Alcohol use disorder (AUD) is a complex disorder with multiple pathophysiological processes contributing to the initiation, progression and development of the disease state. AUD is a chronic relapsing disease with escalation of alcohol-intake over time in repeated cycles of tolerance, abstinence and relapse and hence, it is very difficult to treat. There are only a few currently available treatments with narrow efficacy and variable patient response. Thus it is important to find new, more effective medications to increase the number of patients who can benefit from pharmacological treatment of AUD.
The research presented in this thesis work focuses on the critical involvement of central neuropeptides in alcohol-related behaviors. The overall aim was to evaluate the nociceptin/orphanin FQ (NOP) receptor, the neuropeptide Y (NPY) Y2 receptor and the melanin-concentrating hormone (MCH) receptor 1 as novel and potential pharmacological treatment targets for AUD by testing the NOP receptor agonist SR-8993, the NPY-Y2 receptor antagonist CYM-9840 and the MCH1 receptor antagonist GW803430 in established animal models.
In the first study (Paper I), the novel and selective NOP agonist SR-8993 was assessed in rat models of motivation to obtain alcohol and relapse to alcohol seeking behavior using the operant self-administration (SA) paradigm. Firstly, treatment with SR-8993 (1 mg/kg) showed a mildly anxiolytic effect and reversed acute alcohol withdrawal-induced “hangover” anxiety in the elevated plus-maze (EPM). Next, it potently attenuated alcohol SA and motivation to obtain alcohol in the progressive ratio responding (PRR) and reduced both alcohol cue-induced and yohimbine stress-induced reinstatement of alcohol seeking, without affecting the pharmacology and metabolism of alcohol nor other control behaviors. To extend these findings, SR-8993 was evaluated in escalated alcohol-intake in rats. Treatment with SR-8993 significantly suppressed alcohol-intake and preference in rats that were trained to consume high amounts of alcohol in the two-bottle free choice intermittent access (IA) paradigm. SR-8993 also blocked operant SA of alcohol in rats that showed robust escalation in operant alcohol SA following chronic IA exposure to alcohol.
In the second study (Paper II), SR-8993 was further evaluated in a model for escalated alcohol-intake induced by long-term IA exposure to alcohol. The effect of previous experience on operant alcohol SA on two-bottle free choice preference drinking was evaluated and sensitivity to treatment with SR-8993 was tested in rats selected for escalated and non-escalated alcohol seeking behavior. We found that rats exposed to the combined SA-IA paradigm showed greater sensitivity to SR-8993 treatment. In addition, acute escalation of alcohol SA after a three-week period of abstinence was completely abolished by pretreatment with SR-8993.
In the third study (Paper III), the effects of the novel, small molecule NPY-Y2 antagonist CYM-9840 were tested in operant alcohol SA, PRR which is a model for motivation to work for alcohol and reinstatement of alcohol-seeking behavior. Treatment with CYM-9840 (10 mg/kg) potently attenuated alcohol SA, progressive ratio responding and stress-induced reinstatement using yohimbine as the stressor, while alcohol cue-induced reinstatement was unaffected. Moreover, a range of control behaviors including taste sensitivity, locomotor and pharmacological sensitivity to the sedative effects of alcohol remained unaffected by CYM-9840 pretreatment, indicating that its effects are specific to the rewarding and motivational aspects of alcohol-intake and related behaviors. CYM-9840 also reversed acute alcohol withdrawal-induced “hangover” anxiety measured in the EPM and reduced alcohol-intake in the 4 hour limited access two-bottle free choice preference drinking model.
Finally, in the fourth study (Paper IV), the selective MCH1-R antagonist GW803430 was tested in rat models of escalated alcohol-intake. Pretreatment with GW803430 (effective at 10 & 30 mg/kg) dose-dependently reduced alcohol and food-intake in rats that consumed high amounts of alcohol during IA, while it only decreased food-intake in rats that consumed low amounts of alcohol during IA, likely due to a floor effect. Upon protracted abstinence following IA, GW803430 significantly reduced operant alcohol SA and this was associated with adaptations in MCH and MCH1-R gene-expression. In contrast, GW803430 did not affect escalated alcohol SA induced by chronic alcohol vapor exposure and this was accompanied by no change in MCH or MCH1-R gene expression. Overall, these results suggest that the MCH1-R antagonist affects alcohol-intake through regulation of both motivation for caloric-intake and the rewarding properties of alcohol.
In conclusion, our results suggest critical roles for these central neuropeptides in the regulation of anxiety and of alcohol reward, making them potential pharmacological targets in the treatment of AUD.