Endre søk
Begrens søket
1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Angles d'Ortoli, Thibault
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Mobarak, Hani
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Hamark, Christoffer
    Fontana, Carolina
    Engström, Olof
    Apostolica, Patricia
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Complete 1H and 13C NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPERManuskript (preprint) (Annet vitenskapelig)
  • 2. Casillo, Angela
    et al.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Parrilli, Ermenegilda
    Sannino, Filomena
    Mitchell, Daniel E.
    Pieretti, Giuseppina
    Gibson, Matthew I.
    Marino, Gennaro
    Lanzetta, Rosa
    Parrilli, Michelangelo
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Tutino, Maria L.
    Corsaro, Maria M.
    Structural characterization of an all-aminosugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H2017Inngår i: Antonie van Leeuwenhoek. International Journal of General and Molecular Microbiology, ISSN 0003-6072, E-ISSN 1572-9699, Vol. 110, nr 11, s. 1377-1387Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: -> 4)-beta-d-GlcpNAcA-(1 -> 3)-beta-d-QuipNAc4NAc-(1 -> 3)-beta-d-GalpNAc-(1 ->. The 3D model, generated in accordance with H-1,H-1-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 A degrees C, this molecule displays only a low ice recrystallization inhibition activity.

  • 3.
    Engström, Olof
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Mobarak, Hani
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Conformational Dynamics and Exchange Kinetics of N-Formyl and N-Acetyl Groups Substituting 3-Amino-3,6-dideoxy-alpha-D-galactopyranose, a Sugar Found in Bacterial O-Antigen Polysaccharides2017Inngår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, nr 41, s. 9487-9497Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three dimensional shape and conformation of. carbohydrates are important factors in molecular recognition events and the N-acetyl group of a monosaccharide residue can function as a conformational gatekeeper whereby it influences the overall shape of the oligosaccharide. NMR spectroscopy and quantum mechanics (QM) calculations are used herein to investigate both the conformational preferences and the dynamic behavior of N-acetyl and N-formyl substituents of 3-amino-3,6-dideoxy-alpha-D-galactopyranose, a sugar and substitution pattern found in bacterial O-antigen polysaccharides. QM calculations suggest that the amide oxygen can be involved in hydrogen bonding with the axial OH4 group primarily but also with the equatorial OH2 group. However, an NMR J coupling analysis indicates that the 01 torsion angle, adjacent to the sugar ring, prefers an ap conformation where conformations <180 degrees also are accessible, but does not allow for intramolecular hydrogen bonding. In the formyl-substituted compound (4)J(HH) coupling constants to the exo-cyclic group were detected and analyzed. A van't Hoff analysis revealed that the trans conformation at the amide bond is favored by Delta G degrees approximate to - 0.8 kcal.mol(-1) in the formyl-containing compound and with Delta G degrees approximate to -2.5 kcal.mol(-1) when the N-acetyl group is the substituent. In both cases the enthalpic term dominates to the free energy, irrespective of water or DMSO as solvent, with only a small contribution from the entropic term. The cis-trans isomerization of the theta(2) torsion angle, centered at the amide bond, was also investigated by employing H-1 NMR line shape analysis and C-13 NMR saturation transfer experiments. The extracted transition rate constants were utilized to calculate transition energy barriers that were found to be about 20 kcal.mol(-1) in both DMSO-d(6) and D2O. Enthalpy had a higher contribution to the energy barriers in DMSO-d(6) compared to in D2O, where entropy compensated for the loss of enthalpy.

  • 4.
    Fontana, Carolina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, nr 14, s. 7727-7741Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 5. Jakhetia, Richa
    et al.
    Marri, Aruna
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Verma, Naresh K.
    Serotype-conversion in Shigella flexneri: identification of a novel bacteriophage, Sf101, from a serotype 7a strain2014Inngår i: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 15, s. 742-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Shigella flexneri is the major cause of bacillary dysentery in the developing countries. The lipopolysaccharide (LPS) O-antigen of S. flexneri plays an important role in its pathogenesis and also divides S. flexneri into 19 serotypes. All the serotypes with an exception for serotype 6 share a common O-antigen backbone comprising of N-acetylglucosamine and three rhamnose residues. Different serotypes result from modification of the basic backbone conferred by phage-encoded glucosyltransferase and/or acetyltransferase genes, or plasmid-encoded phosphoethanolamine transferase. Recently, a new site for O-acetylation at positions 3 and 4 of Rha(III), in serotypes 1a, 1b, 2a, 5a and Y was shown to be mediated by the oacB gene. Additionally, this gene was shown to be carried by a transposon-like structure inserted upstream of the adrA region on the chromosome. Results: In this study, a novel bacteriophage Sf101, encoding the oacB gene was isolated and characterised from a serotype 7a strain. The complete sequence of its 38,742 bp genome encoding 66 open reading frames (orfs) was determined. Comparative analysis revealed that phage Sf101 has a mosaic genome, and most of its proteins were >90% identical to the proteins from 12 previously characterised lambdoid phages. In addition, the organisation of Sf101 genes was found to be highly similar to bacteriophage Sf6. Analysis of the Sf101 OacB identified two amino acid substitutions in the protein; however, results obtained by NMR spectroscopy confirmed that Sf101-OacB was functional. Inspection of the chromosomal integration site of Sf101 phage revealed that this phage integrates in the sbcB locus, thus unveiling a new site for integration of serotype-converting phages of S. flexneri, and determining an alternative location of oacB gene in the chromosome. Furthermore, this study identified oacB gene in several serotype 7a isolates from various regions providing evidence of O-acetyl modification in serotype 7a. Conclusions: This is the first report on the isolation of bacteriophage Sf101 which contains the S. flexneri O-antigen modification gene oacB. Sf101 has a highly mosaic genome and was found to integrate in the sbcB locus. These findings contribute an advance in our current knowledge of serotype converting phages of S. flexneri.

  • 6. Kuttel, Michelle M.
    et al.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures2016Inngår i: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, nr 22, s. 2098-2105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    CarbBuilder is a portable software tool for producing three-dimensional molecular models of carbohydrates from the simple text specification of a primary structure. CarbBuilder can generate a wide variety of carbohydrate structures, ranging from monosaccharides to large, branched polysaccharides. Version 2.0 of the software, described in this article, supports monosaccharides of both mammalian and bacterial origin and a range of substituents for derivatization of individual sugar residues. This improved version has a sophisticated building algorithm to explore the range of possible conformations for a specified carbohydrate molecule. Illustrative examples of models of complex polysaccharides produced by CarbBuilder demonstrate the capabilities of the software. CarbBuilder is freely available under the Artistic License 2.0.

  • 7. Lee, Jumin
    et al.
    Patel, Dhilon S.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Park, Sang-Jun
    Kern, Nathan R.
    Kim, Seonghoon
    Lee, Joonseong
    Cheng, Xi
    Valvano, Miguel A.
    Holst, Otto
    Knirel, Yuriy A.
    Qi, Yifei
    Jo, Sunhwan
    Klauda, Jeffery B.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Im, Wonpil
    CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans2019Inngår i: Journal of Chemical Theory and Computation, ISSN 1549-9618, E-ISSN 1549-9626, Vol. 15, nr 1, s. 775-786Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI (http://www.charmm-gui.org), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.

  • 8. Martínez-Gómez, Estrella
    et al.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Gil-Ramírez, Yolanda
    Zúñiga-Ripa, Amaia
    Zaccheus, Mona
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Moriyón, Ignacio
    Iriarte, Maite
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Conde-Álvarez, Raquel
    Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis2018Inngår i: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, artikkel-id 1092Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Brucellosis is a bacterial zoonosis of worldwide distribution caused by bacteria of the genus Brucella. In Brucella abortus and Brucella melitensis, the major species infecting domestic ruminants, the smooth lipopolysaccharide (S-LPS) is a virulence factor. This S-LPS carries a N-formyl-perosamine homopolymer O-polysaccharide that is the major antigen in serodiagnostic tests and is required for virulence. We report that the Brucella O-PS can be structurally and antigenically modified using wbdR, the acetyl-transferase gene involved in N-acetyl-perosamine synthesis in Escherichia coli O157:H7. Brucella constructs carrying plasmidic wbdR expressed a modified O-polysaccharide but were unstable, a problem circumvented by inserting wbdR into a neutral site of chromosome II. As compared to wild-type bacteria, both kinds of wbdR constructs expressed shorter O-polysaccharides and NMR analyses showed that they contained both N-formyl and N-acetyl-perosamine. Moreover, deletion of the Brucella formyltransferase gene wbkC in wbdR constructs generated bacteria producing only N-acetyl-perosamine homopolymers, proving that wbdR can replace for wbkC. Absorption experiments with immune sera revealed that the wbdR constructs triggered antibodies to new immunogenic epitope(s) and the use of monoclonal antibodies proved that B. abortus and B. melitensis wbdR constructs respectively lacked the A or M epitopes, and the absence of the C epitope in both backgrounds. The wbdR constructs showed resistance to polycations similar to that of the wild-type strains but displayed increased sensitivity to normal serum similar to that of a per R mutant. In mice, the wbdR constructs produced chronic infections and triggered antibody responses that can be differentiated from those evoked by the wild-type strain in S-LPS ELISAs. These results open the possibilities of developing brucellosis vaccines that are both antigenically tagged and lack the diagnostic epitopes of virulent field strains, thereby solving the diagnostic interference created by current vaccines against Brucella.

  • 9. Rojas-Macias, Miguel A.
    et al.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Luetteke, Thomas
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Development of the ECODAB into a relational database for Escherichia coli O-antigens and other bacterial polysaccharides2015Inngår i: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 25, nr 3, s. 341-347Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Escherichia coli O-antigen database (ECODAB) is aweb-based application to support the collection of E. coli O-antigen structures, polymerase and flippase amino acid sequences, NMR chemical shift data of O-antigens as well as information on glycosyltransferases (GTs) involved in the assembly of O-antigen polysaccharides. The database content has been compiled from scientific literature. Furthermore, the system has evolved from being a repository to one that can be used for generating novel data on its own. GT specificity is suggested through sequence comparison with GTs whose function is known. The migration of ECODAB to a relational database has allowed the automation of all processes to update, retrieve and present information, thereby, endowing the system with greater flexibility and improved overall performance. ECODAB is freely available at http://www.casper.organ.su.se/ECODAB/. Currently, data on 169 E. coli unique O-antigen entries and 338 GTs is covered. Moreover, the scope of the database has been extended so that polysaccharide structure and related information from other bacteria subsequently can be added, for example, from Streptococcus pneumoniae.

  • 10.
    Rönnols, Jerk
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Pendrill, Robert
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Fontana, Carolina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Hamark, Christoffer
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Angles d'Ortoli, Thibault
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Engström, Olof
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Zaccheus, Mona V.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Säwén, Elin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Hahn, Liljan E.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Iqbal, Shahzad
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Complete H-1 and C-13 NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligosaccharides using the computer program CASPER2013Inngår i: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 380, s. 156-166Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    H-1 and C-13 NMR chemical shift data are used by the computer program CASPER to predict chemical shifts of oligo- and polysaccharides. Three types of data are used, namely, those from monosaccharides, disaccharides, and trisaccharides. To improve the accuracy of these predictions we have assigned the H-1 and C-13 NMR chemical shifts of eleven monosaccharides, eleven disaccharides, twenty trisaccharides, and one tetrasaccharide; in total 43 compounds. Five of the oligosaccharides gave two distinct sets of NMR resonances due to the alpha- and beta-anomeric forms resulting in 48 H-1 and C-13 NMR chemical shift data sets. In addition, the pyranose ring forms of Neu5Ac were assigned at two temperatures, due to chemical shift displacements as a function of temperature. The H-1 NMR chemical shifts were refined using total line-shape analysis with the PERCH NMR software. H-1 and C-13 NMR chemical shift predictions were subsequently carried out by the CASPER program (http://www.casper.organ.su.se/casper/) for three branched oligosaccharides having different functional groups at their reducing ends, namely, a mannose-containing pentasaccharide, and two fucose-containing heptasaccharides having N-acetyllactosamine residues in the backbone of their structures. Good to excellent agreement was observed between predicted and experimental H-1 and C-13 NMR chemical shifts showing the utility of the method for structural determination or confirmation of synthesized oligosaccharides.

  • 11. Siegbahn, Anna
    et al.
    Thorsheim, Karin
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Manner, Sophie
    Hamark, Christoffer
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Persson, Andrea
    Tykesson, Emil
    Mani, Katrin
    Westergren-Thorsson, Gunilla
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Ellervik, Ulf
    Exploration of the active site of beta 4GalT7: modifications of the aglycon of aromatic xylosides2015Inngår i: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, nr 11, s. 3351-3362Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteoglycans (PGs) are macromolecules that consist of long linear polysaccharides, glycosaminoglycan (GAG) chains, covalently attached to a core protein by the carbohydrate xylose. The biosynthesis of GAG chains is initiated by xylosylation of the core protein followed by galactosylation by the galactosyltransferase beta 4GalT7. Some beta-D-xylosides, such as 2-naphthyl beta-D-xylopyranoside, can induce GAG synthesis by serving as acceptor substrates for beta 4GalT7 and by that also compete with the GAG synthesis on core proteins. Here we present structure-activity relationships for beta 4GalT7 and xylosides with modifications of the aromatic aglycon, using enzymatic assays, cell studies, and molecular docking simulations. The results show that the aglycons reside on the outside of the active site of the enzyme and that quite bulky aglycons are accepted. By separating the aromatic aglycon from the xylose moiety by linkers, a trend towards increased galactosylation with increased linker length is observed. The galactosylation is influenced by the identity and position of substituents in the aromatic framework, and generally, only xylosides with beta-glycosidic linkages function as good substrates for beta 4GalT7. We also show that the galactosylation ability of a xyloside is increased by replacing the anomeric oxygen with sulfur, but decreased by replacing it with carbon. Finally, we propose that reaction kinetics of galactosylation by beta 4GalT7 is dependent on subtle differences in orientation of the xylose moiety.

  • 12.
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Structure Elucidations of Bacterial Polysaccharides using NMR Spectroscopy and Bioinformatics2017Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Carbohydrates are ubiquitous components in nature involved in a range of tasks. They cover every cell and contribute both structural stability as well as identity. Lipopolysaccharides are the outermost exposed part of the bacterial cell wall and the primary target for host-pathogen recognition. Understanding the structure and biosynthesis of these polysaccharides is crucial to combat disease and develop new medicine. Structural determinations can be carried out using NMR spectroscopy, a powerful tool giving information on an atomistic scale. This thesis is focused on method development to study polysaccharide structures as well as application on bacterial lipopolysaccharides. The focus has been to incorporate a bioinformatics approach prior to analysis by NMR spectroscopy, and then computer assisted methods to aid in the subsequent analysis of the spectra.

    The third chapter deals with the recent developments of ECODAB, a tool that can help predict structural fragments in Escherichia coli O-antigens. It was migrated to a relational database and the aforementioned predictions can now be made automatically by ECODAB. The fourth chapter gives insight into the program CASPER, a computer program that helps with structure determination of oligo- and polysaccharides. An approach to determine substituent positions in polysaccharides was investigated. The underlying database was also expanded and the improved capabilities were demonstrated by determining O-antigenic structures that could not previously be solved. The fifth chapter is an application to O‑antigen structures of E. coli strains. This is done by a combination of NMR spectroscopy and bioinformatics to predict components as well as linkages prior to spectra analysis. In the first case, a full structure elucidation was performed on E. coli serogroup O63, and in the second case a demonstration of the bioinformatics approach is done to E. coli serogroup O93. In the sixth chapter, a new version of the CarbBuilder software is presented. This includes a more robust building algorithm that helps build sterically crowded polysaccharide structures, as well as a general expansion of possible components. 

  • 13.
    Ståhle, Jonas
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    NMR Chemical Shift Predictions and Structural Elucidation of Oligo- and Polysaccharides by the Computer Program CASPER2017Inngår i: NMR in Glycoscience and Glycotechnology / [ed] Koichi Kato, Thomas Peters, Royal Society of Chemistry, 2017, s. 335-352Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Glycans are often linked to proteins or lipids in the form of glycoconjugates but these highly complex molecules also have biological functions as oligosaccharides per se. The limited dispersion in NMR spectra of carbohydrates makes their analysis and interpretation very cumbersome. The computer program CASPER, which is a web-based tool, facilitates prediction 1H and 13C NMR chemical shifts of oligo- or polysaccharide structures defined by the user, makes it possible to carry out an NMR-based sugar analysis including determination of absolute configuration and to perform structure elucidation of unknown glycans using unassigned NMR spectra as input to the program. The output from the program contains, inter alia, tentatively assigned NMR resonances, proposed sugar components, structural suggestions ranked according to the similarity between their predicted chemical shifts and the experimental data as well as 3D structures in pdb-format generated seamlessly by the CarbBuilder program as a part of the CASPER-GUI.

  • 14.
    Ståhle, Jonas
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Structural studies of the O-antigen polysaccharide from Escherichia coli O63 and biosynthetic aspects thereofManuskript (preprint) (Annet vitenskapelig)
  • 15. Thorsheim, Karin
    et al.
    Willen, Daniel
    Tykesson, Emil
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Praly, Jean-Pierre
    Vidal, Sebastien
    Johnson, Magnus T.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Manner, Sophie
    Ellervik, Ulf
    Naphthyl Thio- and Carba-xylopyranosides for Exploration of the Active Site of-1,4-Galactosyltransferase 7 (4GalT7)2017Inngår i: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, nr 71, s. 18057-18065Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Xyloside analogues with substitution of the endocyclic oxygen atom by sulfur or carbon were investigated as substrates for -1,4-galactosyltransferase7 (4GalT7), a key enzyme in the biosynthesis of glycosaminoglycan chains. The analogues with an endocyclic sulfur atom proved to be excellent substrates for 4GalT7, and were galactosylated approximately fifteen times more efficiently than the corresponding xyloside. The 5a-carba--xylopyranoside in the d-configuration proved to be a good substrate for 4GalT7, whereas the enantiomer in the l-configuration showed no activity. Further investigations by X-ray crystallography, NMR spectroscopy, and molecular modeling provided a rationale for the pronounced activity of the sulfur analogues. Favorable - interactions between the 2-naphthyl moiety and a tyrosine side chain of the enzyme were observed for the thio analogues, which open up for the design of efficient GAG primers and inhibitors.

1 - 15 of 15
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf