured at the sampling stations using an Acoustic Doppler Current Profiler (ADCP). The measurement results indicated that the suspended load is the dominant mode of transport (93.5%). However, bedloads were considered in determining the total loads. A spatial total load rating curve in the form of a power function was established and examined against the sediment measurements. Twenty-two previously published total load formulae where applied at the same sections and of these the Colby1964 formula gave the closest fit to the measured loads. Based on the results from this study a recommended procedure is established for using a spatial total load rating curve to estimate sediment transport rates for similar morphologically complicated rivers. Average annual transport rates during the period 2009-13 was estimated at 3.21 million tons.

  • 141.
    Ali, Ammar Adel
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Morphology of Tigris River inside Baghdad City2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tigris and Euphrates rivers represent the artery of life in Iraq. Tigris River rises from Turkey and flows toward the southeast to enter Iraq. It drains a catchment area of 473 100 km² of which about 58% lies in Iraq. In this study the reach, about 50 km long, of the river inside Baghdad was been studied. It starts at Al-Muthana Bridge and ends at Tigris-Diyala River confluence. Generally, the river reach is part of an alluvial plain, single channel and meandering. The bed material of the river is composed mainly of fine sand and small portion of silt and clay. Other significant features of the reach are the growing islands and bank depositions. Recently water resources of Iraq are negatively affected by climatic changes and the huge water projects in the riparian countries. As a result, the flow of Tigris River at Baghdad city has significantly decreased where the average monthly flow is 520 m³/s for the period 2000-2012 which represents about 50% reduction compared to previous periods. The estimated trend for the average monthly discharges is a reduction of 5.4 % during the last 23 years. Low flow and low water levels have enhanced the water to erode the banks below its protected part. This might affect the future stability of the banks. The drop of the river discharge together with debris from the last wars in 1991 and 2003 enhanced the growing of islands in the river. In this research, changes in the morphology of Tigris River within Baghdad are to be investigated and the causes will be highlighted in order to take the right measures to restore the river system. This is a first step toward studying the hydrological characteristics of the reach. One-dimensional gradually varied flow model, using HEC-RAS, was applied to examine the flood capacity and the possibilities of inundation of the banks. The geometry of the river was represented by the findings from the river survey of 2008. Additional data about the locations and dimensions of the bridges were supplied to the model. The average monthly discharge at Sarai Baghdad for the years 2000-2012 was assumed as the base flow. A range of different scenarios were examined by increasing the discharges in order to determine the critical discharge that may cause inundation. Model calibration was achieved by adjusting the Manning’s roughness coefficient for an observed water surface profile along the lowest part of the reach. The associated error with the computed water surface profiles was in order 0.026m. Additional water level observations at Sarai Baghdad were used for verification purposes. It was found that the discharges higher than 2700 m3/s could cause partial inundation in some areas in the northern part of the reach and these areas extend to approximately 9 km for discharges greater than 3500 m3/s. The southern part of the reach is still safe from inundation for discharges below 3500 m3/s. The slope of water surface profile varies from 6.03 to 10 cm/km for discharges between 400 and 4000 m3/s respectively. In this study, a field survey was conducted between May, 2012 and January, 2013. It involved the installation of 25 bench marks, surveying the upper river banks (from the crest of the stony protection to the water surface) and 250 cross sections. Three kinds of samples were collected at this stage work: (i) river bed material, (ii) suspended load samples and (iii) bed loads samples. Hydraulic measurements were conducted and included water surface elevations, water depths at sampling points, water discharges and transversal velocities. Water temperature and other environmental measurements were also conducted. Particle size distribution, specific gravity and concentration of suspended sediment were executed in the laboratory for the collected samples.

  • 142.
    Ali, Ammar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering. College of Engineering, Unive rsity of Baghdad.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    College of Science, University of Baghdad.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Three-Dimensional Morphodynamic Modelling of TigrisRiver in Baghdad2017In: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 11, no 6, p. 571-594Article in journal (Refereed)
    Abstract [en]

    Bathymetric and land surveys were conducted for the northern Tigris River reach (18 km length) in Baghdad, producing 180cross sections. A river bed topography map was constructed from these cross sections. The velocity profiles and the water discharges were measured using ADCP (Acoustic Doppler Current Profiler) at 16 cross sections, where intensive number of sediment samples was collected to determine riverbed characteristics and sediment transport rate. The three-dimensional morphodynamic model (SSIIM (simulation of sediment movements in water intakes with multiblock option)) was used to simulate the velocity field and the water surface profile along the river reach. The model was calibrated for the water levels, the velocity profiles and the sediment concentration profiles using different combinations of parameters and algorithms. The calibration and the validation results showed good agreement with field measurements, and the model was used to predict the future changes in river hydro-morphology for a period of 14 months. The results of the future predictions showed the Tigris River which behaved like an under-fit river, increases in depositions on the shallow part of the cross section having lower velocity, and the river deepens the incised route to fit its current hydrologic condition leaving the former wide section as a floodplain for the newer river. The net deposition/erosion rate was 67.44 kg/s in average and the total deposition quantity was 2.12 million ton annually. An expansion in the size of current islands was predicted. An indication of thepotential threats of the river banks’ collapse and the bridge piers’ instability was given by high erosion along the thalweg line.

  • 143.
    Ali, Ammar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Impact of Growing Islands on the Flood Capacity of Tigris River in Baghdad City2012Conference paper (Refereed)
    Abstract [en]

    Growing islands became noticeable phenomena in the channel of River Tigris within Baghdad City during recent years.Despite the fact that large amount of sediments are trapped in reservoirs on the River Tigris and its tributaries thenumber of islands are increasing with time. This is due to the debris of destroyed bridges in the wars of 1991 and 2003.As a consequence the ability of the river had been reduced to pass ood waves. This fact caused ooding parts of majorcities like Baghdad. Cross sections of the River Tigris were surveyed in dierent occasions (1976, 1991 and 2008). In1977 the survey was conducted by Geohydraulique and in 1991 by University of Technology - Baghdad (extended forthe previous study). The last survey was conducted in 2008 by Ministry of Water Resources extending 48 kilometersfrom Al-Muthana Bridge till the conuence with Diyala River at intervals having horizontal spacing of 250m. The datawas used to predict the maximum ood capacity for the river using HEC-RAS through performed a one- dimensionalhydraulic model for the ow. The average discharge of the river in Baghdad had been calculated for the past ten years.This value was introduced in the model. Then dierent scenarios were applied by increasing the discharge in orderto nd out the critical discharge that can cause inundation. The procedure continued to detect the areas that had beeninundated and the water level was recorded. The primary runs for the model showed a signicant reduction in thecurrent river capacity in comparison with what the river had used to hold during oods of 1971 and 1988. The threesurveys that had been conducted on the same reach of the River Tigris indicated that the capacity of the river to passwater had been decreased. In addition the changes in the morphology of the river cross sections were very clear.

  • 144.
    Ali, Ammar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Morphology of Tigris river within Baghdad city2012In: Hydrology and Earth System Sciences, ISSN 1027-5606, E-ISSN 1607-7938, Vol. 16, no 10, p. 3783-3790Article in journal (Refereed)
    Abstract [en]

    Changes in the morphology of the River Tigris within Baghdad City are very noticeablein recent years. The number of islands is increasing with time despite the fact that hugeamount of sediments are trapped in reservoirs upstream Baghdad City. The debris of5 destroyed bridges in the wars of 1991 and 2003 had enhanced the development ofthese islands. As a consequence the ability of the river had been reduced to pass floodwaves. This fact caused partial flooding of parts of Baghdad City.Cross sections of the River Tigris were surveyed in three occasions (1976, 1991and 2008). The last survey conducted in 2008 by Ministry of Water Resources covered10 49 km of the river from Al-Muthana Bridge to its confluence with Diyala River at 250mintervals. The data was used to predict the maximum flood capacity for the river usingone-dimensional hydraulic model for steady flow “HEC-RAS”. Calibration was carriedout for the model using field measurements for water levels along the last 15 km fromits reach and the last 10 yr observations at Sarai Baghdad station.15 The average discharge of the river in Baghdad had been calculated for the past tenyears. This value was introduced in the model. Then different scenarios were appliedby increasing the discharge in order to find out the critical discharge that can causeinundation. The procedure continued to detect the areas that had been inundated andthe water level was recorded.20 The model showed a significant reduction in the current river capacity in comparisonwith what the river had used to hold during floods of 1971 and 1988. The three surveysconducted on the same reach of the River Tigris indicated that the capacity of the riverto pass water had been decreased. In addition the changes in the morphology of theriver cross sections were very clear.

  • 145.
    Ali, Ammar
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Suhail, Qusay
    Baghdad University.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Evaluation of dredging operations for Tigris river within Baghdad, Iraq2014In: Journal of Water Resource and Protection, ISSN 1945-3094, E-ISSN 1945-3108, Vol. 6, no 4, p. 202-213Article in journal (Refereed)
    Abstract [en]

    River Tigris divides Baghdad, capital of Iraq, in two parts. The reach of the river within Baghdad is about 60 km long. Many islands and bars are obstructing the flow of the river within Baghdad. To overcome this problem, dredging operations started along most of Tigris River inside Baghdad City to remove many islands and side bars, which reduced the flooding capacity and the efficiency of water intakes. An examination for the dredging plan under process and two proposed additional plans were performed using HEC-RAS program for a 50km long river reach to investigate whether they can recover the designed flooding capacity of the river or just improving it. Calibration and verification processes were implemented in the model using observed water levels at Sarai Baghdad gauging station and along the last 15 km of the river reach. Comparisons of computed water levels were conducted with those of previous studies and historical data. Some improvement of flood capacity was achieved based on the recorded data of the last three decades. Cautions about the water intakes should be considered to maintain their function with the expected drop in water level due to dredging operations.

  • 146.
    Ali, Rebaz
    et al.
    Jönköping University, School of Engineering, JTH, Civil Engineeering and Lighting Science.
    Alshami, Ahmed
    Jönköping University, School of Engineering, JTH, Civil Engineeering and Lighting Science.
    Sättningar i torvmaterialet: En fallstudie om användning av förstärkningsmetoden "förbelastning i form av överlast" på jordmaterial av torv2018Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Purpose: The aim of this degree project is to control the set-up for a longer period by means of the workplace at the use of the total station for then comparing calculated outcomes with real outcomes.

    Method: A combination of both quantitative and qualitative studies have been used in this degree project, consisting of literature studies and a case study including interviews, document analyzes, site visits and measurements. The case study is based on an ongoing project in the municipality of Nassjo, where a skate park is constructed and whose soil consists of peat. Preload in the form of overload has been applied.

    Findings: The result indicates the occurrence of a difference between calculated outcome and actual outcome regarding set rate and time course when using preload in the form of overload. The deviation is about 20 cm. Preload in the form of overload is a good method for peat land, but it is unlikely to be remarkably improved by vertical drainage.

    Implications: In view of the measurements produced by the authors, this shows that the method of loading in the form of overload on peat field works, however, gives the calculation model which has been used to be uncertain. The result described in more detail regarding vertical drainage on peat fields will not accelerate the process because the peat is already well drained. This means that it will cost extra without benefiting from the method.

    Limitations: The work has limited to two reinforcement methods on peat fields. A case study has been limited to only one area. There was preload in the form of overload, whose soil material consists of peat.

    Keywords: Peat, Permeability, Preloading in the form of overload, settlements, total station, vertical drainage, water quota.

  • 147.
    Ali, Salahalddin
    et al.
    Department of Geology, School of Science, Faculty of Science and Science Education, University of Sulaimaniyah.
    Al-Umary, Foad A.
    Department of Geography, College of Education, University of Tikrit.
    Salar, Sarkawt G.
    Department of Geography, Faculty of Education/Kalar, University of Garmian.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    GIS Based Soil Erosion Estimation Using EPM Method, Garmiyan Area, Kurdistan Region, Iraq2016In: Journal of Civil Engineering and Architecture, ISSN 1934-7359, E-ISSN 1934-7367, Vol. 10, p. 291-308Article in journal (Refereed)
    Abstract [en]

    Using empirical model is one of the approaches of evaluating sediment yield. This research is aimed at predicting erosion and sedimentation in Garmiyan area at Kurdistan Region, Iraq used EPM (erosion potential model) incorporating into GIS (geographic information system) software. This basin area is about 1,620 km2. It has a range of vegetation, slope, geological, soil texture and land use types. The spatial distribution of gully erosion shows three main zones in the studied area (slight to moderate gully, high gully and sever fluvial erosion). They form about 10%, 89% and 1% of gully erosion in the studied area respectively. The results of the EPM model show that the values of the coefficient of erosion Z are classified as moderate to high erosion intensity. They increase northward due to increasing of slope, elevation and rate of precipitation that generate Hortonian overland flow, which is due to high discharge and huge fluvial erosion power that cause ground surface erosion to produce large quantity of sediment. The results of GSP (spatial sediment rate) are increasing northward similar to Z due the same reasons, while the value of total sediment rate, shows different values for each watershed because they are mainly affected by the total watershed area.

  • 148.
    Ali, Salahalddin
    et al.
    Department of Geology, School of Science, Faculty of Science and Science Education, University of Sulaimaniyah.
    Al-Umary, Foad
    Department of Geography, College of Education, University of Tikrit.
    Sarkawt, Salar
    Department of Geography, Faculty of Education/Kalar, University of Garmian.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Geomorphology of Garmiyan Area Using GIS Technique, Kurdistan Region, Iraq2016In: Journal of Earth Sciences and Geotechnical Engineering, ISSN 1792-9040, E-ISSN 1792-9660, Vol. 6, no 1, p. 63-87Article in journal (Refereed)
    Abstract [en]

    The goals of the present study are to investigate, explore and assess the geomorphologic characteristics of a part of Garmiyan area through highlighting the forming and controlling factors of the geomorphology, mapping the landforms and reveal the geomorphologic processes that created them in Garmiyan area. Geographic information systems (GIS) and remote sensing through satellite images and Digital Elevation Model (DEM) have facilitated the investigation in this large area with more accuracy.The Garmiyan area is a part of Garmiyan area located about (62 Km) south of Sulaimani City and (104 km) east of Kirkuk city. It lies between longitudes (45o10- - 45o32-) E and latitude (34o40-- 35o02-) N. It is within unstable shelf where 3.9% of it lie within the High Folded Zone and 96.1 % within the Foothill Zone. The geologic formations are forming 57.93% and the Quaternary deposits are forming 42.07%. Clastic sedimentary rocks are forming nearly 99% of the total area, while non clastic sedimentary rocks are forming nearly 1%. The topography of the studied area is greatly influenced by lithologic characteristics of the geologic units. The factors, which influence the geomorphology of the studied area, are tectonics, lithology, climate, vegetation and humans. Hence the geomorphologic evolution is controlled by many geomorphologic processes. The main endogenic process is uplifting of the western and north western sides of the studied area which was the final stage of Zagros Fold Thrust Belt formation during the Arabia–Eurasia collision. The main exogenic processes include weathering, erosion, fluvial, hillslope processes, karstification and anthropogenic processes. The main geomorphologic landforms recognized in the studied area are structural, denudational, fluvial, solutional and anthropogenic landforms. Anthropogenic landforms produced by excavation by road cuttings, quarrying and farming. The geomorphic landforms indicate that deformation is propagating from northeast to southwest.

  • 149. Ali, Salahaldin
    et al.
    Al-Umary, Foad
    Salar, Sarkawt
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Knutsson, Sven
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Evaluation of selected site location for subsurface dam construction within Isayi watershed using GIS and RS Garmiyan area, Kurdistan region2014In: Journal of Water Resource and Protection, ISSN 1945-3094, E-ISSN 1945-3108, Vol. 6, no 11, p. 972-987Article in journal (Refereed)
    Abstract [en]

    Garmiyan area suffers from many water problems such as poor rainfall rate, water shortage, aridity and absence of groundwater in many places. Hence the subsurface dam is the best solution due to many advantages such as; low cost of construction, least maintenance, low evaporation, no con-tamination, utilization of the land over the dam and better storage. The objective of this study is to evaluate the suitability of the selected site location for subsurface dam construction, to serve as strategic water supply storage, to solute the aridity and water shortage in this area of arid to semi arid climate in Isayi watershed within the stream deposits.Geographic information systems (GIS) and remote sensing through satellite images and Digital El-evation Model (DEM) interpretation and analysis have facilitated the investigation with more ac-curacy. ArcGIS helped in construction of thematic maps of the studied area.The geologic, structural, geomorphologic, hydrologic, hydrogeologic, characteristics with GPR survey show the suitability of the selected site location for construction of subsurface dam. According to the standard water quality for domestic, irrigation and livestock the water quality of all water samples are within the recommended range and the best time to be chosen, for construction of the subsurface dam, is during the autumn season from September to November.

  • 150.
    Alizadeh Khameneh, Mohammad Amin
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning. WSP Civils, Department of Geographic Information and Asset Management, Stockholm, Sweden.
    Optimal Design in Geodetic GNSS-based Networks2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    An optimal design of a geodetic network helps the surveying engineers maximise the efficiency of the network. A number of pre-defined quality requirements, i.e. precision, reliability, and cost, of the network are fulfilled by performing an optimisation procedure. Today, this is almost always accomplished by implementing analytical solutions, where the human intervention in the process cycle is limited to defining the requirements. Nevertheless, a trial and error method can be beneficial to some applications. In order to analytically solve an optimisation problem, it can be classified to different orders, where an optimal datum, configuration, and optimal observation weights can be sought such that the precision, reliability and cost criteria are satisfied.

    In this thesis, which is a compilation of six peer-reviewed papers, we optimised and redesigned a number of GNSS-based monitoring networks in Sweden by developing new methodologies. In addition, optimal design and efficiency of total station establishment with RTK-GNSS is investigated in this research.

    Sensitivity of a network in detecting displacements is of importance for monitoring purposes. In the first paper, a precision criterion was defined to enable a GNSS-based monitoring network to detect 5 mm displacements at each network point. Developing an optimisation model by considering this precision criterion, reliability and cost yielded a decrease of 17% in the number of observed single baselines implying a reliable and precise network at lower cost. The second paper concerned a case, where the precision of observations could be improved in forthcoming measurements. Thus a new precision criterion was developed to consider this assumption. A significant change was seen in the optimised design of the network for subsequent measurements. As yet, the weight of single baselines was subject to optimisation, while in the third paper, the effect of mathematical correlations between GNSS baselines was considered in the optimisation. Hence, the sessions of observations, including more than two receivers, were optimised. Four out of ten sessions with three simultaneous operating receivers were eliminated in a monitoring network with designed displacement detection of 5 mm. The sixth paper was the last one dealing with optimisation of GNSS networks. The area of interest was divided into a number of three-dimensional elements and the precision of deformation parameters was used in developing a precision criterion. This criterion enabled the network to detect displacements of 3 mm at each point.

    A total station can be set up in the field by different methods, e.g. free station or setup over a known point. A real-time updated free station method uses RTK-GNSS to determine the coordinates and orientation of a total station. The efficiency of this method in height determination was investigated in the fourth paper. The research produced promising results suggesting using the method as an alternative to traditional levelling under some conditions. Moreover, an optimal location for the total station in free station establishment was studied in the fifth paper. It was numerically shown that the height component has no significant effect on the optimal localisation.

1234567 101 - 150 of 2262
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf