Change search
Refine search result
1234567 101 - 150 of 441
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Dieval, Catherine
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Kallio, E.
    Finnish Meteorological Institute.
    Barabash, Stas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Stenberg, G.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Nilsson, H
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Futaana, Y.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Holmström, M.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Fedorov, A.
    Institut de Recherche en Astrophysique et Planetologie, Toulouse.
    Frahm, R.A.
    Southwest Research Institute, San Antonio, Texas.
    Jarvinen, R.
    Finnish Meteorological Institute, Helsinki.
    Brain, D.A.
    Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado.
    A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations2012In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 117Article in journal (Refereed)
    Abstract [en]

    Using the data from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) experiment on board Mars Express and hybrid simulations, we have investigated the entry of protons into the Martian induced magnetosphere. We discuss one orbit on the dayside with observations of significant proton fluxes at altitudes down to 260 km on 27 February 2004. The protons observed below the induced magnetosphere boundary at an altitude of less than 700 km have energies of a few keV, travel downward, and precipitate onto the atmosphere. The measured energy flux and particle flux are 108–109 eV cm−2 s−1 and 105–106 H+ cm−2 s−1, respectively. The proton precipitation occurs because the Martian magnetosheath is small with respect to the heated proton gyroradius in the subsolar region. The data suggest that the precipitation is not permanent but may occur when there are transient increases in the magnetosheath proton temperature. The higher-energy protons penetrate deeper because of their larger gyroradii. The proton entry into the induced magnetosphere is simulated using a hybrid code. A simulation using a fast solar wind as input can reproduce the high energies of the observed precipitating protons. The model shows that the precipitating protons originate from both the solar wind and the planetary exosphere. The precipitation extends over a few thousand kilometers along the orbit of the spacecraft. The proton precipitation does not necessarily correlate with the crustal magnetic anomalies.

  • 102.
    Dieval, Catherine
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Stenberg, G.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Nilsson, H.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Barabash, Stas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations2013In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, p. 1972-1983Article in journal (Refereed)
    Abstract [en]

    Due to the small size of the Martian magnetic pile-up region, especially at the subsolar point, heated protons with high enough energy can penetrate the induced magnetosphere boundary (IMB) without being backscattered, i.e., they precipitate. We present a statistical study of the downgoing ~ keV proton fluxes measured in the Martian ionosphere by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) experiment onboard the Mars Express spacecraft. We find that on the dayside, the events of proton penetration occur during 3% of the observation time: the precipitation is an intermittent phenomenon. The proton events carry on average ~0.2% of the incident solar wind flux. Therefore, the induced magnetosphere is an effective shield against the magnetosheath protons. The events are more frequent during fast solar wind conditions than during slow solar wind conditions. The sporadic proton penetration is thought to be caused by transient increases in the magnetosheath temperature. The precipitating flux is higher on the dayside than on the nightside, and its spatial deposition is controlled by the solar wind convective electric field. The largest crustal magnetic anomalies tend to decrease the proton precipitation in the Southern hemisphere. The particle and energy fluxes vary in the range 104-106 cm-2 s-1 and 107-109 eVcm-2 s-1, respectively. The corresponding heating for the dayside atmosphere is on average negligible compared to the solar extreme ultraviolet heating, although the intermittent penetration may cause local ionization. The net precipitating proton particle flux input to the dayside ionosphere is estimated as 1.2 · 1021 s-1.

  • 103.
    Dieval, Catherine
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Stenberg, G.
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Nilsson, Hans
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Edberg, N.J.T.
    Swedish Institute of Space Physics, Uppsala.
    Barabash, Stas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Reduced proton and alpha particle precipitations at Mars during solar wind pressure pulses: Mars Express results2013In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 118, no 6, p. 3421-3429Article in journal (Refereed)
    Abstract [en]

    1] We performed a statistical study of downward moving protons and alpha particles of ~keV energy (assumed to be of solar wind origin) inside the Martian induced magnetosphere from July 2006 to July 2010. Ion and electron data are from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) package on board Mars Express. We investigated the solar wind ion entry into the ionosphere, excluding intervals of low-altitude magnetosheath encounters. The study compares periods of quiet solar wind conditions and periods of solar wind pressure pulses, including interplanetary coronal mass ejections and corotating interaction regions. The solar wind ion precipitation appears localized and/or intermittent, consistent with previous measurements. Precipitation events are less frequent, and the precipitating fluxes do not increase during pressure pulse encounters. During pressure pulses, the occurrence frequency of observed proton precipitation events is reduced by a factor of ~3, and for He2+ events the occurrence frequency is reduced by a factor of ~2. One explanation is that during pressure pulse periods, the mass loading of the solar wind plasma increases due to a deeper penetration of the interplanetary magnetic flux tubes into the ionosphere. The associated decrease of the solar wind speed thus increases the pileup of the interplanetary magnetic field on the dayside of the planet. The magnetic barrier becomes thicker in terms of solar wind ion gyroradii, causing the observed reduction of H+/He2+ precipitations.

  • 104.
    Dikmen, Serkan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Development of Star Tracker Attitude and Position Determination System for Spacecraft Maneuvering and Docking Facility2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Attitude and position determination systems in satellites are absolutely necessary to keep the desired trajectory. A very accurate, reliable and most used sensor for attitude determination is the star tracker, which orient itself in space by observing and comparing star constellations with known star patterns. For on earth tests of movements and docking maneuvers of spacecrafts, the new Spacecraft Maneuvering and Docking (SMD) facility at the chair of Aerospace Information Technology at the University of Würzburg has been built. Air bearing systems on the space ve- hicles help to create micro gravity environment on a smooth surface and simulate an artificial space-like surrounding. A new star tracker based optical sensor for indoor application need to be developed in order to get the attitude and position of the vehicles. The main objective of this thesis is to research on feasible star tracking algorithms for the SMD facility first and later to implement a star detection software framework with new developed voting methods to give the star tracker system its fully autonomous function of attitude determination and position tracking. Furthermore, together with image processing techniques, the software framework is embedded into a controller board. This thesis proposes also a wireless network system for the facility, where all the devices on the vehicles can uniquely communicate within the same network and a devel- opment of a ground station to monitor the star tracker process has also been introduced. Multiple test results with different scenarios on position tracking and attitude determination, discussions and suggestions on improvements complete the entire thesis work. 

  • 105.
    Dillibabu, Surender
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Design,Analysis, and prototype of underwater glider2016Independent thesis Advanced level (degree of Master (Two Years)), 80 credits / 120 HE creditsStudent thesis
  • 106.
    Dirri, Fabrizio
    et al.
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Palomba, Ernesto
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Longobardo, Andrea
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Biondi, David
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Boccaccini, Angelo
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Galiano, Anna
    IAPS-INAF, Via Fosso del Cavaliere 100 Rome, 00133, Italy.
    Zampetti, Emiliano
    IIA-CNR, via Salaria km 29,300 Monterotondo Rome, Italy.
    Saggin, Bortolino
    Politecnico di Milano, Polo Territoriale di Lecco Lecco, Italy.
    Scaccabarozzi, Diego
    Politecnico di Milano, Polo Territoriale di Lecco Lecco, Italy.
    Martin-Torres, Javier
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    VISTA instrument: a PCM-based sensor for organics and volatiles characterization by using Thermogravimetric technique2018Conference paper (Refereed)
    Abstract [en]

    VISTA (Volatile In Situ Thermogravimetry Analyser) is a µ-Thermogravimeter sensor developed by Consortium of Italian Institutes. ThermoGravimetric Analysis (TGA) is a widely used technique to monitor thermal processes involving volatile compounds, e.g. deposition/sublimation and absorption/ desorption. The instrument core is composed by a Piezoelectric Crystal Microbalance (PCM), equipped with built-in heater and built-in temperature sensor, and provided of its own Proximity Electronics (PE). The PCM oscillation frequency linearly depends on the mass deposited on its sensible area (according to Sauerbrey equation) while the PCM temperature can be increased by means of integrated heaters. Thus, mass and volatile composition can be inferred by the frequency change and by desorption temperature, respectively. The instrument is divided in two sensor heads: VISTA1, able to monitor outgassing processes in space, and VISTA2, able to reach higher temperatures, studying the dehydration and organics decomposition in minerals in different environmental conditions. An Engineering Model of VISTA1 and a laboratory breadboard of VISTA2 have been developed. Pure organic compounds and contaminant have been characterized by using deposition processes and TGA cycles obtaining some physical-chemical parameters, i.e. enthalpy of sublimation/evaporation, ΔHHsub,evap , deposition rates, kk and vapor pressures, Pvap . The instrument concept, the scientific objectives and the laboratory measurements are explained in this work.

  • 107.
    Downs, R.T.
    et al.
    University of Arizona, Department of Geosciences, University of Arizona, Tucson, Department of Geology, University of Arizona, Tucson.
    Martin-Torres, Javier
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer2015In: Elements, ISSN 1811-5209, E-ISSN 1811-5217, Vol. 11, no 1, p. 45-50Article in journal (Refereed)
    Abstract [en]

    The rover Curiosity is conducting X-ray diffraction experiments on the surface of Mars using the CheMin instrument. The analyses enable identification of the major and minor minerals, providing insight into the conditions under which the samples were formed or altered and, in turn, into past habitable environments on Mars. The CheMin instrument was developed over a twenty-year period, mainly through the efforts of scientists and engineers from NASA and DOE. Results from the first four experiments, at the Rocknest, John Klein, Cumberland, and Windjana sites, have been received and interpreted. The observed mineral assemblages are consistent with an environment hospitable to Earth-like life, if it existed on Mars.

  • 108.
    Díaz, José Luis Pérez
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Álvarez-Valenzuela, Marco Antonio
    Saint George Tech Ltd.
    Rodríguez-Celis, F.
    MAG SOAR S.L., Av. de Europa, 82, Valdemoro.
    Surface freezing of water2016In: SpringerPlus, E-ISSN 2193-1801, Vol. 5, no 1, article id 629Article in journal (Refereed)
    Abstract [en]

    Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered—exclusively—by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided

  • 109.
    Earle, M.E.
    et al.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Kuhn, Thomas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Khalizov, A.F.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Sloan, J.J.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach2009In: Atmospheric Chemistry and Physics Discussions, ISSN 1680-7367, E-ISSN 1680-7375, Vol. 9, no 5, p. 22883-22927Article in journal (Refereed)
    Abstract [en]

    Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mode radii of 1.0, 1.7, and 2.9 α1/4m. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be approximately 0.031, while that for water evaporation was 0.054. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.

  • 110.
    Earle, M.E.
    et al.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Kuhn, Thomas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Khalizov, A.F.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Sloan, J.J.
    Department of Earth and Environmental Sciences, University of Waterloo.
    Volume nucleation rates for homogeneous freezing in supercooled water microdroplets: results from a combined experimental and modelling approach2010In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 10, no 16, p. 7945-7961Article in journal (Refereed)
    Abstract [en]

    Temperature-dependent volume nucleation rate coefficients for supercooled water droplets, JV(T), are derived from infrared extinction measurements in a cryogenic laminar aerosol flow tube using a microphysical model. The model inverts water and ice aerosol size distributions retrieved from experimental extinction spectra by considering the evolution of a measured initial droplet distribution via homogeneous nucleation and the exchange of vapour-phase water along a well-defined temperature profile. Experiment and model results are reported for supercooled water droplets with mean radii of 1.0, 1.7, and 2.9 μ1/4m. Values of mass accommodation coefficients for evaporation of water droplets and vapour deposition on ice particles are also determined from the model simulations. The coefficient for ice deposition was found to be 0.031 ± 0.001, while that for water evaporation was 0.054 ± 0.012. Results are considered in terms of the applicability of classical nucleation theory to the freezing of micrometre-sized droplets in cirrus clouds, with implications for the parameterization of homogeneous ice nucleation in numerical models.

  • 111.
    Ekelund, Jonah
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Calibration and evaluation of the secondary sensors for the Mini-EUSO space instrument2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The Mini-EUSO (Mini - Extreme Universe Space Observatory) is an instrument for observation of ultra-high energy cosmic rays (UHECR) from space. It is designed to observe Earth from the international space station (ISS) in the ultra-violet (UV), visible (VIS) and near-infrared (NIR) light ranges. The UV sensor is the main sensor, designed and built by the EUSO collaboration. The visible and near-infrared sensors are secondary sensors. These are two cameras, FMVU-13S2C-CS and CMLN-13S2M-CV, from Point Grey Research Inc. The near-infrared light camera has a phosphor coating on the sensor to convert from near-infrared light to visible light, which is detectable by the camera's CCD.

    This thesis deals with the calibration and evaluation of the secondary sensors. This is done by first evaluating the bias and dark current for both cameras. After which a calibration is done using the light measurement sphere, located at the National Instituteof Polar Research (NIPR) in Midori-cho, Tachikawa-shi, Japan. Due to the low sensitivity of the near-infrared light camera, an evaluation of its ability to see celestialobjects are also performed.

    It is found that the visible light camera has a high bias with values around 5 ADU (Analog-to-Digital unit), but almost non-existing dark current, with mean values below 1 ADU. The visible light camera has good sensitivity for all the colors: red, green and blue. However, it is most sensitive to green. Due to this, it is easy to saturate the pixels with too much light. Therefore, saturation intensity was also examined for the shutter times of the visible light camera. This is found to be between 900μWm-2sr-1 and 1·107μWm-2sr-1, depending on color and shutter time.

    The near-infrared light camera is the opposite; it has a low bias with values below 1 ADU and a high dark current. The values of the dark current for the near-infrared light camera are highly dependent on the temperature of the camera. Mean values are below 1 ADU for temperatures around 310K, but mean values of almost 2 ADU at temperatures around 338K. The sensitivity of the near-infrared light camera is very low, therefore, the only way to detect a difference between the light levels of the light measurement sphere was to use a high ADC amplication gain. With this it was found that there is a power-law behavior, values between 1.33 and 1.50, of the relationship between pixel values and light intensity. This is likely due to the phosphor coating used to convert to visible light. When trying to detect celestial objects, the faintest object detected was Venus with a magnitude of less than -4.

  • 112.
    Ekman, Jonas
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Embedded Internet Systems Lab.
    Antti, Marta-Lena
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Martin-Torres, Javier
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Törlind, Peter
    Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, Innovation and Design.
    Kuhn, Thomas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Nilsson, Hans
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Minami, Ichiro
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Öhrwall Rönnbäck, Anna
    Gustafsson, Magnus
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Zorzano Mier, Maria-Paz
    Milz, Mathias
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Grahn, Mattias
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Chemical Engineering.
    Parida, Vinit
    Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, Innovation and Design.
    Behar, Etienne
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Wolf, Veronika
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Dordlofva, Christo
    Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, Innovation and Design.
    Mendaza de Cal, Maria Teresa
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Jamali, Maryam
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Roos, Tobias
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ottemark, Rikard
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Nieto, Chris
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Soria Salinas, Álvaro Tomás
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Vázquez Martín, Sandra
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Nyberg, Erik
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Machine Elements.
    Neikter, Magnus
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Lindwall, Angelica
    Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, Innovation and Design.
    Fakhardji, Wissam
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
    Projekt: Rymdforskarskolan2015Other (Other (popular science, discussion, etc.))
    Abstract [en]

    The Graduate School of Space Technology

  • 113.
    Ekström, M.
    et al.
    Chalmers University of Technology, Department of Radio and Space Science, Gothenburg.
    Eriksson, P.
    Chalmers University of Technology, Department of Radio and Space Science, Gothenburg.
    Read, W. G.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Milz, Mathias
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Murtagh, D. P.
    Chalmers University of Technology, Department of Radio and Space Science, Gothenburg.
    Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere2008In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 8, no 2, p. 309-320Article in journal (Refereed)
    Abstract [en]

    Humidity climatologies of the tropical uppermost troposphere from satellite limb emission measurements have been compared. Four instruments are considered; UARS-MLS, Odin-SMR, and Aura-MLS operating in the microwave region, and MIPAS in the infrared region. A reference for the comparison is obtained by MOZAIC in-situ measurements. The upper tropospheric humidity products were compared on basis of their empirical probability density functions and seasonally averaged horizontal fields at two altitude layers, 12 and 15 km. The probability density functions of the microwave datasets were found to be in very good agreement with each other, and were also consistent with MOZAIC. The average seasonal humidities differ with less than 10%RHi between the instruments, indicating that stated measurement accuracies of 20–30% are conservative estimates. The systematic uncertainty in Odin-SMR data due to cloud correction was also independently estimated to be 10%RHi. MIPAS humidity profiles were found to suffer from cloud contamination, with only 30% of the measurements reaching into the upper troposphere, but under clear-sky conditions there is a good agreement between MIPAS, Odin-SMR and Aura-MLS. Odin-SMR and the two MLS datasets can be treated as independent, being based on different underlying spectroscopy and technology. The good agreement between the microwave limb-sounders, and MOZAIC, is therefore an important step towards understanding the upper tropospheric humidity. The found accuracy of 10%RHi is approaching the level required to validate climate modelling of the upper troposphere humidity. The comparison of microwave and infrared also stresses that microwave limb-sounding is necessary for a complete view of the upper troposphere.

  • 114.
    Eliasson, Salomon
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ice clouds in satellite observations and climate models2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Ice clouds have an important role in climate. They are strong modulators of the outgoing longwave radiation and the incoming shortwave radiation and are an integral part of the hydrological cycle. However, our knowledge about them is inadequate. Climate models are far from consensus on the magnitude and spatial distribution of several cloud parameters, including the column integrated cloud ice amount, called Ice Water Path (IWP). The lack of adequate constraints from observations is a main contributor to the non-consensus. Cloud ice retrievals from satellite measurements are an important source of observations, since they are global and continuous. However, they carry large uncertainties since different sensors are sensitive to different aspects of clouds, and because clouds are largely inhomogeneous with complicated microphysical properties. Satellite observations are also notoriously difficult to use for model evaluation, due to a mismatch on how cloud parameters are defined in the models compared to what is actually observed. No satellite instrument can measure information from the entire cloud column, as desired from the model point of view. This thesis mainly concerns IWP, which is one of the key cloud parameters. By measuring clouds using different techniques at different wavelengths, the IWP retrievals are sensitive to different parts of the ice particle size distribution, and different depths in the cloud. A main aim of the PhD project is to assess the agreement of datasets based on different techniques and how they may be complementary. This investigation of IWP in observations and models starts by a comparison study of monthly averaged IWP from a climate perspective. The study shows that the differences in IWP within a group of models, and compared to observations are up to an order of magnitude. This confirmed results from previous studies, but in this study, large differences in the spatial distribution of IWP are also identified. The spatial distributions of modelled IWP indicate that they are in disagreement on where the Tropical convective regions are and how much IWP is found there in relation to the global averaged IWP. However, the observational datasets also differ by up to an order of magnitude and the uncertainties for the monthly averaged observations are almost intangibly large. This prompted a new study comparing strictly collocated observations to each other. By doing so, large uncertainties caused by spatially and temporally averaging data were removed. DARDAR, with IWP retrievals based on a combination of Radar and Lidar measurements, is regarded as the best dataset of IWP, and was therefore chosen as the reference dataset. This study determines that DARDAR has a relatively low uncertainty of between 20% to 50%. The validity ranges of the other datasets, i.e., the IWP values where data are trustworthy, are determined by comparing to DARDAR IWP. Once established for each dataset, the systematic and random errors of each dataset are quantified. It is shown that retrievals based on solar reflectance measurements are sensitive to the largest range of IWP values, from ∼30 gm-2 to ∼7000 gm-2, and have random uncertainties less than a factor of two throughout most of this range. To analyse the uncertainties further, the collocated measurements are assessed separately in different types of cloudy scenarios. It is shown that large uncertainties are attributed to the assumed cloud phase and the choice of IWP parameterisations. Further in depth studies on models were carried out using the EC-Earth climate model. A validation study of several upper tropospheric parameters showed that the model captures most large-scale features but has problems with clouds. This led to another study comparing the modelled evolution of several atmospheric variables before and after deep convection events to that of observations. A follow-up study analyses the impacts of clouds on upper tropospheric humidity (UTH) retrievals depending on if they are based on microwave or infrared measurements. By these cross-dataset comparisons we are closer to understanding how to utilise datasets that normally are not comparable due to their different sensitivities.

  • 115.
    Eliasson, Salomon
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ice clouds in satellite observations and climate models2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis concerns the microphysical properties of clouds made up of ice particles, called ice clouds. Ice clouds are strong modulators of the outgoing longwave radiation and incoming shortwave radiation, yet our knowledge on several key ice cloud properties, which govern the magnitude and sign of the net contribution to the Earth’s atmospheric radiation budget, is inadequate. For instance, currently climate models are far from consensus on the magnitude and spatial distribution of ice water path (IWP), a vital radiative property of ice clouds, and the main property of concern in this thesis. The large spread amongst the models in terms of IWP is mostly due to the lack of constraints from observations on ice cloud properties. The lacking constraints reflect the major difficulties faced in observing global ice cloud properties.In-situ measurements provide useful sources of information on ice clouds, but are far from adequate due to the sparseness of measurements. Cloud ice observations from satellites provides a global view and is the most useful source of information. However, measurements from satellites also carry large uncertainties and are notoriously difficult to use for model evaluation, due to a mismatch on how IWP is defined in the models compared to what is actually observed. Not one satellite instrument can measure ice particle information from the entire ice cloud column, as desired from the model point of view. Satellite observations of IWP depend for the most part on the wavelength spectrum the instrument measures in, hence the instruments measure related, but different information on clouds.A study addressing the satellite observed and modeled IWP is presented in the first appended article: Eliasson et al. [2011]. Large differences between climate models are observations, especially in areas with frequent deep convection, were reported and discussed. The second appended article is a first evaluation study of cloud parameters, such as IWP, in the EC-Earth climate model using satellite A-Train observations. The model captures large-scale features for the most part but has problems related to ice water content and cloud fraction. This is strongly linked to the treatment of precipitation.The thesis contains introductory chapters on ice clouds; their formation, radiative importance, and representation in climate models. This is followed by a more in depth chapter on the observational data. The different satellite techniques are then discussed following a radiation physics and radiative transfer background section.

  • 116. Eliasson, Salomon
    et al.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Milz, Mathias
    A study on the ice water path descrepencies between global climate models2008Conference paper (Other academic)
  • 117.
    Eliasson, Salomon
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Buehler, Stefan
    Milz, Mathias
    Eriksson, P.
    Department of Radio and Space Science, Chalmers University of Technology.
    John, V.O.
    Met Office Hadley Centre, Exeter.
    Assessing modelled spatial distributions of ice water path using satellite data2010In: Atmospheric Chemistry and Physics Discussions, ISSN 1680-7367, E-ISSN 1680-7375, Vol. 10, no 5, p. 12185-12224Article in journal (Refereed)
    Abstract [en]

    The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations

  • 118.
    Eliasson, Salomon
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Milz, Mathias
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Eriksson, P.
    Chalmers University of Technology, Department of Earth and Space Sciences.
    John, V.O.
    Met Office Hadley Centre, Exeter.
    Assessing observed and modelled spatial distributions of ice water path using satellite data2011In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 11, no 1, p. 375-391Article in journal (Refereed)
    Abstract [en]

    The climate models used in the IPCC AR4 show large differences in monthly mean ice water path (IWP). The most valuable source of information that can be used to potentially constrain the models is global satellite data. The satellite datasets also have large differences. The retrieved IWP depends on the technique used, as retrievals based on different techniques are sensitive to different parts of the cloud column. Building on the foundation of Waliser et al. (2009), this article provides a more comprehensive comparison between satellite datasets. IWP data from the CloudSat cloud profiling radar provide the most advanced dataset on clouds. For all its unmistakable value, CloudSat data are too short and too sparse to assess climatic distributions of IWP, hence the need to also use longer datasets. We evaluate satellite datasets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, in order to determine the differences and relate them to the sensitivity of the instrument used in the retrievals. This information is also used to evaluate the climate models, to the extent that is possible. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the better of the two. Additionally PATMOS-x and ISCCP, which have a temporal range long enough to capture the inter-annual variability of IWP, are used in conjunction with CloudSat IWP (after removing profiles that contain precipitation) to assess the IWP variability and mean of the climate models. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is probably the GCM from IPCC AR4 closest to satellite observations

  • 119.
    Eliasson, Salomon
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Holl, Gerrit
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Kuhn, Thomas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Stengel, M.
    Iturbe-Sanchez, F.
    Johnston, M.
    Systematic and random errors between collocated satellite ice water path observations2013In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 118, no 6, p. 2629-2642Article in journal (Refereed)
    Abstract [en]

    There remains large disagreement between IWP in observational datasets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics ({plus minus}30{degree sign} latitude) in 2007 is made using collocated measurements. The DARDAR IWP dataset, based on combined Radar/Lidar measurements, is used as a reference as it provides arguably the best estimate of the total column IWP. For each dataset, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, MODIS, and AVHRR-based CMSAF, and PATMOS-x, were found to be correlated with DARDAR over a large IWP range (~20-7000 g/m-2;). The random errors of the collocated datasets have a close to log-normal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way the upper limit for the random error of all considered datasets is determined. Datasets based on passive microwave measurements,MSPPS, MiRS, and CMO, are largely correlated with DARDAR for IWP values larger than approximately 700 g/m². The combined uncertainty between these datasets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.

  • 120.
    Eliasson, Salomon
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Mendrok, Jana
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Systematic and random errors between collocated satellite ice water path observations2013Conference paper (Other academic)
    Abstract [en]

    There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (±30° latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m-2). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m-2. The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.

  • 121.
    Emami, Reza
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Institute for Aerospace Studies, University of Toronto.
    Kereluk, Jason Alexander
    Space Mechatronics Group, Institute for Aerospace Studies, University of Toronto.
    System, method and computer program for autonomously emulating robot manipulators of continuously-varying configurationsPatent (Other (popular science, discussion, etc.))
    Abstract [en]

    The invention is a modular and autonomously reconfigurable manipulator system which introduces a new dimension to the versatility of robot manipulation for diverse tasks. The hardware component is a redundant mechanism which can lock any number of its joints at any relative position to form a particular configuration with a certain number of degrees of freedom and specific values for kinematic, dynamic and control parameters, optimum for a given task to be performed. The process of identifying the optimum configuration for a given task and implementing it on the manipulator is done autonomously through the system software. Therefore, no manual interaction is required to form a new configuration most suitable for a given task. The kinematic, dynamic and control parameters of the system can vary continuously enabling the manipulator to form virtually an infinite number of configurations.

  • 122.
    Emami, Reza
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ng, Larry
    Institute for Aerospace Studies, University of Toronto.
    Concurrent Individual And Social Learning In Robot Teams2016In: Computational intelligence, ISSN 0824-7935, E-ISSN 1467-8640, Vol. 32, no 3, p. 420-438Article in journal (Refereed)
    Abstract [en]

    This article discusses effective mechanisms that enable a group of robots to autonomously generate, adapt, and enhance team behaviors while improving their individual performance simultaneously. Two promising team learning concepts, namely, cooperative learning and advice-sharing, are integrated to provide a platform that encompasses a comprehensive approach to team-performance enhancement. These methods were examined in relation to the performance characteristics of standard single-robot Q-learning to ascertain whether they retain viable learning characteristics despite the integration of individual learning into team behaviors

  • 123.
    Emami, Reza
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ragusila, Victor
    Institute for Aerospace Studies, University of Toronto.
    Mechatronics by analogy and application to legged locomotion2016In: Mechatronics (Oxford), ISSN 0957-4158, E-ISSN 1873-4006, Vol. 35, p. 173-191Article in journal (Refereed)
    Abstract [en]

    A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced. It argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behavior through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also presented. A series of simulations show that the dynamic behavior of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently.

  • 124.
    Emami, Reza
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Institute for Aerospace Studies, University of Toronto.
    Tedesco, Michael Anthony
    Space Mechatronics Group, University of Toronto, Toronto.
    System, method and computer program for remotely testing system components over a networkPatent (Other (popular science, discussion, etc.))
    Abstract [en]

    The invention is a turn-key, modular platform, including software and hardware, for testing physical system components such as motors remotely over the Internet. The system allows remote customers to test multiple physical system components under the specific loading conditions of the real-world application. This will provide more detailed and accurate information than what is usually given in the data sheets for system component performance, enabling the user to make a more-reliable decision. With respect to motors, the hardware consists of a torque motor that moves autonomously in xy plane to couple to the individual test motors, through a unique coupling mechanism, and emulate various load profiles on them. Test motors are mounted onto modular fixtures that allow for one-time manual positioning in xyz space. The software, consisting of server and target applications, creates user accounts and profiles, controls user access by means of a scheduler, and enables each user to connect to the hardware via Internet and run a customized experiment.

  • 125.
    Engeln, Axel von
    et al.
    Universität Bremen, Institute of Environmental Physics.
    Teixeira, Joao
    UCAR/VSP at Marine meteorology division of Naval research laboratory, Monterey, CA.
    Wickert, Jens
    GeoForschungsZentrum Potsdam, Department of Geodesy and Remote Sensing, Potsdam.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    CHAMP radio occultation detection of the planetary boundary layer top2006In: Atmosphere and climate: studies by occultation methods, Berlin: Encyclopedia of Global Archaeology/Springer Verlag, 2006Chapter in book (Other academic)
  • 126.
    Engeln, Axel von
    et al.
    Meteorological Division, European Organization for the Exploitation of Meteorological Satellites, Darmstadt.
    Teixeira, Joao
    NATO Undersea Research Centre, La Spezia.
    Wickert, Jens
    GeoForschungsZentrum Potsdam.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Comment on "Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode" by S. Sokolovskiy et al.2007In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 34, no 2, p. L02806-Article in journal (Other academic)
  • 127.
    Enmark, Anita
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Andersen, Torben
    Lund Observatory.
    Owner-Petersen, Mette
    Lund Observatory.
    Chakraborty, Rijuparna
    Collège de France.
    Labeyrie, Antoine
    Collège de France.
    Integrated model of the Carlina Telescope2011In: Symposium on Integrated Modeling of Complex Optomechanical Systems: 15-17 August 2011, Kiruna, Sweden / [ed] Torben Andersen; Anita Enmark, 2011Conference paper (Refereed)
    Abstract [en]

    The Carlina hypertelescope is a planned sparse aperture 100 m telescope with pupil densification. The telescope has a spherical primary with segments located in a valley between mountains, and additional optical elements in a gondola suspended in eight cables some 100 m above the primary mirror. The resolution is about 1.2×10-3 arcsec. It is imperative that the position and attitude of the gondola be maintained within tight tolerances during observation and star tracking. The present design has servo-controlled winches on the ground for control of the gondola via the cables. An integrated model of the system, including optics, cables, gondola, position and attitude control system, and wind disturbances has been set up. The structural and control models are linear. Calculations in the frequency domain and simulations in the time domain show that the performance of the telescope with the present design seems adequate for short exposures. However, for long-exposure operation, the gondola stability should be improved by about two orders of magnitude. Recommendations are given on possible approaches for performance improvement.

  • 128.
    Eriksson, P.
    et al.
    Chalmers University of Technology.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Davis, C.P.
    Meteorological Service of New Zealand.
    Emde, C.
    Meteorological Institute, Ludwig-Maximilians-Universität, Munchen.
    Lemke, Oliver
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    ARTS, the atmospheric radiative transfer simulator, version 22011In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 112, no 10, p. 1551-1558Article in journal (Refereed)
    Abstract [en]

    The second version of the atmospheric radiative transfer simulator, ARTS, is introduced. This is a general software package for long wavelength radiative transfer simulations, with a focus on passive microwave observations. The core part provides a workspace environment, in line with script languages. New for this version is an agenda mechanism that gives a high degree of modularity. The framework is intended to be as general as possible: the polarisation state can be fully described, the model atmosphere can be one- (1D), two- (2D) or three-dimensional (3D), a full description of geoid and surface is possible, observation geometries from the ground, from satellite, and from aeroplane or balloon are handled, and surface reflection can be treated in simple or complex manners. Remote sensing applications are supported by a comprehensive and efficient treatment of sensor characteristics. Jacobians can be calculated for the most important atmospheric variables in non-scattering conditions. Finally, the most prominent feature is the rigorous treatment of scattering that has been implemented in two modules: a discrete ordinate iterative approach mainly used for 1D atmospheres, and a Monte Carlo approach which is the preferred algorithm for 3D atmospheres. ARTS is freely available, and maintained as an open-source project.

  • 129.
    Eriksson, Patrick E J
    et al.
    Chalmers University of Technology, Department of Earth and Space Sciences.
    Jamali, Maryam
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Mendrok, Jana
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Buehler, Stefan
    Meteorological Institute, Center for Earth System Research and Sustainability, University of Hamburg.
    On the microwave optical properties of randomly oriented ice hydrometeors2015In: Atmospheric Measurement Techniques, ISSN 1867-1381, E-ISSN 1867-8548, Vol. 8, no 5, p. 1913-1933Article in journal (Refereed)
    Abstract [en]

    Microwave remote sensing is important for observing the mass of ice hydrometeors. One of the main error sources of microwave ice mass retrievals is that approximations around the shape of the particles are unavoidable. One common approach to represent particles of irregular shape is the soft particle approximation (SPA). We show that it is possible to define a SPA that mimics mean optical particles of available reference data over narrow frequency ranges, considering a single observation technique at the time, but that SPA does not work in a broader context. Most critically, the required air fraction varies with frequency and application, as well as with particle size. In addition, the air fraction matching established density parameterisations results in far too soft particles, at least for frequencies above 90 GHz. That is, alternatives to SPA must be found. One alternative was recently presented by Geer and Baordo (2014). They used a subset of the same reference data and simply selected as "shape model" the particle type giving the best overall agreement with observations. We present a way to perform the same selection of a representative particle shape but without involving assumptions on particle size distribution and actual ice mass contents. Only an assumption on the occurrence frequency of different particle shapes is still required. Our analysis leads to the same selection of representative shape as found by Geer and Baordo (2014). In addition, we show that the selected particle shape has the desired properties at higher frequencies as well as for radar applications. Finally, we demonstrate that in this context the assumption on particle shape is likely less critical when using mass equivalent diameter to characterise particle size compared to using maximum dimension, but a better understanding of the variability of size distributions is required to fully characterise the advantage. Further advancements on these subjects are presently difficult to achieve due to a lack of reference data. One main problem is that most available databases of precalculated optical properties assume completely random particle orientation, while for certain conditions a horizontal alignment is expected. In addition, the only database covering frequencies above 340 GHz has a poor representation of absorption as it is based on outdated refractive index data as well as only covering particles having a maximum dimension below 2 mm and a single temperature

  • 130.
    Eriksson, Patrick
    et al.
    Chalmers University of Technology, Department of Earth and Space Sciences.
    Rydberg, B.
    Chalmers University of Technology, Department of Earth and Space Sciences.
    Buehler, Stefan
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    On cloud ice induced absorption and polarisation effects in microwave limb sounding2011In: Atmospheric Measurement Techniques, ISSN 1867-1381, E-ISSN 1867-8548, Vol. 4, no 6, p. 1305-1318Article in journal (Refereed)
    Abstract [en]

    Microwave limb sounding in the presence of ice clouds was studied by detailed simulations, where clouds and other atmospheric variables varied in three dimensions and the full polarisation state was considered. Scattering particles were assumed to be horizontally aligned oblate spheroids with a size distribution parameterized in terms of temperature and ice water content. A general finding was that particle absorption is significant for limb sounding, which is in contrast to the down-looking case, where it is usually insignificant. Another general finding was that single scattering can be assumed for cloud optical paths below about 0.1, which is thus an important threshold with respect to the complexity and accuracy of retrieval algorithms. The representation of particle sizes during the retrieval is also discussed. Concerning polarisation, specific findings were as follows: Firstly, no significant degree of circular polarisation was found for the considered particle type. Secondly, for the +/- 45 degrees polarisation components, differences of up to 4 K in brightness temperature were found, but differences were much smaller when single scattering conditions applied. Thirdly, the vertically polarised component has the smallest cloud extinction. An important goal of the study was to derive recommendations for future limb sounding instruments, particularly concerning their polarisation setup. If ice water content is among the retrieval targets (and not just trace gas mixing ratios), then the simulations show that it should be best to observe any of the +/- 45 degrees and circularly polarised components. These pairs of orthogonal components also make it easier to combine information measured from different positions and with different polarisations

  • 131.
    Escamilla-Roa, Elizabeth
    et al.
    Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR).
    Martin-Torres, Javier
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR).
    Sainz-Díaz, C. Ignacio
    Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR).
    Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions2018In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 153, p. 163-171Article in journal (Refereed)
    Abstract [en]

    Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.

  • 132.
    Fahlgren, Jessica
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Satellite observations of temporal changes in the high latitude glaciers due to the changing climate2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 133.
    Fatemi, Shahab
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Modeling the Lunar plasma wake2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis discusses the solar wind interaction with the Moon and the formation of the lunar plasma wake from a kinetic perspective. The Moon is essentially a non-conducting body which has a tenuous atmosphere and no global magnetic fields. The solar wind plasma impacts directly the lunar day-side and is absorbed by the lunar surface. This creates a plasma void and forms a wake at the night side of the Moon.We study the properties and structure of the lunar wake for typical solar wind conditions using a three-dimensional hybrid plasma solver. Also, we study the solar wind proton velocity space distribution functions at close distances to the Moon in the lunar wake and investigate the effects of lunar surface plasma absorption and non-isothermal solar wind velocity space distribution functions on the solar wind protons there.Finally, we compare the simulation results with the observations and show that a hybrid model of plasma can explain the kinetic aspects of the lunar wake and we investigate the effects of the lunar surface plasma absorption and non-isothermal solar wind velocity distribution on the solar wind proton properties there.

  • 134.
    Fatemi, Shahab
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Holmström, Mats
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Futaana, Yoshifumi
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    The effects of lunar surface plasma absorption and solar wind temperature anisotropies on the solar wind proton velocity space distributions in the low-altitude lunar plasma wake2012In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 117, no 10Article in journal (Refereed)
    Abstract [en]

    We study the solar wind proton velocity space distribution functions on the lunar nightside at low altitudes (∼100 km) above the lunar surface using a three-dimensional hybrid plasma solver, when the Moon is in the unperturbed solar wind. When the solar wind encounters a passive obstacle, such as the Moon, without any strong magnetic field and no atmosphere, solar wind protons that impact the obstacle's surface are absorbed and removed from the velocity space distribution functions. We show first that a hybrid model of plasma is applicable to study the low-altitude lunar plasma wake by comparing the simulation results with observations. Then we examine the effects of a solar wind bi-Maxwellian velocity space distribution function and the lunar surface plasma absorption on the solar wind protons' velocity space distribution functions and their entry in the direction parallel to the interplanetary magnetic field lines into the low-altitude lunar wake. We present a backward Liouville method for particle-in-cell solvers that improves velocity space resolution. The results show that the lunar surface plasma absorption and anisotropic solar wind velocity space distributions result in substantial changes in the solar wind proton distribution functions in the low-altitude lunar plasma wake, modifying proton number density, velocity, and temperature there. Additionally, a large temperature anisotropy is found at close distances to the Moon on the lunar nightside as a consequence of the lunar surface plasma absorption effect

  • 135.
    Fatemi, Shahab
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Holmström, Mats
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Futaana, Yoshifumi
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Barabash, Stas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Lue, Charles
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    The lunar wake current systems2013In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 40, no 1, p. 17-21Article in journal (Refereed)
    Abstract [en]

    We present the lunar wake current systems when the Moon is assumed to be a non-conductive body, absorbing the solar wind plasma. We show that in the transition regions between the plasma void, the expanding rarefaction region, and the interplanetary plasma, there are three main currents flowing around these regions in the lunar wake. The generated currents induce magnetic fields within these regions and perturb the field lines there. We use a three-dimensional, self-consistent hybrid model of plasma (particle ions and fluid electrons) to show the flow of these three currents. First, we identify the different plasma regions, separated by the currents, and then we show how the currents depend on the interplanetary magnetic field direction. Finally, we discuss the current closures in the lunar wake.

  • 136.
    Fatemi, Shahab
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
    Holmström, Mats
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Futaana, Yoshifumi
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Lue, Charles
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Collier, Michael R.
    NASA Goddard Space Flight Center.
    Barabash, Stas
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Swedish Institute of Space Physics / Institutet för rymdfysik.
    Stenberg, Gabriella
    Swedish Institute of Space Physics / Institutet för rymdfysik.
    Effects of protons deflected by lunar crustal magnetic fields on the global lunar plasma environment2014In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 119, no 8, p. 6095-6105Article in journal (Refereed)
    Abstract [en]

    Solar wind plasma interaction with lunar crustal magnetic fields is different than that of magnetized bodies like the Earth. Lunar crustal fields are, for typical solar wind conditions, not strong enough to form a (bow)shock upstream but rather deflect and perturb plasma and fields. Here we study the global effects of protons reflected from lunar crustal magnetic fields on the lunar plasma environment when the Moon is in the unperturbed solar wind. We employ a three-dimensional hybrid model of plasma and an observed map of reflected protons from lunar magnetic anomalies over the lunar farside. We observe that magnetic fields and plasma upstream over the lunar crustal fields compress to nearly 120% and 160% of the solar wind, respectively. We find that these disturbances convect downstream in the vicinity of the lunar wake, while their relative magnitudes decrease. In addition, solar wind protons are disturbed and heated at compression regions and their velocity distribution changes from Maxwellian to a non-Maxwellian. Finally, we show that these features persists, independent of the details of the ion reflection by the magnetic fields.

  • 137.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Ceriotti, Matteo
    University of Glasgow, School of Engineering, James Watt Building South .
    Harkness, Patrick
    University of Glasgow, School of Engineering, James Watt Building South .
    Attitude Stability and Altitude Control of a Variable-Geometry Earth-Orbiting Solar Sail2016In: Journal of Guidance Control and Dynamics, ISSN 0731-5090, E-ISSN 1533-3884, Vol. 39, no 9, p. 2112-2126Article in journal (Refereed)
    Abstract [en]

    A variable-geometry solar sail for on-orbit altitude control is investigated. It is shown that, by adjusting the effective area of the sail at favorable times, it is possible to influence the length of the semimajor axis over an extended period of time. This solution can be implemented by adopting a spinning quasi-rhombic pyramidal solar sail that provides the heliostability needed to maintain a passive sun-pointing attitude and the freedom to modify the shape of the sail at any time. In particular, this paper investigates the variable-geometry concept through both theoretical and numerical analyses. Stability bounds on the sail design are calculated by means of a first-order analysis, producing conditions on the opening angles of the sail, while gravity gradient torques and solar eclipses are introduced to test the robustness of the concept. The concept targets equatorial orbits above approximately 5000km. Numerical results characterize the expected performance, leading to (for example) an increase of 2200km/yr for a small device at geostationary Earth orbit

  • 138.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    A multi-spacecraft formation approach to space debris surveillance2016In: Acta Astronautica, ISSN 0094-5765, E-ISSN 1879-2030, Vol. 127, p. 491-504Article in journal (Refereed)
    Abstract [en]

    This paper proposes a new mission concept devoted to the identification and tracking of space debris through observations made by multiple spacecraft. Specifically, a formation of spacecraft has been designed taking into account the characteristics and requirements of the utilized optical sensors as well as the constraints imposed by sun illumination and visibility conditions. The debris observations are then shared among the team of spacecraft, and processed onboard of a “hosting leader” to estimate the debris motion by means of Kalman filtering techniques. The primary contribution of this paper resides on the application of a distributed coordination architecture, which provides an autonomous and robust ability to dynamically form spacecraft teams once the target has been detected, and to dynamically build a processing network for the orbit determination of space debris. The team performance, in terms of accuracy, readiness and number of the detected objects, is discussed through numerical simulations.

  • 139.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Attitude Coordination of Multiple Spacecraft for Space Debris Surveillance2017In: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 59, no 5, p. 1270-1288Article in journal (Refereed)
    Abstract [en]

    This paper discusses the attitude coordination of a formation of multiple spacecraft for space debris surveillance. Off-the-shelf optical sensors and reaction wheels, with limited field of view and control torque, respectively, are considered to be used onboard the spacecraft for performing the required attitude maneuvers to detect and track space debris. The sequence of attitude commands are planned by a proposed algorithm, which allows for a dynamic team formation, as well as performing suitable maneuvers to eventually point towards the same debris. A control scheme based on the nonlinear state dependent Riccati equation is designed and applied to the space debris surveillance mission scenario, and its performance is compared with those of the classic linear quadratic regulator and quaternion feedback proportional derivative controllers. The viability and performance of the coordination algorithm and the controllers are validated through numerical simulations.

  • 140.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Division of Space Technology, Rymdcampus, Kiruna.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Division of Space Technology, Rymdcampus, Kiruna; Institute for Aerospace Studies, University of Toronto.
    Image-based attitude maneuvers for space debris tracking2018In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 76, p. 58-71Article in journal (Refereed)
    Abstract [en]

    This paper proposes an image-based control scheme for tracking space debris using onboard optical sensors. The proposed strategy uses an onboard camera for detecting space debris. The camera is rigidly attached to the satellite; therefore specific attitude maneuvers need to be performed during different phases of the mission. First, the spacecraft orients its attitude to point the camera toward a fixed direction in space, and then when debris traces streak across the field of view of the camera, the spacecraft follows and tracks the motion of the debris. Finally, a disengagement maneuver is executed to stop the spacecraft rotation when the debris disappears from the camera field of view. The model and the developed control scheme take into account the typical characteristics of space-qualified cameras, and a Kalman filter is developed to reduce the effects of the camera noise, detect and predict the path of the debris in the image plane, and estimate the angular velocity of the spacecraft. The entire estimation/control scheme is then validated through numerical simulations, using a model of reaction wheels as the main attitude actuation system. The results demonstrate the viability of such maneuvers in a typical space debris surveillance mission scenario.

  • 141.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Spacecraft formation for debris surveillance2017In: IEEE Aerospace Conference Proceedings, Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7943750Conference paper (Refereed)
    Abstract [en]

    This paper explores the viability and performance of a new algorithm for in-orbit space debris surveillance, which utilizes a network of distributed optical sensors carried onboard multiple spacecraft flying in formation. The resulting network of spacecraft is able to autonomously detect unknown debris, as well as track the existing ones, estimate their trajectories, and send the estimation results directly to the mission control centers for planning the required collision avoidance maneuvers. The proposed concept includes (a) an estimation algorithm that allows for sharing observations of common debris objects among spacecraft; (b) a coordination algorithm for the re-orientation of an ad hoc team of spacecraft to align their onboard optical sensors towards common targets; and (c) a control algorithm for the detection and tracking of the debris which uses vision-based attitude maneuvers.

  • 142.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Emami, Reza
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. University of Toronto .
    Vision-Aided Attitude Control for Space Debris Detection2018In: Journal of Guidance Control and Dynamics, ISSN 0731-5090, E-ISSN 1533-3884, Vol. 41, no 2, p. 566-574Article in journal (Refereed)
  • 143.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Harkness, Patrick
    University of Glasgow.
    Ceriotti, Matteo
    University of Glasgow.
    Attitude and Orbital Dynamics of a Variable-Geometry, Spinning Solar Sail in Earth Orbit2017Conference paper (Refereed)
    Abstract [en]

    At the ISSS 2013, a novel concept of variable-geometry solar sail was introduced: deployed in the shape of a three-dimensional quasi-rhombic pyramid (QRP), the sail exploited its shape and shift between center of mass and center of pressure to naturally achieve heliostability (stable sun-pointing) throughout the mission. In addition, mechanisms allowed to vary the flare angle of the four booms in opposite pairs, thus allowing to control the area exposed to the sun without the need of slew maneuvers. Using these adjustments in favorable orbital positions, it is possible to build a regular pattern of acceleration to achieve orbit raising or lowering without the need of propulsion system or attitude control. Subsequent more detailed investigations revealed that eclipses, even if lasting only a fraction of the orbit, have a substantial (and negative) impact on the heliostability effect: and even a small residual angular velocity, or disturbance torque, are enough to cause the spacecraft to tumble. In this work, we present a novel and improved concept which allows the sail to preserve its attitude not only with eclipses, but also in presence of disturbance torques such as the gravity gradient. The solution we propose is to add a moderate spin to the solar sail, combined with ring dampers. The gyroscopic stiffness due to the spin guarantees stability during the transient periods of the eclipses, while the heliostability effect, combined with the dampers, cancels any residual unwanted oscillation during the parts of the orbit exposed to the sun, and at the same time guarantees continuous sun-pointing as the apparent direction of the sun rotates throughout the year. Both theoretical and numerical analyses are performed. First, stability bounds on the sail design are calculated, obtaining conditions on the flare angles of the sail, in the different orbital regimes, to test the robustness of the concept. Then, a numerical analysis is performed to validate the study in a simulated scenario where all perturbations are considered, over extended amount of time. The concept targets equatorial orbits above approximately 5,000 km. Results show that an increase of 2,200 km per year for a small device at GEO can be achieved with a CubeSat-sized sail.

  • 144.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Palmerini, Giovanni B.
    Sapienza Università di Roma, Dipartimento di Ingegneria Astronautica Elettrica Ed Energetica (DIAEE), Scuola di Ingegneria Aerospaziale, Università di Roma La Sapienza.
    Analytical and numerical investigations on spacecraft formation control by using electrostatic forces2016In: Acta Astronautica, ISSN 0094-5765, E-ISSN 1879-2030, Vol. 123, p. 455-469Article in journal (Refereed)
    Abstract [en]

    The paper investigates some analytical and numerical aspects of the formation control exploited by means of inter-spacecraft electrostatic actions. The analysis is based on the evaluation and check of the stability issues by using a sequence of purposely defined Lyapunov functions. The same Lyapunov approach can also define a specific under-actuate control strategy for controlling selected “virtual links” of the formation. Two different selection criteria for these links are then discussed, showing the implications on the control chain. An optimal charge distribution strategy, which assigns univocally the charges to all the spacecraft starting from the charge products computed by the control, is also presented and discussed. Numerical simulations prove the suitability of the proposed approach to a formation of 4 satellites.

  • 145.
    Felicetti, Leonard
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Palmerini, Giovanni B.
    Sapienza Università di Roma, Dipartimento di Ingegneria Astronautica Elettrica Ed Energetica (DIAEE).
    Three spacecraft formation control by means of electrostatic forces2016In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 48, p. 261-271Article in journal (Refereed)
    Abstract [en]

    This paper focuses on electrostatic orbital control in formation flying by using switching strategies for charge distribution. Natural and artificial charging effects are taken into account, and limits in charging technology and in power requirements are also considered. The case of three spacecraft formation, which is intrinsically different and more difficult than the two spacecraft problem often analyzed in literature, has been investigated. A Lyapunov based global control strategy is presented and applied to perform formation acquisition and maintenance maneuvers, producing as output the required overall charge. Then, a selective and optimized charge distribution process among the satellites is discussed for avoiding charge breakdowns to surrounding plasma, for reducing the power requirements and the number of charge switches. The results of numerical simulations show the advantages and drawbacks of the selected control technique

  • 146.
    Fernández-Remolar, David
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Banerjee, Neil
    Centre for Planetary Science and Exploration (CPSX), Department of Earth Sciences, University of Western Ontario.
    Gómez-Ortiz, David
    ESCET-Área de Geología, Universidad Rey Juan Carlos.
    Izawa, Matthew
    Institute for Planetary Materials, Okayama University, Misasa.
    Amils, Ricardo
    Planetology and Habitability Department, Center of Astrobiology (INTA-CSIC) .
    A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system2018In: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 103, no 3, p. 394-411Article in journal (Refereed)
    Abstract [en]

    The search for extinct and extant life on Mars is based on the study of biosignatures that could be preserved under Mars-like, extreme conditions that are replicated in different terrestrial analog environments. The mineral record in the subsurface of the Río Tinto system is one example of a Mars analog site that has been exposed to weathering conditions, including the biogeochemical activity of Fe and S chemolithotrophic bacteria, for millions of years. The SEM-EDAX analysis of different samples recovered in the Peña de Hierro area from four boreholes, ranging from 166 to 610 m in depth, has provided the identification of microbial structures that have affected a suite of hydrothermal minerals (~345 Ma) as well as minerals likely produced by biological activity in more recent times (<7 Ma). The hydrothermal minerals correspond to reduced sulfur or sulfate-bearing compounds (e.g., pyrite and barite) that are covered by bacilli- or filamentous-like microbial structures and/or secondary ferrous carbonates (e.g., siderite) with laminar to spherical structures. The secondary iron carbonates can be in direct contact or above an empty interphase with the primary hydrothermal minerals following a wavy to bent contact. Such an empty interphase is usually filled with nanoscale, straight filamentous structures that have a carbonaceous composition. The occurrence of a sulfur and iron chemolithotrophic community in the Río Tinto basement strongly suggests that the association between sulfur-bearing minerals, dissolution scars and secondary minerals of biological origin is a complex process involving the microbial attack on mineral surfaces by sulfur reducing bacteria followed by the precipitation of iron-rich carbonates. In this scenario, iron sulfide compounds such as pyrite would act as electron donors under microbial oxidation, while sulfate minerals such as barite would act as electron acceptors through sulfate reduction. Furthermore, the formation of siderite would have resulted from carbonate biomineralization of iron chemoheterotrophic organims or other microorganisms that concentrate carbonate through metabolic pathways. Although the distribution of the mineral biosignatures at depth clearly follows a redox gradient, they show some irregular allocation underground, suggesting that the geochemical conditions governing the microbial activity are affected by local changes associated with the fracturing pattern of the Río Tinto basement. The abundance of sulfur- and iron-bearing minerals in the Mars crust suggests that the Río Tinto mineral biosignatures can be useful in the search for extant and extinct subsurface life on the red planet

  • 147.
    Fernández-Remolar, David C.
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Harir, Mourad
    Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
    Carrizo, Daniel
    Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain.
    Schmitt-Kopplin, Philippe
    Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
    Amils, Ricardo
    Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain; Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain.
    Productivity contribution of Paleozoic woodlands to the formation of shale hosted massive sulfide deposits in the Iberian Pyrite Belt (Tharsis, Spain)2018In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, no 3, p. 1017-1040Article in journal (Refereed)
    Abstract [en]

    The geological materials produced during catastrophic and destructive events are an essential source of paleobiological knowledge. The paleobiological information recorded by such events can be rich in information on the size, diversity, and structure of paleocommunities. In this regard, the geobiological study of late Devonian organic matter sampled in Tharsis (Iberian Pyrite Belt) provided some new insights into a Paleozoic woodland community,which was recorded as massive sulfides and black shale deposits affected by a catastrophic event. Sample analysis using TOF-SIMS (Time of Flight Secondary Ion Mass Spectrometer), and complemented by GC/MS (Gas Chromatrograph/Mass Spectrometer) identified organic compounds showing a very distinct distribution in the rock. While phytochemical compounds occur homogeneously in the sample matrix that is composed of black shale, the microbial-derived organics are more abundant in the sulfide nodules. The co-occurrence of sulfur bacteria compounds and the overwhelming presence of phytochemicals provide support for the hypothesis that the formation of the massive sulfides resulted from a high rate of vegetal debris production and its oxidation through sulfate reduction under suboxic to anoxic conditions. A continuous supply of iron from hydrothermal activity coupled with microbial activity was strictly necessary to produce this massive orebody. A rough estimate of the woodland biomass was made possible by accounting for the microbial sulfur production activity recorded in the metallic sulfide. As a result, the biomass size of the late Devonian woodland community was comparable to modern woodlands like the Amazon or Congo rainforests.

  • 148.
    Flores Garcia, Erick
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Simulation of attitude and orbital disturbances acting on ASPECT satellite in the vicinity of the binary asteroid Didymos2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Asteroid missions are gaining interest from the scientific community and many new missions are planned. The Didymos binary asteroid is a Near-Earth Object and the target of the Asteroid Impact and Deflection Assessment (AIDA). This joint mission, developed by NASA and ESA, brings the possibility to build one of the first CubeSats for deep space missions: the ASPECT satellite. Navigation systems of a deep space satellite di er greatly from the common planetary missions. Orbital environment close to an asteroid requires a case-by-case analysis. In order to develop the Attitude Determination Control System (ADCS) for the mission, one needs detailed information about orbital disturbances in the vicinity of the asteroid.

    This work focuses on the development of a simulator that characterises the orbital disturbances a ecting the ASPECT satellite in the space environment near the Didymos asteroid. In this work, a model of orbital conditions and disturbances near the Didymos system was defined. The model integrates several classical and modern models of spacecraft motion and disturbance. An existing Low Earth Orbit (LEO) simulator was modified and updated accordingly to the ASPECT mission scenario. The developed simulator can be used to analyse the disturbances to be counteracted by the ADCS of the ASPECT satellite. The objective of the study was to quantify the e ect of both non-gravitational and gravitational disturbances. The simulator was used to analyse di erent orbit scenarios related to the period of the mission and to the relative distance between the spacecraft and the asteroid system. In every scenario, the solar radiation pressure was found to be the strongest of the disturbance forces. With the developed simulator, suitable spacecraft configurations and control systems can be chosen to mitigate the e ect of the disturbances on the attitude and orbit of the ASPECT satellite. 

  • 149.
    Fonseca, Ricardo
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Earth Observatory of Singapore, Nanyang Technological University, Singapore.
    Koh, Tieh-Yong
    Earth Observatory of Singapore, Nanyang Technological University, Singapore; UC, Singapore University of Social Sciences, Singapore.
    Teo, Chee-Kiat
    UC, Singapore University of Social Sciences, Singapore; Centre for Climate Research Singapore, Meteorological Services Singapore, Singapore.
    Multi-scale interactions in a high-resolution tropical-belt experiment and observations2018In: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894Article in journal (Refereed)
    Abstract [en]

    The Weather Research and Forecasting (WRF) model is used to dynamically downscale 27 years of the Climate Forecast System Reanalysis (CFSR) in a tropical belt configuration at 36 km horizontal grid spacing. WRF is found to give a good rainfall climatology as observed by the Tropical Rainfall Measuring Mission (TRMM) and to reproduce well the large-scale circulation and surface radiation fluxes. The impact of conventional and Modoki-type El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are confirmed by linear regression. Madden–Julian Oscillation (MJO) and Boreal Summer Intra-seasonal Oscillation (BSISO) are also well-simulated. The WRF simulation shows that conventional El Niño increases (La Niña decreases) the MJO amplitude in the boreal summer while Modoki-type ENSO and IOD impacts are MJO-phase dependent. While WRF is found to perform well on seasonal to sub-seasonal timescales, it does not capture well the diurnal cycle of precipitation over the Maritime Continent. For the investigation of multi-scale interactions through the local diurnal cycle, TRMM data is used instead. In the Maritime Continent, moderate El Niño and La Niña causes anti-symmetric enhancement/reduction of the MJO’s influence on the diurnal cycle amplitudes with little change in the diurnal phase. Non-linear impacts on the diurnal amplitude with changes in diurnal phase manifest during strong ENSO. Given that the simulation does not employ data assimilation, this modified version of WRF submitted to the model developers is a suitable downscaling tool of CFSR for sub-seasonal to seasonal tropical atmospheric research.

  • 150.
    Fonseca, Ricardo
    et al.
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
    Martin-Torres, Javier
    Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology. Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada.
    Andersson, Kent
    Swedish Space Corporation, Esrange Space Center, Kiruna.
    Wind Forecasts for Rocket and Balloon Launches at the Esrange Space Center Using the WRF Model2018In: Weather and forecasting, ISSN 0882-8156, E-ISSN 1520-0434, Vol. 33, no 3, p. 813-833Article in journal (Refereed)
    Abstract [en]

    High-altitude balloons and rockets are regularly launched at the Esrange Space Center (ESC) in Kiruna, Sweden, with the aim of retrieving atmospheric data for meteorological and space studies in the Arctic region. Meteorological conditions, particularly wind direction and speed, play a critical role in the decision of whether to go ahead with or postpone a planned launch. Given the lack of high-resolution wind forecasts for this remote region, the Weather Research and Forecasting (WRF) Model is used to downscale short-term forecasts given by the Global Forecast System (GFS) for the ESC for six 5-day periods in the warm, cold, and transition seasons. Three planetary boundary layer (PBL) schemes are considered: the local Mellor-Yamada-Janjic' (MYJ), the nonlocal Yonsei University (YSU), and the hybrid local-nonlocal Asymmetric Convective Model 2 (ACM2). The ACM2 scheme is found to provide the most skillful forecasts. An analysis of the WRF Model output against the launch criteria for two of the most commonly launched vehicles, the sounding rockets Veículo de Sondagem Booster-30 (VSB-30) and Improved Orion, reveals probability of detection (POD) values that always exceeds 60% with the false alarm rate (FAR) generally below 50%. It is concluded that the WRF Model, in its present configuration, can be used to generate useful 5-day wind forecasts for the launches of these two rockets. The conclusions reached here are applicable to similar sites in the Arctic and Antarctic regions.

1234567 101 - 150 of 441
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf