Astrocytes colocalize with fibrillar amyloid-beta (A beta) plaques in postmortem Alzheimer disease (AD) brain tissue. It is therefore of great interest to develop a PET tracer for visualizing astrocytes in vivo, enabling the study of the regional distribution of both astrocytes and fibrillar A beta. A multitracer PET investigation was conducted for patients with mild cognitive impairment (MCI), patients with mild AD, and healthy controls using (11)C-deuterium-L-deprenyl ((11)C-DED) to measure monoamine oxidase B located in astrocytes. Along with (11)C-DED PET, (11)C-Pittsburgh compound B ((11)C-PIB; fibrillar A beta deposition), (18)F-FDG (glucose metabolism), T1 MRI, cerebrospinal fluid, and neuropsychologic data were acquired from the patients. Methods: (11)C-DED PET was performed in MCI patients (n = 8; mean age 6 SD, 62.6 +/- 7.5 y; mean Mini Mental State Examination, 27.5 +/- 2.1), AD patients (n = 7; mean age, 65.1 +/- 6.3 y; mean Mini Mental State Examination, 24.4 +/- 5.7), and healthy age-matched controls (n = 14; mean age, 64.7 +/- 3.6 y). A modified reference Patlak model, with cerebellar gray matter as a reference, was chosen for kinetic analysis of the (11)C-DED data. (11)C-DED data from 20 to 60 min were analyzed using a digital brain atlas. Mean regional (18)F-FDG uptake and (11)C-PIB retention were calculated for each patient, with cerebellar gray matter as a reference. Results: ANOVA analysis of the regional (11)C-DED binding data revealed a significant group effect in the bilateral frontal and bilateral parietal cortices related to increased binding in the MCI patients. All patients, except 3 with MCI, showed high (11)C-PIB retention. Increased (11)C-DED binding in most cortical and subcortical regions was observed in MCI (11)C-PIB+ patients relative to controls, MCI (11)C-PIB (negative) patients, and AD patients. No regional correlations were found between the 3 PET tracers. Conclusion: Increased (11)C-DED binding throughout the brain of the MCI (11)C-PIB+ patients potentially suggests that astrocytosis is an early phenomenon in AD development.
In a previous study, patients with suspect Creutzfeldt-Jakob's disease (CJD) have been examined with Positron Emission Tomography (PET) combining N-[11C-methyl]-L-deuterodeprenyl (DED) and [(18)F] 2- fluorodeoxyglucose (FDG) in an attempt to detect astrocytosis and neuronal dysfunction, two of the hallmarks in CJD. Increased DED uptake with pronounced hypometabolism matching the areas with high DED retention was found in the fronto-parieto-occipital areas and cerebellum of patients with confirmed CJD. However, the temporal lobes did not present such a pattern. In 6 of the 15 examined patients the autopsy was performed, but a strict comparison between the PET results and the histopathology could not be done. Recently, one patient with suspect CJD was examined with PET using DED and FDG. The results of the examinations in this patient showed a pattern similar to that found in the brain of the CJD patients from the first study. The patient died shortly after the examination and an autopsy could be performed. The autopsy showed neuronal death, astrocytosis and spongiform changes in the brain. The diagnosis of definite sporadic CJD was established by the Western blot analysis, confirming the presence of the prion resistant protein (PrPres). The PET data demonstrated high DED uptake and extreme low glucose uptake in the left brain hemisphere whereas the right side was less affected. The autopsy was performed allowing the comparison between high DED uptake and the histopathological findings of reactive astrocytosis revealed by immunostaining with antibodies against glial fibrillary acid protein (GFAP). The results confirmed the presence of a pattern with high ratio DED/FDG, similar to that found in the previous study and revealing for the first time, a good correlation between high DED uptake and high density of reactive astrocytes as demonstrated by immunostaining.
BACKGROUND: N-methyl[11C]2-(4'methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer's disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding. PURPOSE: The aim of this study is to investigate PIB retention in FTD. METHODS: Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18 Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction. RESULTS: Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients. CONCLUSION: The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD.
Background:
New in vivo amyloid PET imaging tracers, such as 11C-PIB, provide possibilities to deeper understand the underlying pathological processes in Alzheimers disease (AD). In this study we investigated how 11C-PIB retention is related to cerebral glucose metabolism, episodic memory and CSF biomarkers.
Method:
Thirty-seven patients with mild AD and 21 patients with mild cognitive impairment (MCI) underwent PET examinations with the amyloid tracer 11C-PIB, 18F-FDG for measurement of regional cerebral metabolic rate of glucose (rCMRglc), assessment of episodic memory and assay of cerebral spinal fluid (CSF) levels of amyloid-ß (Aβ1-42), total tau and phosphorylated tau respectively. Analyses were performed using Statistical Parametric Mapping (SPM) and regions of interest (ROIs).
Results:
Pooled data from AD and MCI patients showed strong correlations between 11C-PIB retention, levels of CSF biomarkers (especially Aß1-42), rCMRglc and episodic memory. Analysis of the MCI group alone revealed significant correlations between 11C-PIB retention and CSF biomarkers and between CSF biomarkers and episodic memory respectively. A strong correlation was observed in the AD group between rCMRglc and episodic memory as well as a significant correlation between 11C-PIB retention and rCMRglc in some cortical regions. Regional differences were observed as sign for changes in temporal patterns across brain regions.
Conclusions:
A complex pattern was observed between pathological and functional markers with respect to disease stage (MCI versus AD) and brain regions. Regional differences over time were evident during disease progression. 11C-PIB PET and CSF Aß1-42 allowed detection of prodromal stages of AD. Amyloid imaging is useful for early diagnosis and evaluation of new therapeutic interventions in AD.
Amyloid imaging with positron emission tomography (PET) is presently used in Alzheimer's disease (AD) research. In this study we investigated the possibility to use early frames (ePIB) of the PIB scans as a rough index of CBF by comparing normalised early PIB values with cerebral glucose metabolism (rCMRglc). PIB-PET and FDG-PET were performed in 37 AD patients, 21 subjects with mild cognitive impairment (MCI) and 6 healthy controls (HC). The patients were divided based on their PIB retention (amyloid load) as either PIB positive (PIB+) or PIB negative (PIB-). Data of the unidirectional influx K-1 from a subset of the subjects including 7 AD patients and 3 HC was used for correlative analysis. Data was analysed using regions of interest (ROI) analysis. A strong, positive correlation was observed across brain regions between K-1 and ePIB (r=0.70: p <= 0.001). The ePIB values were significantly lower in the posterior cingulate (p <= 0.001) and the parietal cortices (p = 0.002) in PIB+ subjects compared to PIB-, although the group difference were stronger for rCMRglc in cortical areas (p <= 0.001). Strong positive correlations between ePIB and rCMRglc were observed in all cortical regions analysed, especially in the posterior cingulate and parietal cortices (p <= 0.001). A single dynamic PIE-PET scan may provide information about pathological and functional changes (amyloidosis and impaired blood flow). This might be important for diagnosis of AD, enrichment of patients in clinical trials and evaluation of treatment effects.
Objective: To use deuterium-substituted [11C](l)-deprenyl PET to depict astrocytosis in vivo in patients with amyotrophic lateral sclerosis (ALS). Background: In human brain, the enzyme MAO-B is primarily located in astrocytes. l-deprenyl binds to MAO-B and autoradiography with 3H-l-deprenyl has been used to map astrocytosis in vitro. Motor neuron loss in ALS is accompanied by astrocytosis and astrocytes may play an active role in the neurodegenerative process. Deuterium-substituted [11C](l)-deprenyl PET provides an opportunity to localize astrocytosis in vivo in the brain of patients with ALS. Methods: Deuterium-substituted [11C](l)-deprenyl PET was performed in seven patients with ALS and seven healthy control subjects. Results: Increased uptake rate of [11C](l)-deprenyl was demonstrated in ALS in pons and white matter. Conclusion: This study provides evidence that astrocytosis may be detected in vivo in ALS by the use of deuterium-substituted [11C](l)-deprenyl PET though further studies are needed to determine whether deuterium-substituted [11C](l)-deprenyl binding tracks disease progression and reflects astrocytosis.
[11C]-PIB positron emission tomography ([11C]-PIB PET) is a sensitive marker of amyloid in Alzheimer's disease (AD), but its specificity has not been fully evaluated. Vascular amyloid-β deposition is common in Parkinson's disease (PD) and α-synuclein, the major component of the Lewy bodies in PD, forms amyloid fibrils. We investigated five apparently cognitively normal PD patients with [11C]-PIB PET. The results were compared to 16 patients with AD and six healthy controls from a previous study. [11C]-PIB retention was not significantly increased in our patients who all had early stage PD. Further studies of more advanced PD patients are warranted.
In this study 5 patients with mild cognitive impairment (MCI) and 9 Alzheimer’s disease (AD) patients underwent respectively 3- and 5-year follow-up positron emission tomography (PET) studies with N-methyl [11C] 2-(4-methylaminophenyl)-6-hydroxy-benzothiazole (11C-PIB) and 18F-fluorodeoxyglucose (18F-FDG) to understand the time courses in AD disease processes. Significant increase in PIB retention as well as decrease in regional cerebral metabolic rate of glucose (rCMRglc) was observed at group level in the MCI patients while no significant change was observed in cognitive function. At group level the AD patients showed unchanged high PIB retention at 5-year follow-up compared with baseline. At the individual level, increased, stable, and decreased PIB retention were observed while disease progression was reflected in significant decrease in rCMRglc and cognition. In conclusion, after a long-term follow-up with PET, we observed an increase in fibrillar amyloid load in MCI patients followed by more stable level in clinical AD patients. The rCMRglc starts to decline in MCI patients and became more pronounced in clinical stage which related to continuous decline in cognition.
In response to pain, neurokinin 1 (NK1) receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET) with the NK1 specific radioligand [11C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow.
Background: Kinetic modeling using reference Logan is commonly used to analyze data obtained from dynamic Positron Emission Tomography (PET) studies on patients with Alzheimer's disease (AD) and healthy volunteers (HVs) using amyloid imaging agent N-methyl [(11)C]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole, [(11)C]-PIB. The aim of the present study was to explore whether results obtained using the newly introduced method, Masked Volume Wise Principal Component Analysis, MVW-PCA, were similar to the results obtained using reference Logan. Methods: MVW-PCA and reference Logan were performed on dynamic PET images obtained from four Alzheimer's disease (AD) patients on two occasions (baseline and follow-up) and on four healthy volunteers (HVs). Regions of interest (ROIs) of similar sizes were positioned in different parts of the brain in both AD patients and HVs where the difference between AD patients and HVs is largest. Signal-to-noise ratio (SNR) and discrimination power (DP) were calculated for images generated by the different methods and the results were compared both qualitatively and quantitatively. Results: MVW-PCA generated images that illustrated similar regional binding patterns compared to reference Logan images and with slightly higher quality, enhanced contrast, improved SNR and DP, without being based on modeling assumptions. MVW-PCA also generated additional MVW-PC images by using the whole dataset, which illustrated regions with different and uncorrelated kinetic behaviors of the administered tracer. This additional information might improve the understanding of kinetic behavior of the administered tracer. Conclusion: MVW-PCA is a potential multivariate method that without modeling assumptions generates high quality images, which illustrated similar regional changes compared to modeling methods such as reference Logan. In addition, MVW-PCA could be used as a new technique, applicable not only on dynamic human brain studies but also on dynamic cardiac studies when using PET.
The role for radiotherapy in patients with low-grade gliomas remains controversial. Two large prospective studies have failed to demonstrate a radiotherapeutic dose-response effect, and EORTC trial 22845 found no difference in survival between patients receiving adjuvant radiotherapy and those who received radiotherapy at tumour progression. The aim of this retrospective study was to analyse the patterns of carbon-11 methionine (MET) uptake on positron emission tomography (PET) in tumours treated with immediate radiotherapy and in those treated with delayed radiotherapy at the time of tumour progression. The 21 adult patients studied had histologically confirmed low-grade gliomas and had undergone a pre-treatment PET scan and a follow-up PET scan at the time of progression. Eleven of the patients had undergone initial radiotherapy a median of 5 weeks after the surgical procedure. The median time to progression was 3.5 years for this group, compared with 1.6 years for the group with delayed radiotherapy ( P=0.06). At the time of progression, non-irradiated tumours had a significantly higher MET uptake ( P=0.02) and a larger uptake volume ( P=0.008) compared with baseline, whereas irradiated tumours showed no statistically significant change. We observed a correlation between high pre-treatment uptake of MET and reduction in MET uptake in response to radiotherapy ( P=0.008). All irradiated tumours recurred within the radiation field. In conclusion, our results demonstrate signs of a residual radiation effect at the time of tumour progression in low-grade gliomas with high pre-treatment uptake of MET. Pre-treatment methionine uptake may be a marker for the radiosensitivity of low-grade gliomas.
BACKGROUND
Considerable numbers of patients with low-grade gliomas experience an early malignant course and may benefit from aggressive treatment. These patients are difficult to identify using established prognostic factors. A retrospective study was performed to determine whether the 11C-methionine uptake in tumor is a survival factor in adult patients with supratentorial gliomas classified as World Health Organization Grade 2.
METHODS
The authors identified 89 patients with histologically confirmed low-grade gliomas in whom an 11C-methionine positron emission tomography (PET) scan had been performed as part of the diagnostic tumor investigation from 1983 to 1998. Clinical data were collected, and the PET scans were re-evaluated according to a fixed protocol. The 11C-methionine uptake in the tumor and relevant clinical parameters were entered into univariate and multivariate survival analyses.
RESULTS
At the end of the study, 49 patients (55.1%) had died. The median overall survival was 5.7 years. Low methionine uptake was significantly favorable in the multivariate survival analysis (P = 0.04) along with oligodendroglioma (P = 0.003). In the histologic subgroups, 11C-methionine uptake was an important survival factor among patients with astrocytomas (P = 0.05) and oligodendrogliomas (P = 0.03). Tumor resection was a favorable prognostic factor in patients with high methionine uptake (P = 0.01) but not in patients with low uptake.
CONCLUSIONS
Baseline 11C-methionine PET is a prognostic indicator in patients with low-grade gliomas. The results imply that PET is a valuable tool in the clinical management of these patients and may assist in the selection of patients for therapy.
Gender symptom differences were studied in 948 subjects with Parkinson's disease (PD) using a questionnaire covering the most common symptoms associated with PD at debut (SP-1) and at present (SP-2). The symptoms most frequently reported by both genders w
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is genetically heterogenous and approximately 35% of patients carry mutations in either of the SPG11 or SPG15 genes. Disease onset is during the first three decades of life with spastic paraplegia and mental impairment. Peripheral neuropathy and amyotrophy may occur. Kjellin syndrome is characterized by central retinal degeneration in addition to ARHSP-TCC and the disease is associated with mutations in the SPG15 gene. We identified five patients in four unrelated kindreds with spastic paraplegia and mental impairment. Magnetic resonance imaging revealed TCC, atrophy elsewhere in the brain and increased T2 signal intensity in the periventricular white matter. Probands from the four kindreds were screened for mutations in the SPG11 gene. All patients were found homozygous or compound heterozygous for truncating SPG11 mutations of which four are reported for the first time. Ophthalmological investigations revealed that the four index cases have central retinal degeneration consistent with Kjellin syndrome. PET examinations with N-[11C-methyl]-L-deuterodeprenyl (DED) and fluor-18 2-fluorodeoxyglucose (FDG) were performed in two patients with Kjellin syndrome. We observed a reduced glucose uptake in the thalami, anterior cingulum, and sensorimotor cortex indicating neuronal loss, and an increased DED binding in the thalami and pons which suggests astrogliosis. From our results we extend the SPG11 associated phenotype to comprise also Kjellin syndrome, previously found to be associated with mutations in the SPG15 gene. We anticipate that degeneration of the central retina is a common and previously unrecognized feature in SPG11 related disease.