Digitala Vetenskapliga Arkivet

Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fredi, Giulia
    et al.
    Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento, I-38123, Italy.
    Jeschke, Steffen
    Department of Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden.
    Boulaoued, Athmane
    Department of Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden ; Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Université de Montpellier, Pl. Eugène Bataillon, Montpellier, France ; Alistore European Research Institute, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, France.
    Wallenstein, Joachim
    Department of Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden.
    Rashidi, Masoud
    Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, SE-41296, Sweden.
    Liu, Fang
    Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, SE-41296, Sweden.
    Harnden, Ross
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Farkostteknik och Solidmekanik.
    Zenkert, Dan
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Farkostteknik och Solidmekanik.
    Hagberg, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Lindbergh, Göran
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Johansson, Patrik
    Department of Physics, Chalmers University of Technology, Göteborg, SE-41296, Sweden ; Alistore European Research Institute, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, France.
    Stievano, Lorenzo
    Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Université de Montpellier, Pl. Eugène Bataillon, Montpellier, France ; Alistore European Research Institute, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, France ; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 33 Rue Saint Leu, Amiens, France.
    Asp, Leif E.
    Department of Industrial and Materials Science, Chalmers University of Technology, Göteborg, SE-41296, Sweden.
    Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes2018Inngår i: Multifunctional Materials, ISSN 2399-7532, Vol. 1, nr 1, artikkel-id 015003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Carbon fibres (CFs), originally made for use in structural composites, have also been demonstrated as high capacity Li-ion battery negative electrodes. Consequently, CFs can be used as structural electrodes; simultaneously carrying mechanical load and storing electrical energy in multifunctional structural batteries. To date, all CF microstructural designs have been generated to realise a targeted mechanical property, e.g. high strength or stiffness, based on a profound understanding of the relationship between the graphitic microstructure and the mechanical performance. Here we further advance this understanding by linking CF microstructure to the lithium insertion mechanism and the resulting electrochemical capacity. Different PAN-based CFs ranging from intermediate-to highmodulus types with distinct differences in microstructure are characterised in detail by SEM and HRTEMand electrochemical methods. Furthermore, the mechanism of Li-ion intercalation during charge/discharge is studied by in situ confocal Raman spectroscopy on individual CFs. RamanGband analysis reveals a Li-ion intercalation mechanism in the high-modulus fibre reminiscent of that in crystalline graphite. Also, the combination of a relatively low capacity of the high-modulus CFs (ca. 150 mAh g-1) is shown to be due to that the formation of a staged structure is frustrated by an obstructive turbostratic disorder. In contrast, intermediate-modulus CFs, which have significantly higher capacities (ca. 300 mAh g-1), have Raman spectra indicating a Li-ion insertion mechanism closer to that of partly disordered carbons. Based on these findings, CFs with improved multifunctional performance can be realised by tailoring the graphitic order and crystallite sizes.

  • 2.
    Hagberg, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Carbon Fibres for Multifunctional Lithium-Ion Batteries2018Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The transportation industry today faces many challenges because of the rapid movement towards electrification. One major challenge is the weight of the battery, which limits the effectiveness of the vehicles. One of the possible routes to reduce the weight on a system-level is introducing structural batteries, batteries that simultaneously storeenergy and hold a mechanical load. Placing these batteries in a load-bearing part of the structure reduces weight and increases effectiveness on a system level. Carbon fibres are especially suited for structural batteries because of the high performance as reinforcement material in a polymer composite, as well as the ability to insert lithium to function as negative electrodes in batteries.

    Another field that has attracted attention the latest years is flexible batteries due to the emerging of flexible displays and wearable electronics. Carbon fibres can be a suitable material in flexible batteries due to the good conductivity, mechanical integrity and ability to forman integrated flexible film with cellulose nanofibrils (CNF) as binder.

    This thesis focuses on the usage of carbon fibres in structural and flexible batteries. Lignin based and commercial carbon fibres are evaluated as negative electrodes using a combination of electrochemical methods, material characterization and mechanical testing. Further, the diffusion is characterized using nuclear magnetic resonance spectroscopy, revealing an inequality of axial and radial diffusion in carbon fibres. The carbon fibres with a largely disordered structure show most promise as a negative electrode, with a capacity similar to graphite and having a high coulombic efficiency.

    Carbon fibres used as current collectors are evaluated as well, both continuous LiFePO4 coated carbon fibres with electrophoretic deposition for structural positive electrode applications and chopped carbonfibres bounded by CNF as a layer in a flexible electrode. The LiFePO4 coated carbon fibres show promise as a structural electrode with moderatecapacity, high coulombic efficiency, good rate performance and good adhesion between fibres and coating. The flexible electrodes with carbon fibres as current collectors perform well with a high capacity, good rate performance, low weight and high flexibility. The electrodes withstand bending for 4000 times without any performance degradation.

    Fulltekst (pdf)
    fulltext
  • 3.
    Hagberg, Johan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Leijonmarck, Simon
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi. Swerea KIMAB AB, Sweden.
    Lindbergh, Göran
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries2016Inngår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 163, nr 8, s. A1790-A1797Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Carbon fibers have the combined mechanical and electrochemical properties needed to make them particularly well suited for usage as electrodes in a structural lithium-ion battery, a material that simultaneously works as a battery and a structural composite. Presented in this paper is an evaluation of commercial polyacrylonitrile-based carbon fibers in terms of capacity and coulombic efficiency, as well as a microstructural and surface evaluation. Some polyacrylonitrile based carbon fibers intercalate lithium ions, resulting in a similar capacity as state-of-the-art graphite based electrodes, presently the most commonly used negative electrode material. Using high precision coulometry, we found a capacity of around 250-350 mAh/g and a very high coulombic efficiency of over 99.9% after ten cycles, which is even higher than a commercial state-of-the art graphitic electrode evaluated as reference. The high coulombic efficiency is attributed to the very low surface area of the carbon fibers, resulting in a small and stable solid-electrolyte interface layer. A highly graphitized ultra high modulus carbon fiber was evaluated as well and, compared to the other fibers, less lithium was inserted (corresponding to approximately 150 mAh/g). We show that the use of carbon fibers as an electrode material in a structural composite battery is indeed viable.

  • 4.
    Hagberg, Johan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Maples, Henry A.
    Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria .
    Alvim, Kayne S. P.
    Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria .
    Xu, Johanna
    Polymeric Composite Materials, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden .
    Johannisson, Wilhelm
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, Lättkonstruktioner.
    Bismarck, Alexander
    Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria ; Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK .
    Zenkert, Dan
    KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, Lättkonstruktioner.
    Lindbergh, Göran
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries2018Inngår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 162, s. 235-243Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A structural lithium ion battery is a material that can carry load and simultaneously be used to store electrical energy. We describe a path to manufacture structural positive electrodes via electrophoretic deposition (EPD) of LiFePO4 (LFP), carbon black and polyvinylidene fluoride (PVDF) onto carbon fibers. The carbon fibers act as load-bearers as well as current collectors. The quality of the coating was studied using scanning electron microscopy and energy dispersive X-ray spectroscopy. The active electrode material (LFP particles), conductive additive (carbon black) and binder (PVDF) were found to be well dispersed on the surface of the carbon fibers. Electrochemical characterization revealed a specific capacity of around 60–110 mAh g−1 with good rate performance and high coulombic efficiency. The cell was stable during cycling, with a capacity retention of around 0.5 after 1000 cycles, which indicates that the coating remained well adhered to the fibers. To investigate the adhesion of the coating, the carbon fibers were made into composite laminae in epoxy resin, and then tested using 3-point bending and double cantilever beam (DCB) tests. The former showed a small difference between coated and uncoated carbon fibers, suggesting good adhesion. The latter showed a critical strain energy release rate of ∼200–600 J m−2 for coated carbon fibers and ∼500 J m−2 for uncoated fibers, which also indicates good adhesion. This study shows that EPD can be used to produce viable structural positive electrodes.

    Fulltekst (pdf)
    fulltext
  • 5. Hagberg, Johan
    et al.
    Morozov, Evgeny
    Furo, Istvan
    KTH, Tidigare Institutioner (före 2005), Kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Centrum för Industriell NMR-teknik. KTH, Tidigare Institutioner (före 2005), Fysik.
    Lindbergh, Göran
    KTH, Tidigare Institutioner (före 2005), Kemiteknik.
    Inequality of Axial and Radial Diffusion of Inserted Lithium Ions in Carbon Fibres as Revealed by Pulsed-Field Gradient NMRManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Nuclear Magnetic Resonance (NMR) studies has characterized lithiated polyacrylonitrile-based carbon fibres. The local dynamics has been probed by spin-lattice and spin-spin relaxation measurements and long range motion (diffusion) by pulsed field gradient NMR. Differences in fibre orientation was investigated by axially and radially aligned samples. One single peak related to lithium insertion was observed around 12-25 ppm, increasing with lithium load. A small effect of fibre orientation was observed on the relaxation behavior. The diffusion though was found to be around three times higher in axial compared to radial direction of the carbon fibres. This is believed to be due to the microstructure, with oriented crystallites along the carbon fibres contributing more in the axial direction to the average measured diffusion. The diffusion coefficients varied from around 10-12 m2/s to 4·10-12 m2/s, increasing with lithium load.

  • 6.
    Lu, Huiran
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Hagberg, Johan
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Lindbergh, Göran
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Cornell, Ann
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries2017Inngår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 39, s. 140-150Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    TEMPO oxidized cellulose nanofibrils (TOCNF) were used as binder material to prepare bendable Li4Ti5O12 (LTO) electrodes. Carbon fiber (CF) layers were integrated as current collectors to enhance the mechanical properties and to increase the specific energy of the electrodes. These electrodes combined with CF current collectors (LTO/CF) show good electrochemical properties and are flexible, sustainable, mechanical and chemical stable, lightweight and produced by a water-based easy filtration process. An increase of the active material weight (LTO) from around 19% to 71% of the electrode and current collector combined weight is demonstrated with CF compared with a copper current collector. Additionally, preparation of the current collector material is non-expensive, quick and easy compared to that of carbon nanotube or graphene. To test the flexible battery application, 4000 times repeated bending was carried out on both the LTO electrodes and the LTO/CF electrodes. This had no significant effect on the morphology, mechanical and electrochemical properties of neither the LTO nor the LTO/CF electrodes. Addition of the CF layer improves the mechanical properties and specific capacity of the LTO-electrode. A thicker LTO electrode with only 2 wt% TOCNF is demonstrated which is promising for thicker electrodes with high energy density. A full cell was assembled with the LTO/CF as negative electrode and LiFePO4 (LFP)/CF as positive, which exhibited a stable cycling performance and good energy density.

  • 7.
    Lu, Huiran
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Hagberg, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Lindbergh, Göran
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Cornell, Ann M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Flexible and Lightweight Lithium-Ion Batteries Based on Cellulose Nanofibrils and Carbon Fibers2018Inngår i: BATTERIES-BASEL, ISSN 2313-0105, Vol. 4, nr 2, artikkel-id 17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Flexible, low-weight electrodes with integrated current collectors based on chopped polyacrylonitrile carbon fibers (CF) were produced using an easy, aqueous fabrication process, where only 4 wt% of TEMPO-oxidized cellulose nanofibrils (CNF) were used as the binder. A flexible full cell was assembled based on a LiFePO4 (LFP) positive electrode with a CF current collector and a current collector-free CF negative electrode. The cell exhibited a stable specific capacity of 121 mAh g(-1) based on the LFP weight. The CF in the negative electrode acted simultaneously as active material and current collector, which has a significant positive impact on energy density. Stable specific capacities of the CF/CNF negative electrode of 267 mAh g(-1) at 0.1 C and 150 mAh g(-1) at 1 C are demonstrated. The LFP/CNF with CF/CNF, as the current collector positive electrode (LFP-CF), exhibited a good rate performance with a capacity of -150 mAh g(-1) at 0.1 C and 133 mAh g(-1) at 1 C. The polarization of the LFP-CF electrode was similar to that of a commercial Quallion LFP electrode, while much lower compared to a flexible LFP/CNF electrode with Al foil as the current collector. This is ascribed to good contact between the CF and the active material.

  • 8.
    Lu, Huiran
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Hagberg, Johan
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Lindbergh, Göran
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Cornell, Ann M.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers.Inngår i: Journal of Power SourcesArtikkel i tidsskrift (Annet vitenskapelig)
  • 9.
    Lu, Huiran
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Hagberg, Johan
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Lindbergh, Göran
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Cornell, Ann M.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Tillämpad elektrokemi.
    Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries.Artikkel i tidsskrift (Annet vitenskapelig)
  • 10.
    Nowak, Andrzej
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Hagberg, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Leijonmarck, Simon
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Schweinebarth, Hannah
    Baker, Darren
    Uhlin, Anders
    Tomani, Per
    Lindbergh, Göran
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Lignin-based carbon fibers for renewable and multifunctional lithium-ion battery electrodes2018Inngår i: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, nr 2, s. 81-90Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lignin-based carbon fibers (LCFs) from the renewable resource softwood kraft lignin were synthesized via oxidative thermostabilization of pure melt-spun lignin and carbonization at different temperatures from 1000 degrees C to 1700 degrees C. The resulting LCFs were characterized by tensile testing, scanning electron microscopy (SEM), X-ray diffraction (XRD) and confocal Raman spectroscopy. The microstructure is mainly amorphous carbon with some nanocrystalline domains. The strength and stiffness are inversely proportional to the carbonization temperature, while the LCFs carbonized at 1000 degrees C exhibit a strength of 628 MPa and a stiffness of 37 GPa. Furthermore, the application potential of LCFs was evaluated as negative electrodes in a lithium-ion battery (LIB) by electrochemical cycling at different current rates in a half-cell setup. The capacity drops with the carbonization temperature and the LCFs carbonized at 1000 degrees C have a capacity of 335 mAh g(-1). All LCFs showed good cycling stability. Because of the mechanical integrity and conductivity of the LCFs, there is no need to apply current collectors, conductive additives or binders. The advantage is an increased gravimetric energy density compared to graphite, which is the most common negative electrode material. LCFs show a promising multifunctional behavior, including good mechanical integrity, conductivity and an ability to intercalate lithium for LIBs.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf