Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Wiedemann, Thomas
    et al.
    German Aerospace Center, Oberpfaffenhofen, Germany.
    Lilienthal, Achim J.
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Shutin, Dmitriy
    German Aerospace Center, Oberpfaffenhofen, Germany.
    Analysis of Model Mismatch Effects for a Model-based Gas Source Localization Strategy Incorporating Advection Knowledge2019Ingår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 3, artikel-id 520Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications.

1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf