Endre søk
Begrens søket
1234567 1 - 50 of 1219
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbott, Benjamin W.
    et al.
    Jones, Jeremy B.
    Schuur, Edward A. G.
    Chapin, F. Stuart, III
    Bowden, William B.
    Bret-Harte, M. Syndonia
    Epstein, Howard E.
    Flannigan, Michael D.
    Harms, Tamara K.
    Hollingsworth, Teresa N.
    Mack, Michelle C.
    McGuire, A. David
    Natali, Susan M.
    Rocha, Adrian V.
    Tank, Suzanne E.
    Turetsky, Merritt R.
    Vonk, Jorien E.
    Wickland, Kimberly P.
    Aiken, George R.
    Alexander, Heather D.
    Amon, Rainer M. W.
    Benscoter, Brian W.
    Bergeron, Yves
    Bishop, Kevin
    Blarquez, Olivier
    Bond-Lamberty, Ben
    Breen, Amy L.
    Buffam, Ishi
    Cai, Yihua
    Carcaillet, Christopher
    Carey, Sean K.
    Chen, Jing M.
    Chen, Han Y. H.
    Christensen, Torben R.
    Cooper, Lee W.
    Cornelissen, J. Hans C.
    de Groot, William J.
    DeLuca, Thomas H.
    Dorrepaal, Ellen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Fetcher, Ned
    Finlay, Jacques C.
    Forbes, Bruce C.
    French, Nancy H. F.
    Gauthier, Sylvie
    Girardin, Martin P.
    Goetz, Scott J.
    Goldammer, Johann G.
    Gough, Laura
    Grogan, Paul
    Guo, Laodong
    Higuera, Philip E.
    Hinzman, Larry
    Hu, Feng Sheng
    Hugelius, Gustaf
    Jafarov, Elchin E.
    Jandt, Randi
    Johnstone, Jill F.
    Karlsson, Jan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Kasischke, Eric S.
    Kattner, Gerhard
    Kelly, Ryan
    Keuper, Frida
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Kling, George W.
    Kortelainen, Pirkko
    Kouki, Jari
    Kuhry, Peter
    Laudon, Hjalmar
    Laurion, Isabelle
    Macdonald, Robie W.
    Mann, Paul J.
    Martikainen, Pertti J.
    McClelland, James W.
    Molau, Ulf
    Oberbauer, Steven F.
    Olefeldt, David
    Pare, David
    Parisien, Marc-Andre
    Payette, Serge
    Peng, Changhui
    Pokrovsky, Oleg S.
    Rastetter, Edward B.
    Raymond, Peter A.
    Raynolds, Martha K.
    Rein, Guillermo
    Reynolds, James F.
    Robards, Martin
    Rogers, Brendan M.
    Schaedel, Christina
    Schaefer, Kevin
    Schmidt, Inger K.
    Shvidenko, Anatoly
    Sky, Jasper
    Spencer, Robert G. M.
    Starr, Gregory
    Striegl, Robert G.
    Teisserenc, Roman
    Tranvik, Lars J.
    Virtanen, Tarmo
    Welker, Jeffrey M.
    Zimov, Sergei
    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment2016Inngår i: Environmental Research Letters, ISSN 1748-9326, E-ISSN 1748-9326, Vol. 11, nr 3, artikkel-id 034014Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  • 2.
    Acaralp, Damla
    Södertörns högskola, Lärarutbildningen.
    Hållbar utveckling i undervisningen: En kvalitativ studie om lärare och lärarstudenters syn på hållbar utveckling i undervisningen2015Independent thesis Basic level (university diploma), 10 poäng / 15 hpOppgave
    Abstract [en]

    The issue for this study is how teachers and teacher students understand the concept of sustainable development and work and want to work with sustainable development in their education. The aim is to provide knowledge that can lead to a better implementation of sustainable development in education. The study has a phenomenological perspective and is based on the concept of sustainable development and theories of education for sustainable development. The study consists of interviews with four teachers who act as primary teachers and four teacher students who study on the last semester of their education. The study shows that all respondents think that sustainable development is a concept that is difficult to interpret and that they have a distorted interpretation of the concept. All are focusing on environmental protection and overlook economic and social development. That is particularly apparent in their examples of how sustainable development should be implemented in teaching. The study also shows that the teacher students have a more complete picture of the concept of sustainable development and, unlike the teachers, explicitly states that sustainable development should permeate the entire teaching.

  • 3.
    Acosta Navarro, Juan Camilo
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
    Anthropogenic influence on climate through changes in aerosol emissions from air pollution and land use change2017Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Particulate matter suspended in air (i.e. aerosol particles) exerts a substantial influence on the climate of our planet and is responsible for causing severe public health problems in many regions across the globe. Human activities have altered the natural and anthropogenic emissions of aerosol particles through direct emissions or indirectly by modifying natural sources. The climate effects of the latter have been largely overlooked. Humans have dramatically altered the land surface of the planet causing changes in natural aerosol emissions from vegetated areas. Regulation on anthropogenic and natural aerosol emissions have the potential to affect the climate on regional to global scales. Furthermore, the regional climate effects of aerosol particles could potentially be very different than the ones caused by other climate forcers (e.g. well mixed greenhouse gases). The main objective of this work was to investigate the climatic effects of land use and air pollution via aerosol changes.

    Using numerical model simulations it was found that land use changes in the past millennium have likely caused a positive radiative forcing via aerosol climate interactions. The forcing is an order of magnitude smaller and has an opposite sign than the radiative forcing caused by direct aerosol emissions changes from other human activities. The results also indicate that future reductions of fossil fuel aerosols via air quality regulations may lead to an additional warming of the planet by mid-21st century and could also cause an important Arctic amplification of the warming. In addition, the mean position of the intertropical convergence zone and the Asian monsoon appear to be sensitive to aerosol emission reductions from air quality regulations. For these reasons, climate mitigation policies should take into consideration aerosol air pollution, which has not received sufficient attention in the past.

  • 4.
    Acosta Navarro, Juan Camilo
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap och analytisk kemi.
    Historical anthropogenic radiative forcing of changes in biogenic secondary organic aerosol2015Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA.

    The specific objectives of this licentiate thesis are: 1) to understand what drove the changes in aerosol-forming BVOC emissions (i.e. isoprene, monoterpenes and sesquiterpenes) and to quantify these changes; 2) to calculate for the first time the combined historical aerosol direct and aerosol-cloud albedo effects on radiation from changing BVOC emissions through SOA formation; 3) to investigate how important the biological climate feedback associated to BVOC emissions and SOA formation is from a global climate perspective.

    We find that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m². The suggested biological climate feedback seems to be too small to have observable consequences on the global climate in the recent past.

  • 5. Adrian, Rita
    et al.
    O`Reilly, Catherine M.
    Zagarese, Horacio
    Baines, Stephen B.
    Hessen, Dag O.
    Keller, Wendel
    Livingstone, David M.
    Sommaruga, Ruben
    Straile, Dietmar
    Van Donk, Ellen
    Weyhenmeyer, Gesa A.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och evolution, Limnologi.
    Winder, Monika
    Lakes as sentinels of climate change2009Inngår i: Limnology and Oceanography, ISSN 0024-3590, E-ISSN 1939-5590, Vol. 54, nr 6(2), s. 2283-2297Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.

  • 6.
    Ahlberg, Per Erik
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Sky konspiratörernas dimma - I: Uppsala Nya Tidning (UNT), 27 dec2008Annet (Annet (populærvitenskap, debatt, mm))
  • 7. Ahmadalipour, Ali
    et al.
    Moradkhani, Hamid
    Rana, Arun
    SMHI.
    Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin2018Inngår i: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 50, nr 1-2, s. 717-733Artikkel i tidsskrift (Fagfellevurdert)
  • 8.
    Ahmed, Engy
    et al.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden..
    Parducci, Laura
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Växtekologi och evolution.
    Unneberg, Per
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylär evolution.
    Ågren, Rasmus
    Chalmers Univ Technol, Dept Chem & Biol Engn, Sci Life Lab, SE-41296 Gothenburg, Sweden..
    Schenk, Frederik
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Rattray, Jayne E.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Univ Calgary, Biol Sci, 2500 Univ Dr NW, Calgary, AB, Canada..
    Han, Lu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik. Jilin Univ, Coll Life Sci, Ancient DNA Lab, Changchun, Jilin, Peoples R China..
    Muschitiello, Francesco
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden.;Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9NW, Palisades, NY USA..
    Pedersen, Mikkel W.
    Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England..
    Smittenberg, Rienk H.
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Yamoah, Kweku Afrifa
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Slotte, Tanja
    Stockholm Univ, Dept Ecol Environm & Plant Sci, SE-10691 Stockholm, Sweden.;Sci Life Lab, Tomtebodavagen 23A, SE-17165 Solna, Sweden..
    Wohlfarth, Barbara
    Stockholm Univ, Dept Geol Sci, SE-10691 Stockholm, Sweden.;Stockholm Univ, Bolin Ctr Climate Res, SE-10691 Stockholm, Sweden..
    Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA2018Inngår i: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 181, s. 19-29Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Lateglacial/early Holocene sediments from the ancient lake at Hasseldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hasseldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerod and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog. (C) 2017 Elsevier Ltd. All rights reserved.

  • 9.
    Ahmed, Moinuddin
    et al.
    Fed Urdu Univ Arts Sci & Technol, Dept Bot, Karachi 75300, Pakistan.
    Krusic, Paul J.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Charpentier Ljungqvist, Fredrik
    Stockholms universitet, Humanistiska fakulteten, Historiska institutionen.
    Zorita, Eduardo
    PAGES 2k Consortium,
    Continental-scale temperature variability during the past two millennia2013Inngår i: Nature Geoscience, ISSN 1752-0894, E-ISSN 1752-0908, Vol. 6, nr 5, s. 339-346Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Past global climate changes had strong regional expression. To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia. The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century. At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them. There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century. The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions. Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years.

  • 10. Akinsanola, A. A.
    et al.
    Ajayi, V. O.
    Adejare, A. T.
    Adeyeri, O. E.
    Gbode, I. E.
    Ogunjobi, K. O.
    Nikulin, Grigory
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Abolude, A. T.
    Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models2018Inngår i: Journal of Theoretical and Applied Climatology, ISSN 0177-798X, E-ISSN 1434-4483, Vol. 132, nr 1-2, s. 437-450Artikkel i tidsskrift (Fagfellevurdert)
  • 11. Akperov, Mirseid
    et al.
    Rinke, Annette
    Mokhov, Igor I.
    Matthes, Heidrun
    Semenov, Vladimir A.
    Adakudlu, Muralidhar
    Cassano, John
    Christensen, Jens H.
    Dembitskaya, Mariya A.
    Dethloff, Klaus
    Fettweis, Xavier
    Glisan, Justin
    Gutjahr, Oliver
    Heinemann, Guenther
    Koenigk, Torben
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Koldunov, Nikolay V.
    Laprise, Rene
    Mottram, Ruth
    Nikiema, Oumarou
    Scinocca, John F.
    Sein, Dmitry
    Sobolowski, Stefan
    Winger, Katja
    Zhang, Wenxin
    Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)2018Inngår i: Journal of Geophysical Research - Atmospheres, ISSN 2169-897X, E-ISSN 2169-8996, Vol. 123, nr 5, s. 2537-2554Artikkel i tidsskrift (Fagfellevurdert)
  • 12.
    Alatalo, Juha M
    et al.
    Qatar University.
    Jägerbrand, Annika K
    Statens väg- och transportforskningsinstitut, Samhälle, miljö och transporter, SAMT, Miljö, MILJÖ.
    Molau, Ulf
    Göteborgs Universitet.
    Impacts of different climate change regimes and extreme climatic events on an alpine meadow community2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikkel-id 21720Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  • 13.
    Alatalo, Juha M.
    et al.
    Qatar University.
    Jägerbrand, Annika K.
    Statens väg- och transportforskningsinstitut, Miljö, MILJÖ.
    Molau, Ulf
    Göteborgs Universitet.
    Impacts of different climate change regimes and extreme climatic events on an alpine meadow community2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikkel-id 21720Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  • 14.
    Albihn, Ann
    et al.
    National Veterinary Institute, Uppsala, Sweden.
    Gustafsson, Hans
    Swedish University of Agricultural Sciences.
    O’Hara Ruiz, Marilyn
    University of Illinois at Urbana-Champaign.
    38. Preparing for Climate Change2012Inngår i: Ecology and Animal Health / [ed] Leif Norrgren and Jeffrey Levengood, Uppsala: Baltic University Press , 2012, 1, s. 311-328Kapittel i bok, del av antologi (Annet (populærvitenskap, debatt, mm))
  • 15.
    Alexandersson, Hans
    et al.
    SMHI.
    Moberg, A
    Homogenization of Swedish temperature data .1. Homogeneity test for linear trends1997Inngår i: International Journal of Climatology, ISSN 0899-8418, E-ISSN 1097-0088, Vol. 17, nr 1, s. 25-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new test for the detection of linear trends of arbitrary length in normally distributed time series is developed. With this test it is possible to detect and estimate gradual changes of the mean value in a candidate series compared with a homogeneous reference series. The test is intended for studies of artificial relative trends in climatological time series, e.g. an increasing urban heat island effect. The basic structure of the new test is similar to that of a widely used test for abrupt changes, the standard normal homogeneity test. The test for abrupt changes is found to remain unaltered after an important generalization.

  • 16.
    Alexandersson, Hans
    et al.
    SMHI.
    Tuomenvirta, H
    Schmith, T
    Iden, K
    Trends of storms in NW Europe derived from an updated pressure data set2000Inngår i: Climate Research (CR), ISSN 0936-577X, E-ISSN 1616-1572, Vol. 14, nr 1, s. 71-73Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Within the WASA project (von Storch et al. 1998; Bull Am Meterol Soc 79(5):741-760) an extensive data set containing station pressure values was used to calculate geostrophic winds (Alexandersson et al. 1998; Global Atmos Ocean Syst 6:97-120). Geostrophic winds were analysed in terms of percentiles to give a measure of long-term variations in synoptic-scale storminess. In this paper an update to 1998 is presented. In the Scandinavia, Finland and Baltic Sea area the most recent years, especially the cold and calm year 1996, seem to have brought an end to the stormy period centred on 1990. In the more westerly British Isles, North Sea and Norwegian Sea area, storminess is still at high levels compared with the less intense period between 1930 and 1980. The long-term increasing trend in NW Europe storminess that started in the 1960s seems to have been broken.

  • 17. Alfieri, Lorenzo
    et al.
    Bisselink, Berny
    Dottori, Francesco
    Naumann, Gustavo
    de Roo, Ad
    Salamon, Peter
    Wyser, Klaus
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Feyen, Luc
    Global projections of river flood risk in a warmer world2017Inngår i: Earth's Future, ISSN 1384-5160, E-ISSN 2328-4277, Vol. 5, nr 2, s. 171-182Artikkel i tidsskrift (Fagfellevurdert)
  • 18.
    Almssad, Asaad
    et al.
    Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för ingenjörs- och kemivetenskaper.
    Almusaed, Amjad
    Albasrah University, Albasrah, Iraq.
    Environmental reply to vernacular habitat conformation from a vast areas of Scandinavia2015Inngår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 48, s. 825-834Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    There are many original ideas and useful system inputs embedded in the building of human settlements in Scandinavian regions, where the landscape and habitat are strongly interconnected. A cold climate and strong winds are the most prominent risks that affect habitats. The Longhouse is the foremost traditional habitat in the Scandinavian region, dating back to the Iron Age, 2000 BC. This study examines the influence of climate on the conformation of habitats. Climate had a solid impact on the conceptions of habitat form and internal space. Wind and extreme temperatures had firming consequences on the housing arrangements, layouts, orientations, and building materials used in the construction process. Habitats from this region were located in an optimal arrangement, and the south orientation was used effectively. This investigation will provide an evaluative interpretation and analysis of the real facts of vernacular habitats in the context of energy efficiency and ecological concepts, considering human settlement patterns, architectural creation and building material uses. (C) 2015 Elsevier Ltd. All rights reserved.

  • 19. Amador, Jorge A.
    et al.
    Ambrizzi, Tercio
    Arritt, Raymond W.
    Castro, Christopher L.
    Cavazos, Tereza
    Cerezo-Mota, Ruth
    Fuentes Franco, Ramon
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Giorgi, Filippo
    Guiliani, Graziano
    Lee, Huikyo
    Mendez-Perez, Matias
    Rivera, Erick R.
    Putting into action the REGCM4.6 regional climate model for the study of climate change, variability and modeling over Central America and Mexico2018Inngår i: Atmósfera, ISSN 0187-6236, Vol. 31, nr 2, s. 185-188Artikkel i tidsskrift (Fagfellevurdert)
  • 20. Ampel, Linda
    et al.
    Bigler, Christian
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Wohlfarth, Barbara
    Risberg, Jan
    Lotter, André F
    Veres, Daniel
    Modest summer temperature variability during DO cycles in western Europe2010Inngår i: Quaternary Science Reviews, ISSN 0277-3791, E-ISSN 1873-457X, Vol. 29, nr 11/12, s. 1322-1327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abrupt climatic shifts between cold stadials and warm interstadials, termed Dansgaard-Oeschger (DO) cycles, occurred frequently during the Last Glacial. Their imprint is registered in paleorecords worldwide, but little is known about the actual temperature change both annually and seasonally in different regions. A recent hypothesis based on modelling studies, suggests that DO cycles were characterised by distinct changes in seasonality in the Northern Hemisphere. The largest temperature change between stadial and interstadial phases would have occurred during the winter and spring seasons, whereas the summer seasons would have experienced a rather muted temperature shift. Here we present a temporally high-resolved reconstruction of summer temperatures for eastern France during a sequence of DO cycles between 36 and 18 thousand years before present. The reconstruction is based on fossil diatom assemblages from the paleolake Les Echets and indicates summer temperature changes of ca 0.5–2 °C between stadials and interstadials. This study is the first to reconstruct temperatures with a sufficient time resolution to investigate DO climate variability in continental Europe. It is therefore also the first proxy record that can test and support the hypothesis that temperature changes during DO cycles were modest during the summer season.

  • 21.
    Ampel, Linda
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för geologiska vetenskaper.
    Wohlfarth, Barbara
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för geologiska vetenskaper.
    Risberg, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Veres, Daniel
    Leng, Melanie
    Kaislahti Tillman, Päivi
    Diatom assemblage dynamics during abrupt climate change: The response oflacustrine diatoms to Dansgaard-Oeschger cycles during the last glacialperiod2010Inngår i: Journal of Paleolimnology, ISSN 0921-2728, E-ISSN 1573-0417, Vol. 44, nr 2, s. 397-404Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The sedimentary record from the paleolake at Les Echets in eastern France allowed a reconstruction of the lacustrine response to several abrupt climate shifts during the last glacial period referred to as Dansgaard-Oeschger (DO) cycles. The high-resolution diatom stratigraphy has revealed distinct species turnover events and large fluctuations in stable oxygen isotope values in diatom frustules, as a response to DO climate variability. More or less identical species compositions became re-established during each DO stadial and interstadial phases, respectively. However, the relative abundance of the most dominant species within these assemblages varies and might indicate differences in climatic conditions. Interstadial phases are characterized by identical species successions. Transitions from stadial to interstadial conditions show a distinct Fragilaria-Cyclotella succession, which resembles the diatom regime shifts that have been recognized in some lakes in the Northern Hemisphere since the mid-nineteenth century.

  • 22. Anderson, C J
    et al.
    Arritt, R W
    Takle, E S
    Pan, Z T
    Gutowski, W J
    Otieno, F O
    da Silva, R
    Caya, D
    Christensen, J H
    Luthi, D
    Gaertner, M A
    Gallardo, C
    Giorgi, F
    Hong, S Y
    Jones, Colin
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Juang, H M H
    Katzfey, J J
    Lapenta, W M
    Laprise, R
    Larson, J W
    Liston, G E
    McGregor, J L
    Pielke, R A
    Roads, J O
    Taylor, J A
    Hydrological processes in regional climate model simulations of the central United States flood of June-July 19932003Inngår i: Journal of Hydrometeorology, ISSN 1525-755X, E-ISSN 1525-7541, Vol. 4, nr 3, s. 584-598Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thirteen regional climate model(RCM) simulations of June - July 1993 were compared with each other and observations. Water vapor conservation and precipitation characteristics in each RCM were examined for a 108 x 10degrees subregion of the upper Mississippi River basin, containing the region of maximum 60-day accumulated precipitation in all RCMs and station reports. All RCMs produced positive precipitation minus evapotranspiration ( P - E > 0), though most RCMs produced P - E below the observed range. RCM recycling ratios were within the range estimated from observations. No evidence of common errors of E was found. In contrast, common dry bias of P was found in the simulations. Daily cycles of terms in the water vapor conservation equation were qualitatively similar in most RCMs. Nocturnal maximums of P and C ( convergence) occurred in 9 of 13 RCMs, consistent with observations. Three of the four driest simulations failed to couple P and C overnight, producing afternoon maximum P. Further, dry simulations tended to produce a larger fraction of their 60-day accumulated precipitation from low 3-h totals. In station reports, accumulation from high ( low) 3-h totals had a nocturnal ( early morning) maximum. This time lag occurred, in part, because many mesoscale convective systems had reached peak intensity overnight and had declined in intensity by early morning. None of the RCMs contained such a time lag. It is recommended that short-period experiments be performed to examine the ability of RCMs to simulate mesoscale convective systems prior to generating long-period simulations for hydroclimatology.

  • 23.
    Andersson, Agneta
    et al.
    Umeå University.
    Meier, H. E. Markus
    Swedish Meteorological and Hydrological Institute.
    Ripszam, Matyas
    Umeå University.
    Rowe, Owen
    Umeå University.
    Wikner, Johan
    Umeå university.
    Haglund, Peter
    Umeå University.
    Eilola, Kari
    Swedish Meteorological and Hydrological Institute.
    Legrand, Catherine
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Figueroa, Daniela
    Umeå University.
    Paczkowska, Joanna
    Umeå University.
    Lindehoff, Elin
    Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för biologi och miljö (BOM).
    Tysklind, Mats
    Umeå University.
    Elmgren, Ragnar
    Department of Ecology.
    Projected future climate change and Baltic Sea ecosystem management2015Inngår i: Ambio, ISSN 0044-7447, E-ISSN 1654-7209, Vol. 44, nr Supplement 3, s. S345-S356Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 degrees C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase similar to 30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.

  • 24.
    Andersson, Lotta
    et al.
    Linköpings universitet, Institutionen för tema, Tema Miljöförändring. Linköpings universitet, Filosofiska fakulteten.
    Bohman, Anna
    Linköpings universitet, Institutionen för tema, Tema Miljöförändring. Linköpings universitet, Filosofiska fakulteten.
    Van Well, Lisa
    School of Architecture and the Built Environment, KTH - Royal Institute of Technology, Stockholm.
    Jonsson, Anna
    Linköpings universitet, Institutionen för tema, Tema Miljöförändring. Linköpings universitet, Filosofiska fakulteten. Management & Organisation/Centre for International Business Studies, University of Gothenburg, Sweden.
    Persson, Gunn
    Swedish Meteorological and Hydrological Institute, SMHI, Norrköping, Sweden.
    Farelius, Johanna
    Swedish Meteorological and Hydrological Institute, SMHI, Norrköping, Sweden.
    Underlag till kontrollstation 2015 för anpassning till ett förändrat klimat2015Rapport (Annet vitenskapelig)
    Abstract [sv]

    När klimatet förändras påverkas människor och deras egendom, företag, kommunal och statlig verksamhet, vilket gör att såväl myndigheter, kommuner, företag som enskilda fastighetsägare måste agera.

    Översvämningar, värmeböljor, ras och skred är bara några exempel på vad vi behöver rusta oss för. Vi ska möta klimatförändringar som sker här i Sverige, men vi måste också anpassa oss till vad klimatförändringar i andra länder innebär för Sverige.

    Kostnaderna för klimatanpassning kan bli höga, men bedöms av bland andra EUkommissionen ändå löna sig i förhållande till de skadekostnader som uppstår om inga åtgärder vidtas.

    Klimatanpassningsarbetet i Sverige har gått framåt under de senaste åren. Några exempel på myndighetsuppdrag är Nationell höjddatabas, Ras- och skredkarteringen av Göta älvdalen, Dricksvattenutredningen, länsstyrelsernas regionala handlingsplaner för klimatanpassning, samt inrättandet av Nationellt kunskapscentrum för klimatanpassning.

    Sveriges meteorologiska och hydrologiska instituts arbete med regeringsuppdraget att utarbeta underlag till kontrollstation 2015 för anpassning till ett förändrat klimat, visar på stort behov av fortsatta insatser. Denna rapport ger förslag till en färdplan för klimatanpassningen i Sverige. Slutsatserna handlar framförallt om att arbetet måste bedrivas långsiktigt, att roller och mandat förtydligas samt att en bättre samordning mellan olika aktörer uppnås.

    De viktigaste slutsatserna för fortsatt arbete är:

    • Regelverk behöver anpassas, roller och ansvar samt strategier och mål måstetydliggöras
    • Prioriterade forsknings- och utvecklingsinsatser, som fyller identifierade kunskapsbehov inklusive långtidsövervakning, behöver finansieras
    • Kunskap, beslutstöd och prognos- och varningssystem behöver göras mer tillgängliga
    • Hur kostnader ska fördelas mellan olika aktörer och hur resurser till prioriterade åtgärder ska säkerställas, behöver klarläggas

    Uppdraget har inneburit att sammanställa kunskap om nuvarande och framtida risker och konsekvenser för samhället av ett förändrat klimat, till exempel effekter på samhällsviktiga funktioner och människors hälsa. Arbetet har också omfattat en kartläggning över vad som genomförts sedan Klimat- och sårbarhetsutredningen presenterades år 2007. Utifrån det underlaget har målet varit att beskriva behoven och lämna förslag på åtgärder för  anpassning av olika delar av samhället. Hänsyn har tagits till EU:s strategi för klimatanpassning. Arbetet har bedrivits i bred samverkan med myndigheter, kommuner, forskare, branschorganisationer och andra näringslivsrepresentanter.

    Redovisningen av uppdraget omfattar en huvudrapport samt 18 bilagor. Huvudrapportens tredje kapitel är en syntes av rapportens alla förslag, och kan ses som färdplanen för att säkerställa att Sverige klimatanpassas.

  • 25.
    Andersson, Lotta
    et al.
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle.
    Hellström, Sara-Sofia
    SMHI.
    Kjellström, Erik
    SMHI.
    Losjö, Katarina
    SMHI.
    Rummukainen, Marku
    SMHI.
    Samuelsson, Patrick
    SMHI.
    Wilk, Julie
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Modeling report: Climate change impacts on water resources in the Pungwe drainage basin2006Rapport (Annet (populærvitenskap, debatt, mm))
  • 26.
    Andersson, Lotta
    et al.
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Filosofiska fakulteten. Statens Meteorologiska och Hydrologiska Institut.
    Hjerpe, Mattias
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Alberth, Johan
    Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Filosofiska fakulteten.
    The Vulnerability Assessment Concept: A Tool for Prioritization of the Most Relevant Issues for Macro-regional Cooperation2013Rapport (Annet vitenskapelig)
    Abstract [en]

    This report aims at identifying potential issues for collaboration related to climate adaptation through application of a tool for assessing macro-regional risks. The tool is intended to assist decision-makers and other stakeholders in the Baltic Sea Region (BSR) in discussions on how climate adaptation related cooperation would benefit most from macro-regional cooperation. It is based on four criteria: 1) confidence, 2) speed (determined by Baltadapt climate modellers), 3) importance of impacts and 4) macro-regional coverage (based on a questionnaires answered by 3-8 stakeholders from each of the nine riparian BSR states). Based on equal weighting of these factors, impacts related to biodiversity/eutrophication of the Baltic Sea, as well and impacts related to agriculture were given the highest rankings, which demonstrates the importance to include these sectors and their interrelationship as an important focus in macro-regional cooperation on climate adaptation in the BSR. Impacts  related to biodiversity and agriculture have in common that they are caused by climate change that will occur or already has occurred with a high degree of certainty (e.g., linked to air and water temperatures and rising sea levels), as well as having a very large macro-regional spatial coverage, and being perceived as of high societal and/or environmental concern.

  • 27.
    Andersson, Lotta
    et al.
    SMHI, Forskningsavdelningen, Hydrologi.
    Samuelsson, Patrick
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Kjellström, Erik
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Assessment of climate change impact on water resources in the Pungwe river basin2011Inngår i: Tellus. Series A, Dynamic meteorology and oceanography, ISSN 0280-6495, E-ISSN 1600-0870, Vol. 63, nr 1, s. 138-157Artikkel i tidsskrift (Fagfellevurdert)
  • 28.
    Andersson, Lotta
    et al.
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Wilk, Julie
    Linköpings universitet, Institutionen för tema, Centrum för klimatpolitisk forskning. Linköpings universitet, Institutionen för tema, Tema vatten i natur och samhälle. Linköpings universitet, Filosofiska fakulteten.
    Graham, Phil
    n/a.
    Warburton, Michele
    n/a.
    Local assessment of vulnerability to climate change impacts on water resources in the Upper Thukela River Basin, South Africa: Recommendations for Adaptation2009Rapport (Annet vitenskapelig)
    Abstract [en]

    This report originates from a project entitled Participatory Modelling for Assessment of Local Impacts of Climate Variability and Change on Water Resources (PAMO), financed by the Swedish Development Agency and Research Links cooperation (NRF and the Swedish Research Council).

    The project is based on interactions between stakeholders in the Mhlwazini/Bergville area of the Thukela River basin, climate and water researchers from the University of KwaZulu-Natal (Pietermaritzburg Campus) and the Swedish Meteorological and Hydrological Institute (SMHI) during a series of workshops held in 2007-2009. Between the workshops, the researcher’s compiled locally relevant climate change related information, based on requests from the workshop participants, as a basis for this adaptation plan.

    The aim is to provide a local assessment of vulnerability to climate change impacts on water resources and adaptation strategies. The assessment identifies existing climate-water related problems, current adaptation strategies and recommendations for future action based on likelihoods for change and the severity if such changes will occur.

  • 29.
    Andersson, Magnus
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Uppsala centrum för hållbar utveckling, CSD Uppsala, The Baltic University Programme.
    Tol, Richard S.J.
    Max Planck Institute for Meteorology in Hamburg.
    Graham, L. Phil
    Swedish Meteorological and Hydrological Institute.
    Bergström, Sten
    Swedish Meteorological and Hydrological Institute.
    Rydén, Lars
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper, Uppsala centrum för hållbar utveckling, CSD Uppsala, The Baltic University Programme.
    Azar, Christian
    University of Gothenburg.
    10. Impacts on the Global Atmosphere: Climate Change and Ozone Depletion2003Inngår i: Environmental Science: Understanding, protecting and managing the environment in the Baltic Sea Region / [ed] Lars Rydén, Pawel Migula and Magnus Andersson, Uppsala: Baltic University Press , 2003, 1, s. 294-323Kapittel i bok, del av antologi (Annet (populærvitenskap, debatt, mm))
  • 30.
    Andersson-Skold, Yvonne
    et al.
    Statens geotekniska institut.
    Falemo, Stefan
    Statens geotekniska institut.
    Suer, Pascal
    Statens geotekniska institut.
    Grahn, Tonje
    Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, Centrum för klimat och säkerhet.
    Landslide risk and climate change - economic assessment of consequenses in the Göta river valley2011Inngår i: / [ed] Anagnostopoulos, A., Pachakis, M., Tsatsanifos, C., Amsterdam, 2011, s. 1313-1318Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    According to climate change scenarios, Swedish summers will be drier, but in large parts of Sweden there will also be increased annual precipitation, more intensive precipitation and periods with increased water flows. In many areas the risk for landslides is expected to increase. In response to this the SGI, on commission of the Environmental ministry, has started a risk analysis for the Göta river valley. The results of the analysis will be used in the surveillance of the safety along the Göta river valley. The valley is one of the most frequent landslide valleys in Sweden. The area has a long history of anthropogenic activities such as settlements, shipping, industry, contaminated soil and infrastructure including large roads and railroads. A number of landslides occur every year. The landslide risk analysis of Göta river valley is performed by traditional technical risk analysis, i.e. a function of hazard probability and consequences of the hazard. Elements at risk in the valley include for example, human life, transport and other infrastructure, properties and industrial activities, contaminated land, agriculture and forestry, and intangibles such as biodiversity. Exposure, vulnerability and the monetary value related to the landslide are used to describe the consequence of the landslide. This paper shows the process and structure of this consequence analysis for natural hazards. The consequence analysis methodology can be applied generic both nationally and internationally and for several types of natural hazards such as landslides and flooding.

  • 31.
    Andersson-Sköld, Yvonne
    et al.
    Swedish Geotechnical Institute .
    Bergman, Ramona
    Swedish Geotechnical Institute .
    Nyberg, Lars
    Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, Centrum för klimat och säkerhet.
    Johansson, Magnus
    Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, Avdelningen för hälsa och miljö.
    Persson, Erik
    Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, Avdelningen för hälsa och miljö.
    Effekter av samhällets säkerhetsåtgärder (ESS) - en kartering av arbetet idag med fokus på översvämningar, ras och skred2012Rapport (Annet vitenskapelig)
  • 32.
    Andersson-Sköld, Yvonne
    et al.
    Statens geotekniska institut.
    Falemo, Stefan
    Statens geotekniska institut.
    Suer, Pascal
    Statens geotekniska institut.
    Grahn, Tonje
    Karlstads universitet.
    Landslide risk and climate change: economic assessment of consequenses in the Göta river valley2011Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    According to climate change scenarios, Swedish summers will be drier, but in large parts of Sweden there will also be increased annual precipitation, more intensive precipitation and periods with increased water flows. In many areas the risk for landslides is expected to increase. In response to this the SGI, on commission of the Environmental ministry, has started a risk analysis for the Göta river valley. The results of the analysis will be used in the surveillance of the safety along the Göta river valley. The valley is one of the most frequent landslide valleys in Sweden.

    The area has a long history of anthropogenic activities such as settlements, shipping, industry, contaminated soil and infrastructure including large roads and railroads. A number of landslides occur every year. The landslide risk analysis of Göta river valley is performed by traditional technical risk analysis, i.e. a function of hazard probability and consequences of the hazard. Elements at risk in the valley include for example, human life, transport and other infrastructure, properties and industrial activities, contaminated land, agriculture and forestry, and intangibles such as biodiversity. Exposure, vulnerability and the monetary value related to the landslide are used to describe the consequence of the landslide.

    This paper shows the process and structure of this consequence analysis for natural hazards. The consequence analysis methodology can be applied generic both nationally and internationally and for several types of natural hazards such as landslides and flooding.

  • 33.
    Andersson-Sköld, Yvonne
    et al.
    Swedish Geotechnical Institute.
    Fallsvik, Jan
    Swedish Geotechnical Institute.
    Hultén, Carina
    Swedish Geotechnical Institute.
    Jonsson, Anna
    Linköpings universitet, Centrum för klimatpolitisk forskning.
    Hjerpe, Mattias
    Linköpings universitet.
    Glaas, Erik
    Linköpings universitet.
    Climate change in Sweden: geotechnical and contaminated land consequences2008Inngår i: WSEAS International Conference on Environmental and Geological Science,2008, 2008, s. 52-57Konferansepaper (Fagfellevurdert)
    Abstract [en]

         

  • 34.
    Andersson-Sköld, Yvonne
    et al.
    University of Gothenburg; COWI AB, Gothenburg.
    Thorsson, Sofia
    University of Gothenburg.
    Rayner, David
    University of Gothenburg.
    Lindberg, Fredrik
    University of Gothenburg.
    Janhäll, Sara
    The Swedish National Road and Transport Research Institute (VTI), Gothenburg.
    Jonsson, Anna
    Linköping University.
    Moback, Ulf
    City of Gothenburg, Gothenburg.
    Bergman, Ramona
    Swedish Geotechnical Institute (SGI), Gothenburg.
    Granberg, Mikael
    Karlstads universitet, Fakulteten för humaniora och samhällsvetenskap (from 2013), Institutionen för samhälls- och kulturvetenskap. Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Centrum för klimat och säkerhet.
    An integrated method for assessing climate-related risks and adaptation alternatives in urban areas2015Inngår i: Climate Risk Management, E-ISSN 2212-0963, Vol. 7, s. 31-50Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The urban environment is a complex structure with interlinked social, ecological and technical structures. Global warming is expected to have a broad variety of impacts, which will add to the complexity. Climate changes will force adaptation, to reduce climate-related risks. Adaptation measures can address one aspect at the time, or aim for a holistic approach to avoid maladaptation. This paper presents a systematic, integrated approach for assessing alternatives for reducing the risks of heat waves, flooding and air pollution in urban settings, with the aim of reducing the risk of maladaptation. The study includes strategies covering different spatial scales, and both the current climate situation and the climate predicted under climate change scenarios. The adaptation strategies investigated included increasing vegetation; selecting density, height and colour of buildings; and retreat or resist (defend) against sea-level rise. Their effectiveness was assessed with regard to not only flooding, heat stress and air quality but also with regard to resource use, emissions to air (incl. GHG), soil and water, and people’s perceptions and vulnerability. The effectiveness of the strategies were ranked on a common scale (from -3 to 3) in an integrated assessment. Integrated assessments are recommended, as they help identify the most sustainable solutions, but to reduce the risk of maladaptation they require experts from a variety of disciplines. The most generally applicable recommendation, derived from the integrated assessment here, taking into account both expertise from different municipal departments, literature surveys, life cycle assessments and publics perceptions, is to increase the urban greenery, as it contributes to several positive aspects such as heat stress mitigation, air quality improvement, effective storm-water and flood-risk management, and it has several positive social impacts. The most favourable alternative was compact, mid-rise, light coloured building design with large parks/green areas and trees near buildings. © 2015 The Authors.

  • 35.
    Andin, Caroline
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Geovetenskapliga sektionen, Institutionen för geovetenskaper.
    Synoptic Variability of Extreme Snowfall in the St. Elias Mountains, Yukon, Canada2015Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    Glaciers of southwestern Yukon (Canada) and southeastern Alaska (USA) are presently experiencing high rates of annual mass loss. These high melt rates have mainly been investigated with respect to regional temperature trends, but comparatively little is known about how climate variations regulate snow accumulation on these glaciers. This study examines the synoptic weather patterns and air flow trajectories associated with extreme snowfall events in the central St. Elias Mountains (Yukon). The analyses are based on data retrieved from an automated weather station (AWS) between 2003 and 2012, which provide the longest continuous records of surface meteorological data ever obtained from this remote region.

    The AWS data reveal that 47 extreme snowfall events (> 27 cm per 12 hours) occurred during this period, of which 79 % took place during the cold season months. Air flow trajectories associated with these events indicate that a vast majority had their origin in the North Pacific south of 50°N. Less frequent were air masses with a source in the Aleutian Arc/Bering Sea region and the Gulf of Alaska, and in a few rare cases precipitating air was traced to continental source regions in Western Canada and Alaska. Composite maps of sea-level pressure and upper-level winds associated with extreme snowfall events revealed a frequent synoptic pattern with a low-pressure area centered over the Kenai Peninsula (Alaska), which drives strong southerly winds over the Gulf of Alaska towards the St. Elias Mountains. This pattern is consistent with AWS data wind recordings during snow storms. The most typical synoptic configurations of the North Pacific low-pressure area during extreme snowfall events are either elongated, split, or single-centered, and these situations represent possible seasonal analogues for the different states of the Aleutian Low in the subarctic North Pacific. However, neither the geographical position or intensity of negative sea-level pressure anomalies, nor surface pressure gradients associated with extreme snowfall events are good predictors of the actual snowfall SWE amounts recorded in the central St. Elias Mountains. Estimated snowfall and total precipitation gradients with altitude were confirmed to be much steeper (by up to ~30 %) on the continental side (Yukon), than on the coastal side (Alaska) of the St. Elias Mountains, reflecting the strong orographic division between the continental and coastal marine climatic regimes. Finally, patterns of 500-mb geopotential height anomalies associated with extreme snowfall events at Divide were compared with those associated with unusually high accumulation years in an ice core from the nearby Eclipse Icefield. Results confirm previous findings that associate high snow accumulation winters in this region with the presence of a strong dipole pressure structure between western North America and the Aleutian Low region, a structure which resembles the positive phase of the Pacific North American atmospheric circulation pattern. 

  • 36. Angel Gaertner, Miguel
    et al.
    Jesus Gonzalez-Aleman, Juan
    Romera, Raquel
    Dominguez, Marta
    Gil, Victoria
    Sanchez, Enrique
    Gallardo, Clemente
    Marcello Miglietta, Mario
    Walsh, Kevin J. E.
    Sein, Dmitry V.
    Somot, Samuel
    Dell'Aquila, Alessandro
    Teichmann, Claas
    Ahrens, Bodo
    Buonomo, Erasmo
    Colette, Augustin
    Bastin, Sophie
    van Meijgaard, Erik
    Nikulin, Grigory
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean-atmosphere coupling and increased resolution2018Inngår i: Climate Dynamics, ISSN 0930-7575, E-ISSN 1432-0894, Vol. 51, nr 3, s. 1041-1057Artikkel i tidsskrift (Fagfellevurdert)
  • 37. Angelsen, Arild
    et al.
    Gierløff, Caroline Wang
    Beltrán, Angelica Mendoza
    Elzen, Michel den
    REDD credits in a global carbon market: Options and impacts2014Bok (Annet vitenskapelig)
    Abstract [en]

    How can REDD credits be included in a future global carbon market, and what are the impacts of inclusion? We analyze ten different scenarios through 2020, varying the global emission caps and the REDD rules. An inclusion of REDD credits without any adjustments in the global cap will lower carbon prices significantly and cause crowding out. The cap must move towards the 2 degrees climate target if REDD inclusion is to maintain high carbon prices and strong incentives for emissions reductions in other sectors. At the same time, reaching the 2 degree target without full REDD inclusion will increase global mitigation costs by more than 50%.

  • 38.
    Arndt, D. S.
    et al.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Blunden, J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Dunn, R. J. H.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Aaron-Morrison, Arlene P.
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Abdallah, A.
    Agence Natl Aviat Civile & Meteorol, Moroni, Comoros.
    Ackerman, Steven A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Adler, Robert
    Univ Maryland, College Pk, MD USA.
    Alfaro, Eric J.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Allan, Richard P.
    Univ Reading, Reading, Berks, England.
    Allan, Rob
    Met Off Hadley Ctr, Exeter, Devon, England.
    Alvarez, Luis A.
    Inst Hidrol Meteorol & Estudios Ambientales Colom, Bogota, Colombia.
    Alves, Lincoln M.
    Inst Nacl Pesquisas Espaciais, Ctr Ciencias Sistema Terrestre, Sao Paulo, Brazil.
    Amador, Jorge A.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Andreassen, L. M.
    Norwegian Water Resources & Energy Directorate, Sect Glaciers Ice & Snow, Oslo, Norway.
    Arce, Dayana
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Argueez, Anthony
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arndt, Derek S.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Arzhanova, N. M.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Augustine, John
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Awatif, E. M.
    Egyptian Meteorol Author, Cairo Numer Weather Predict, Dept Seasonal Forecast & Climate Res, Cairo, Egypt.
    Azorin-Molina, Cesar
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Baez, Julian
    Direcc Meteorol & Hidrol DINAC, Asuncion, Paraguay.
    Bardin, M. U.
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Barichivich, Jonathan
    Ctr Climate & Resilience Res, Santiago, Chile;Pontificia Univ Catolica Valparaiso, Inst Geog, Valparaiso, Chile;Univ Austral Chile, Inst Conservac Biodiversidad & Terr, Valdivia, Chile.
    Baringer, Molly O.
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Barreira, Sandra
    Argentine Naval Hydrog Serv, Buenos Aires, DF, Argentina.
    Baxter, Stephen
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Beck, H. E.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Becker, Andreas
    Deutsch Wetterdienst, Global Precipitat Climatol Ctr, Offenbach, Germany.
    Bedka, Kristopher M.
    NASA Langley Res Ctr, Hampton, VA USA.
    Behrenfeld, Michael J.
    Oregon State Univ, Corvallis, OR USA.
    Bell, Gerald D.
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Belmont, M.
    Seychelles Natl Meteorol Serv, Pointe Larue, Mahe, Seychelles.
    Benedetti, Angela
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Bernhard, G. H.
    Biospher Instruments, San Diego, CA USA.
    Berrisford, Paul
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Berry, David I.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Bettolli, Maria L.
    Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ciencias Atmosfera & Oceanos, Buenos Aires, DF, Argentina.
    Bhatt, U. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Bidegain, Mario
    Inst Uruguayo Meteorol, Montevideo, Uruguay.
    Biskaborn, B.
    Alfred Wegener Inst, Helmholtz Ctr Polar & Marine Res, Potsdam, Germany.
    Bissolli, Peter
    Deutscher Wetterdienst, WMO RA VI Reg Climate Ctr Network, Offenbach, Germany.
    Bjerke, J.
    Norwegian Inst Nat Res, Tromso, Norway.
    Blake, Eric S.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Blunden, Jessica
    Bosilovich, Michael G.
    NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA.
    Boucher, Olivier
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Boudet, Dagne
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Box, J. E.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    Boyer, Tim
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Braathen, Geir O.
    WMO Atmospher Environm Res Div, Geneva, Switzerland.
    Brimelow, Julian
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Bromwich, David H.
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Brown, R.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Buehler, S.
    Univ Hamburg, Hamburg, Germany.
    Bulygina, Olga N.
    Russian Inst Hydrometeorol Informat, Obninsk, Russia.
    Burgess, D.
    Geol Survey Canada, Ottawa, ON, Canada.
    Calderon, Blanca
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica.
    Camargo, Suzana J.
    Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Campbell, Jayaka D.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Cappelen, J.
    Danish Meteorol Inst, Copenhagen, Denmark.
    Caroff, P.
    RSMC La Reunion, Meteo France, La Reunion, France.
    Carrea, Laura
    Univ Reading, Dept Meteorol, Reading, England.
    Carter, Brendan R.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Chambers, Don P.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Chandler, Elise
    Bur Meteorol, Melbourne, Vic, Australia.
    Cheng, Ming-Dean
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Christiansen, Hanne H.
    Univ Ctr Svalbard, Dept Geol, Longyearbyen, Norway.
    Christy, John R.
    Univ Alabama Huntsville, Huntsville, AL USA.
    Chung, Daniel
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Chung, E. -S
    Clem, Kyle R.
    Victoria Univ Wellington, Sch Geography Environm & Earth Sci, Wellington, New Zealand.
    Coelho, Caio A. S.
    CPTEC INPE, Ctr Weather Forecasts & Climate Studies, Cachoeira Paulista, Brazil.
    Coldewey-Egbers, Melanie
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Colwell, Steve
    British Antarctic Survey, Cambridge, England.
    Cooper, Owen R.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Copland, L.
    Univ Ottawa, Dept Geography, Ottawa, ON, Canada.
    Cross, J. N.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Crouch, Jake
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Cutie, Virgen
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Davis, Sean M.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    de Eyto, Elvira
    Marine Inst, Newport, Ireland.
    de Jeu, Richard A. M.
    VanderSat BV, Haarlem, Netherlands.
    de Laat, Jos
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    DeGasperi, Curtis L.
    King Cty Water & Land Resources Div, Seattle, WA USA.
    Degenstein, Doug
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Demircan, M.
    Turkish State Meteorol Serv, Ankara, Turkey.
    Derksen, C.
    Environm & Climate Change Canada, Climate Res Div, Toronto, ON, Canada.
    Di Girolamo, Larry
    Univ Illinois, Urbana, IL USA.
    Diamond, Howard J.
    NOAA OAR Air Resources Lab, Silver Spring, MD USA.
    Dindyal, S.
    Mauritius Meteorological Serv, Vacoas, Mauritius.
    Dlugokencky, Ed J.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Dohan, Kathleen
    Earth & Space Res, Seattle, WA USA.
    Dokulil, Martin T.
    Univ Innsbruck, Res Inst Limnology, Mondsee, Austria.
    Dolman, A. Johannes
    Vrije Univ Amsterdam, Dept Earth Sci Earth & Climate Cluster, Amsterdam, Netherlands.
    Domingues, Catia M.
    Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia;Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Donat, Markus G.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Dong, Shenfu
    Cooperat Inst Marine & Atmospher Sci, Miami, FL USA.
    Dorigo, Wouter A.
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Drozdov, D. S.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Dunn, Robert J. H.
    Duran-Quesada, Ana M.
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Dutton, Geoff S.
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    ElKharrim, M.
    Direction Meteorol Natl Maroc, Rabat, Morocco.
    Elkins, James W.
    Epstein, H. E.
    Univ Virginia, Dept Environm Sci, Charlottesville, VIRGINIA.
    Espinoza, Jhan C.
    Inst Geofisico Peru, Lima, Peru.
    Etienne-LeBlanc, Sheryl
    Meteorol Dept St Maarten, St Maarten, Netherlands.
    Famiglietti, James S.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Farrell, S.
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA.
    Fateh, S.
    Islamic Republic Iranian Meteorol, Tehran, Iran.
    Fausto, R. S.
    Geolog Survey Denmark & Greenland, Copenhagen, Denmark.
    Feely, Richard A.
    Feng, Z.
    FCSD ASGC Pacific Northwest Natl Lab, Richland, WA USA.
    Fenimore, Chris
    Fettweis, X.
    Univ Liege, Liege, Belgium.
    Fioletov, Vitali E.
    Flannigan, Mike
    Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.
    Flemming, Johannes
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Fogt, Ryan L.
    Ohio Univ, Dept Geography, Athens, Ohio.
    Folland, Chris
    Met Off Hadley Ctr, Exeter, Devon, England;Univ Southern Queensland, Int Ctr Appl Climate Sci, Toowoomba, Queensland, Australia;Univ East Anglia, Sch Environm Sci, Norwich, England.
    Fonseca, C.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Forbes, B. C.
    Univ Lapland, Arctic Ctr, Rovaniemi, Finland.
    Foster, Michael J.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Francis, S. D.
    Nigerian Meteorol Agcy, Natl Weather Forecast & Climate Res Ctr, Abuja, Nigeria.
    Franz, Bryan A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Frey, Richard A.
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Frith, Stacey M.
    Sci Syst & Appl Inc, Greenbelt, MD USA;NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Froidevaux, Lucien
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Ganter, Catherine
    Bur Meteorol, Melbourne, Vic, Australia.
    Gerland, S.
    Norwegian Polar Res Inst, Fram Ctr, Tromso, Norway.
    Gilson, John
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Gobron, Nadine
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Goldenberg, Stanley B.
    Goni, Gustavo
    Gonzalez, Idelmis T.
    Inst Meteorol Cuba, Climate Ctr, Havana, Cuba.
    Goto, A.
    Japan Meteorol Agcy, Tokyo, Japan.
    Greenhough, Marianna D.
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Grooss, J. -U
    Gruber, Alexander
    Guard, Charles
    NOAA NWS Weather Forecast Off, Mangilao, GU USA.
    Gupta, S. K.
    Sci Syst & Applicat Inc, Hampton, VA USA.
    Gutierrez, J. M.
    CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain.
    Haas, C.
    York Univ, Earth & Space Sci & Engn, Toronto, ON, Canada;Alfred Wegener Inst, Bremerhaven, Germany.
    Hagos, S.
    Pacific Northwest Natl Lab, FCSD ASGC Climate Phys Grp, Richland, WA USA.
    Hahn, Sebastian
    Haimberger, Leo
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Hall, Brad D.
    Halpert, Michael S.
    Hamlington, Benjamin D.
    Old Dominion Univ, Ctr Coastal Phys Oceanography, Norfolk, VA USA.
    Hanna, E.
    Univ Sheffield, Dept Geography, Sheffield, S Yorkshire, England.
    Hanssen-Bauer, I
    Norwegian Meteorol Inst, Blindern, Oslo, Norway.
    Hare, Jon
    NOAA NMFS Northeast Fisheries Sci Ctr, Woods Hole, MA USA.
    Harris, Ian
    Univ East Anglia, Natl Ctr Atmospheric Sci, Norwich, NY USA;Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Heidinger, Andrew K.
    NOAA NESDIS STAR Univ Wisconsin Madison, Madison, WI USA.
    Heim, Richard R., Jr.
    NOAA NESDIS Natl Ctr, Asheville, NC USA.
    Hendricks, S.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Hernandez, Marieta
    Climate Ctr, Inst Meteorol, Havana, Cuba.
    Hernandez, Rafael
    Inst Nacl Meteorol & Hidrolog Venezuela, Caracas, Venezuela.
    Hidalgo, Hugo G.
    Ho, Shu-peng
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Hobbs, William R.
    Univ Tasmania, Antarctic Climate & Ecosystems, Hobart, Australia.
    Huang, Boyin
    Huelsing, Hannah K.
    SUNY Albany, Albany, NY USA.
    Hurst, Dale F.
    Ialongo, I.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Ijampy, J. A.
    Nigerian Meteorol Agcy, Abuja, Nigeria.
    Inness, Antje
    European Ctr Medium Range, Reading, Berks, England.
    Isaksen, K.
    Norwegian Meteorolog Inst, Oslo, Norway.
    Ishii, Masayoshi
    Japan Meteorolog Agcy, Climat Res Dept, Meteorolog Res Inst, Tsukuba, Ibaraki, Japan.
    Jevrejeva, Svetlana
    Jimenez, C.
    Estellus, Paris, France;PSL Res Univ, LERMA, Observatoire Paris, Paris, France.
    Xiangze, Jin
    John, Viju
    Met Off Hadley Ctr, Exeter, Devon, England;EUMETSAT, Darmstadt, Germany.
    Johns, William E.
    Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Johnsen, B.
    Norwegian Radiat Protect Authority, Osteras, Norway.
    Johnson, Bryan
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Johnson, Gregory C.
    Johnson, Kenneth S.
    Monterey Bay Aquarium Res Inst, Moss Landing, CA USA.
    Jones, Philip D.
    Univ East Anglia, Climat Res Unit, Sch Environm Sci, Norwich, England.
    Jumaux, Guillaume
    Meteo France, Direct Interreg Ocean Indien, St Denis, Reunion, France.
    Kabidi, Khadija
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Kaiser, J. W.
    Max Planck Inst Chem, Mainz, Germany.
    Kass, David
    California Inst Technol, Jet Propulsion Lab, Pasadena, CA USA.
    Kato, Seiji
    Kazemi, A.
    Islamic Republic Iran Meteorolog Org, Tehran, Iran.
    Kelem, G.
    Ethiopian Meteorolog Agcy, Addis Ababa, Ethiopia.
    Keller, Linda M.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Kelly, B. P.
    Ctr Blue Economy, Middlebury Inst Int Studies, Monterey, CA USA;Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA;Study Environm Arctic Change SEARCH, Fairbanks, AK USA.
    Kendon, Mike
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kennedy, John
    Kerr, Kenneth
    Trinidad & Tobago Meteorol Serv, Piarco, Trinid & Tobago.
    Kholodov, A. L.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Khoshkam, Mahbobeh
    Islamic Republ Iran Meteorol Org, Tehran, Iran.
    Killick, Rachel
    Met Off Hadley Ctr, Exeter, Devon, England.
    Kim, Hyungjun
    Univ Tokyo, Inst Ind Sci, Tokyo 1138654, Japan.
    Kim, S. -J
    Kimberlain, Todd B.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Klotzbach, Philip J.
    Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA.
    Knaff, John A.
    NOAA NESDIS Ctr Satellite Applicat & Res, Ft Collins, CO USA.
    Kochtubajda, Bob
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Kohler, J.
    Norwegian Polar Res Inst, Tromso, Norway.
    Korhonen, Johanna
    Finnish Environm Inst SYKE, Freshwater Ctr, Helsinki, Finland.
    Korshunova, Natalia N.
    World Data Ctr, All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Kramarova, Natalya
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Kratz, D. P.
    NASA Langley Res Ctr, Hampton, VA USA.
    Kruger, Andries
    South African Weather Serv, Pretoria, South Africa.
    Kruk, Michael C.
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Krumpen, T.
    Alfred Wegener Inst, Bremerhaven, Germany.
    Lakatos, M.
    Hungarian Meteorol Serv, Climatol Div, Budapest, Hungary.
    Lakkala, K.
    Finnish Meteorol Inst, Arctic Res Ctr, Sodankyla, Finland.
    Lanckmann, J. -P
    Lander, Mark A.
    Univ Guam, Mangilao, GU USA.
    Landschuetzer, Peter
    Max Planck Inst Meteorol, Hamburg, Germany.
    Landsea, Chris W.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Lankhorst, Matthias
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Lantz, Kathleen
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA;NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Lazzara, Matthew A.
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA;Madison Area Tech Coll, Dept Phys Sci, Sch Arts & Sci, Madison, WI USA.
    Leuliette, Eric
    NOAA, NWS NCWCP Lab Satellite Altimetry, College Pk, MD USA.
    Lewis, Stephen R.
    Open Univ, Sch Phys Sci, Fac Sci Technol Engn & Math, Milton Keynes, Bucks, England.
    L'Heureux, Michelle
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Lieser, Jan L.
    Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
    Lin, I-I
    Natl Taiwan Univ, Taipei, Taiwan.
    Liu, Hongxing
    Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA.
    Liu, Yinghui
    Univ Wisconsin, CIMSS, Madison, WI USA.
    Locarnini, Ricardo
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Loeb, Norman G.
    NASA Langley Res Ctr, Hampton, VA USA.
    Long, Craig S.
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Loranty, M.
    Colgate Univ, Dept Geog, Hamilton, NY USA.
    Lorrey, Andrew M.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Loyola, Diego
    German Aerosp Ctr DLR Oberpfaffenhofen, Wessling, Germany.
    Lu, Mong-Ming
    Natl Taiwan Univ, Taipei, Taiwan;Cent Weather Bur, Taipei, Taiwan.
    Lumpkin, Rick
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Luo, Jing-Jia
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Luojus, K.
    Finnish Meteorolog Inst, Helsinki, Finland.
    Lyman, John M.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA;Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Macara, Gregor
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Macdonald, Alison M.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Macias-Fauria, M.
    Univ Oxford, Sch Geog & Environm, Oxford, England.
    Malkova, G. V.
    Earth Cryosphere Inst, Tumen, Russia;Tyumen State Oil & Gas Univ, Tyumen, Russia.
    Manney, G.
    New Mexico Inst Mining & Technol, Socorro, NM USA;NorthWest Res Ass, Socorro, NM USA.
    Marchenko, S. S.
    Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Marengo, Jose A.
    Ctr Nacl Monitoramento Alertas Desastres Nat, Cachoeira Paulista, SP, Brazil.
    Marra, John J.
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Marszelewski, Wlodzimierz
    Nicolaus Copernicus Univ, Dept Hydrol & Water Management, Torun, Poland.
    Martens, B.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Martinez-Gueingla, Rodney
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Massom, Robert A.
    Univ Tasmania, Antarctic Climate & Ecosystems Cooperat Res Ctr, Hobart, Tas, Australia;Univ Tasmania, Australian Antarctic Div, Hobart, Tas, Australia.
    Mathis, Jeremy T.
    NOAA, OAR Arctic Res Program, Silver Spring, MD USA.
    May, Linda
    Ctr Ecol & Hydrol, Edinburgh, Midlothian, Scotland.
    Mayer, Michael
    Univ Vienna, Dept Meteorol & Geophys, Vienna, Austria.
    Mazloff, Matthew
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    McBride, Charlotte
    South African Weather Serv, Pretoria, South Africa.
    McCabe, M. F.
    King Abdullah Univ Sci & Technol, Div Biol & Environm Sci & Engn, Water Desalinat & Reuse Ctr, Thuwal, Saudi Arabia.
    McCarthy, Gerard
    Natl Oceanog Ctr, Southampton, Hants, England.
    McCarthy, M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    McDonagh, Elaine L.
    McGree, Simon
    Bur Meteorol, Melbourne, Vic, Australia.
    McVicar, Tim R.
    CSIRO Land & Water Flagship, Canberra, ACT, Australia;Australian Res Council, Ctr Excellence Climate Syst Sci, Sydney, NSW, Australia;Australian Capital Territory, Sydney, NSW, Australia.
    Mears, Carl A.
    Remote Sensing Syst, Santa Rosa, CA USA.
    Meier, W.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Mekonnen, A.
    North Carolina A&T State Univ, Dept Energy & Environm Syst, Greensboro, NC USA.
    Menezes, V. V.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Mengistu Tsidu, G.
    Botswana Int Univ Sci & Technol, Dept Earth & Environm Sci, Palapye, Botswana;Addis Ababa Univ, Dept Phys, Addis Ababa, Ethiopia. Univ Reading, Natl Ctr Earth Observat, Reading RG6 2AH, Berks, England.
    Menzel, W. Paul
    Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA.
    Merchant, Christopher J.
    Meredith, Michael P.
    British Antarctic Survey, Cambridge, England.
    Merrifield, Mark A.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Minnis, Patrick
    NASA Langley Res Ctr, Hampton, VA USA.
    Miralles, Diego G.
    Univ Ghent, Lab Hydrol & Water Management, Ghent, Belgium.
    Mistelbauer, T.
    Earth Observing Data Ctr GmbH, Vienna, Austria.
    Mitchum, Gary T.
    Univ S Florida, Coll Marine Sci, St Petersburg, FL USA.
    Mitro, Srkani
    Meteorol Serv Suriname, Paramaribo, Surinam.
    Monselesan, Didier
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Montzka, Stephen A.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Mora, Natalie
    Univ Costa Rica, Ctr Geophys Res, San Jose, Costa Rica;Univ Costa Rica, Sch Phys, San Jose, Costa Rica.
    Morice, Colin
    Met Off Hadley Ctr, Exeter, Devon, England.
    Morrow, Blair
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Mote, T.
    Univ Georgia, Dept Geog, Athens, GA 30602 USA.
    Mudryk, L.
    Environm & Climate Change Canada, Climate Res Div, Montreal, PQ, Canada.
    Muehle, Jens
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Mullan, A. Brett
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Mueller, R.
    Forschungszentrum Julich, Julich, Germany.
    Nash, Eric R.
    NASA Goddard Space Flight Ctr, Sci Syst & Applicat Inc, Greenbelt, MD USA.
    Nerem, R. Steven
    Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA.
    Newman, Louise
    Univ Tasmania, Inst Marine & Antarctic Studies, SOOS Int Project Off, Hobart, Tas 7001, Australia.
    Newman, Paul A.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA.
    Nieto, Juan Jose
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Noetzli, Jeannette
    WSL Inst Snow & Avalanche Res, Davos, Switzerland.
    O'Neel, S.
    USGS, Alaska Sci Ctr, Anchorage, AK USA.
    Osborn, Tim J.
    Univ East Anglia, Climatic Res Unit, Sch Environm Sci, Norwich, NY USA.
    Overland, J.
    NOAA OAR Pacific Marine Environm Lab, Seattle, WA USA.
    Oyunjargal, Lamjav
    Natl Agcy Meteorol, Inst Meteorol & Hydrol, Hydrol & Environ Monitoring, Ulaanbaatar, Mongol Peo Rep.
    Parinussa, Robert M.
    VanderSat BV, Haarlem, Netherlands.
    Park, E-hyung
    Korea Meteorol Adm, Seoul, South Korea.
    Pasch, Richard J.
    NOAA NWS Natl Hurricane Ctr, Miami, FL USA.
    Pascual-Ramirez, Reynaldo
    Natl Meteorol Serv Mexico, Mexico City, DF, Mexico.
    Paterson, Andrew M.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Pearce, Petra R.
    Natl Inst Water & Atmospher Res Ltd, Auckland, New Zealand.
    Pellichero, V.
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France.
    Pelto, Mauri S.
    Nichols Coll, Dudley, MA USA.
    Peng, Liang
    Univ Corp Atmospheric Res, COSMIC Project Off, Boulder, CO USA.
    Perkins-Kirkpatrick, Sarah E.
    Univ New S Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
    Perovich, D.
    Dartmouth Coll, Thayer Sch Eng, Hanover, NH USA;USACE, ERDC, Cold Reg Res & Engn Lab, Hanover, NH USA.
    Petropavlovskikh, Irina
    NOAA OAR Earth System Res Lab, Global Monitoring Div, Boulder, CO USA;Univ Colorado Boulder, Boulder, CO USA.
    Pezza, Alexandre B.
    Greater Wellington Reg Council, Wellington, New Zealand.
    Phillips, C.
    Univ Wisconsin Madison, Dept Atmospheric & Oceanic Sci, Madison, WI USA.
    Phillips, David
    Environm & Climate Change Canada, Edmonton, AB, Canada.
    Phoenix, G.
    Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.
    Pinty, Bernard
    European Commiss, Joint Res Ctr, Ispra, Italy.
    Pitts, Michael C.
    NASA Langley Res Ctr, Hampton, VA USA.
    Pons, M. R.
    Agencia Estatal Meteorol, Santander, Spain.
    Porter, Avalon O.
    Cayman Isl Natl Weather Serv, Grand Cayman, Cayman Islands.
    Quintana, Juan
    Direcc Meteorol Chile, Santiago, Chile.
    Rahimzadeh, Fatemeh
    Atmospher Sci & Meteorol Res Ctr, Tehran, Iran.
    Rajeevan, Madhavan
    Minist Earth Sci, Earth System Sci Org, New Delhi, India.
    Rayner, Darren
    Natl Oceanog Ctr, Southampton, Hants, England.
    Raynolds, M. K.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Razuvaev, Vyacheslav N.
    All Russian Res Inst Hydrometeorol Informat, Obninsk, Russia.
    Read, Peter
    Univ Oxford, Dept Phys, Oxford OX1 2JD, England.
    Reagan, James
    Univ Maryland, Earth Syst Sci Interdiscipl Ctr, College Pk, MD USA;NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Reid, Phillip
    CAWRC, Hobart, Tas, Australia;Australian Bur Meteorol, Melbourne, Vic, Australia.
    Reimer, Christoph
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria;EODC, Vienna, Austria.
    Remy, Samuel
    CNRS UPMC, Inst Pierre Simon Laplace, Paris, France.
    Renwick, James A.
    Victoria Univ Wellington, Wellington, New Zealand.
    Revadekar, Jayashree V.
    Indian Inst Trop Meteorol, Pune, Maharashtra, India.
    Richter-Menge, J.
    Univ Alaska Fairbanks, Fairbanks, AK USA.
    Rimmer, Alon
    Israel Oceanog & Limnol Res, Yigal Allon Kinneret Limnol Lab, Migdal, Israel.
    Robinson, David A.
    Rutgers State Univ, Dept Geog, Piscataway, NJ 08855 USA.
    Rodell, Matthew
    NASA Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD USA.
    Rollenbeck, Ruetger
    Univ Marburg, Fac Geog, Lab Climatol Remote Sensing, Marburg, Germany.
    Romanovsky, Vladimir E.
    Tyumen State Univ, Tyumen, Russia;Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA.
    Ronchail, Josyane
    Univ Paris Diderot, Lab LOCEAN IPSL, Paris, France.
    Roquet, F.
    Stockholm Univ MISU, Dept Meteorol, Stockholm, Sweden.
    Rosenlof, Karen H.
    NOAA OAR Earth Syst Res Lab, Boulder, CO USA.
    Roth, Chris
    Univ Saskatchewan, Saskatoon, SK, Canada.
    Rusak, James A.
    Ontario Ministry Environ & Climate Change, Dorset Environ Sci Ctr, Dorset, ON, Canada.
    Sallee, Jean-Bapiste
    Sorbonne Univ, LOCEAN IPSL, CNRS IRD MNHN, Paris, France;British Antarctic Survey, Cambridge, England.
    Sanchez-Lugo, Ahira
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Santee, Michelle L.
    NASA Jet Propuls Lab, Pasadena, CA USA.
    Sarmiento, Jorge L.
    Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ USA.
    Sawaengphokhai, P.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Sayouri, Amal
    Direct Meteorolog Natl Maroc, Rabat, Morocco.
    Scambos, Ted A.
    Univ Colorado Boulder, Natl Snow & Ice Data Ctr, Boulder, CO USA.
    Schemm, Jae
    NOAA NWS Climate Predict Ctr, College Pk, MD USA.
    Schladow, S. Geoffrey
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Schmid, Claudia
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Schmid, Martin
    Swiss Federal Inst Aquat Sci & Technol, Eawag, Kastanienbaum, Switzerland.
    Schoeneich, P.
    Univ Grenoble Alpes, Inst Geog Alpine, Grenoble, France.
    Schreck, Carl J., III
    N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC USA.
    Schuur, Ted
    No Arizona Univ, Ctr Ecosystem Sci & Soc, Flagstaff, AZ 86011 USA.
    Selkirk, H. B.
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Send, Uwe
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    Sensoy, Serhat
    Turkish State Meteorol Serv, Ankara, Turkey.
    Sharp, M.
    Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB, Canada.
    Shi, Lei
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Shiklomanov, Nikolai I.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Shimaraeva, Svetlana V.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Siegel, David A.
    Univ Calif Santa Barbara, Santa Barbara, CA USA.
    Signorini, Sergio R.
    Sci Applicat Int Corp, Beltsville, MD USA.
    Silov, Eugene
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Sima, Fatou
    Dept Water Resources, Div Meteorol, Banjul, Gambia.
    Simmons, Adrian J.
    European Ctr Medium Range Weather Forecasts, Reading, Berks, England.
    Smeed, David A.
    Natl Oceanog Ctr, Southampton, Hants, England.
    Smeets, C. J. P. P.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    Smith, Adam
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Smith, Sharon L.
    Nat Resources Canada, Geol Survey Canada, Ottawa, ON, Canada.
    Soden, B.
    Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
    Spence, Jaqueline M.
    Meteorol Serv, Kingston, Jamaica.
    Srivastava, A. K.
    Indian Meteorol Dept, Jaipur, Rajasthan, India.
    Stackhouse, Paul W., Jr.
    NASA Langley Res Ctr, Hampton, VA USA.
    Stammerjohn, Sharon
    Univ Colorado Boulder, Inst Arctic & Alpine Res, Boulder, CO USA.
    Steinbrecht, Wolfgang
    German Weather Serv DWD, Hohenpeissenberg, Germany.
    Stella, Jose L.
    Serv Meteorol Nacl, Buenos Aires, DF, Argentina.
    Stennett-Brown, Roxann
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Stephenson, Tannecia S.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Strahan, Susan
    NASA Goddard Space Flight Ctr, Univ Space Res Assoc, Greenbelt, MD USA.
    Streletskiy, Dimitri A.
    George Washington Univ, Dept Geog, Washington, DC 20052 USA.
    Sun-Mack, Sunny
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Swart, Sebastiaan
    CSIR Southern Ocean Carbon & Climate Observ, Stellenbosch, South Africa.
    Sweet, William
    NOAA NOS Ctr Operat Oceanog Products & Serv, Silver Spring, MD USA.
    Tamar, Gerard
    Grenada Airports Author, St Georges, Grenada.
    Taylor, Michael A.
    Univ West Indies, Dept Phys, Kingston, Jamaica.
    Tedesco, M.
    NASA Goddard Inst Space Studies, New York, NY USA;Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA.
    Thoman, R. L.
    NOAA Natl Weather Serv, Fairbanks, AK USA.
    Thompson, L.
    Simon Fraser Univ, Dept Earth Sci, Burnaby, BC, Canada.
    Thompson, Philip R.
    Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI USA.
    Timmermans, M. -L
    Timofeev, Maxim A.
    Irkutsk State Univ, Inst Biol, Irkutsk 664003, Russia.
    Tirnanes, Joaquin A.
    Univ Santiago Compostela, Lab Syst, Technol Res Inst, Santiago De Compostela, Spain.
    Tobin, Skie
    Bur Meteorol, Melbourne, Vic, Australia.
    Trachte, Katja
    Philipps Univ, Lab Climatol & Remote Sensing, Marburg, Germany.
    Trewin, Blair C.
    Australian Bur Meteorol, Melbourne, Vic, Australia.
    Trotman, Adrian R.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Tschudi, M.
    Univ Colorado Boulder, Aerospace Engn Sci, Boulder, CO USA.
    Tweedy, Olga
    Johns Hopkins Univ, Baltimore, MD USA.
    van As, D.
    Geol Survey Denmark & Greenland, Copenhagen, Denmark.
    van de Wal, R. S. W.
    Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.
    van der Schalie, Robin
    VanderSat BV, Haarlem, Netherlands.
    van der Schrier, Gerard
    Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands.
    van der Werf, Guido R.
    Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands.
    van Meerbeeck, Cedric J.
    Caribbean Inst Meteorol & Hydrol, Bridgetown, Barbados.
    Velicogna, I.
    Univ Calif Irvine, Irvine, CA 92717 USA.
    Verburg, Piet
    Natl Inst Water & Atmospher Res, Wellington, New Zealand.
    Vieira, G.
    Univ Lisbon, Inst Geog & Ordenamento Territorio, P-1699 Lisbon, Portugal.
    Vincent, Lucie A.
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Voemel, Holger
    Natl Ctr Atmospher Res, Earth Observing Lab, Boulder, CO USA.
    Vose, Russell S.
    NOAA NESDIS Natl Ctr Environm Informat, Silver Spring, MD USA.
    Wagner, Wolfgang
    Vienna Univ Technol, Dept Geodesy & Geoinformat, Vienna, Austria.
    Wahlin, Anna
    Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
    Walker, D. A.
    Univ Alaska Fairbanks, Inst Arct Biol, Fairbanks, AK 99701 USA.
    Walsh, J.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wang, Bin
    Univ Hawaii, SOEST, Dept Meteorol, Honolulu, HI USA;IPRC, Honolulu, HI USA.
    Wang, Chunzai
    South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Peoples R China.
    Wang, Junhong
    SUNY Albany, Albany, NY USA.
    Wang, Lei
    Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA USA.
    Wang, M.
    Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA USA.
    Wang, Sheng-Hung
    Ohio State Univ, Byrd Polar & Climate Res Ctr, Columbus, OH USA.
    Wanninkhof, Rik
    NOAA OAR Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA.
    Watanabe, Shohei
    Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA USA.
    Weber, Mark
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Limnologi. Univ Bremen, Bremen, Germany..
    Weller, Robert A.
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Weyhenmeyer, Gesa A.
    Whitewood, Robert
    Environm & Climate Change Canada, Toronto, ON, Canada.
    Wiese, David N.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wijffels, Susan E.
    CSIRO Oceans & Atmos, Hobart, Tas, Australia.
    Wilber, Anne C.
    Sci Syst & Appl Inc, Greenbelt, MD USA.
    Wild, Jeanette D.
    NOAA Climate Predict Ctr, INNOVIM, College Pk, MD USA.
    Willett, Kate M.
    Met Off Hadley Ctr, Exeter, Devon, England.
    Willie, Shem
    St Lucia Meteorol Serv, St Lucia, Qld, Australia.
    Willis, Josh K.
    CALTECH, Jet Propulsion Lab, Pasadena, CA USA.
    Wolken, G.
    Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA.
    Wong, Takmeng
    NASA Langley Res Ctr, Hampton, VA USA.
    Wood, E. F.
    Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08536 USA.
    Woolway, R. Iestyn
    Univ Reading, Dept Meteorol, Reading RG6 2AH, Berks, England.
    Wouters, B.
    Univ Bristol, Sch Geog Sci, Bristol BS8 1TH, Avon, England.
    Xue, Yan
    NOAA NWS Natl Ctr Environm Predict, College Pk, MD USA.
    Yim, So-Young
    Korea Meteorol Adm, Seoul, South Korea.
    Yin, Xungang
    NOAA NESDIS Natl Environm Informat, ERT Inc, Asheville, NC USA.
    Yu, Lisan
    Woods Hole Oceanog Inst, Woods Hole, MA USA.
    Zambrano, Eduardo
    Ctr Int Invest Fenomeno El Nino, Guayaquil, Ecuador.
    Zhang, Huai-Min
    NOAA NESDIS Natl Ctr Environm Informat, Asheville, NC 28801 USA.
    Zhang, Peiqun
    Beijing Climate Ctr, Beijing, Peoples R China.
    Zhao, Guanguo
    Univ Illinois, Urbana, IL USA.
    Zhao, Lin
    Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China.
    Ziemke, Jerry R.
    NASA Goddard Space Flight Ctr, Greenbelt, MD USA;Morgan State Univ, Goddard Earth Sci Technol & Res, Baltimore, MD USA.
    Zilberman, Nathalie
    Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA.
    State of the Climate in 20162017Inngår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 98, nr 8, s. S1-S280Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.

  • 39. Arritt, Raymond W.
    et al.
    Rummukainen, Markku
    SMHI, Samhälle och säkerhet.
    CHALLENGES IN REGIONAL-SCALE CLIMATE MODELING2011Inngår i: Bulletin of The American Meteorological Society - (BAMS), ISSN 0003-0007, E-ISSN 1520-0477, Vol. 92, nr 3, s. 365-368Artikkel i tidsskrift (Annet vitenskapelig)
  • 40.
    Arvidsson, Anna K.
    et al.
    Statens väg- och transportforskningsinstitut, Drift och underhåll, DOU.
    Blomqvist, Göran
    Statens väg- och transportforskningsinstitut, Miljö, MILJÖ.
    Erlingsson, Sigurdur
    Statens väg- och transportforskningsinstitut, Väg- och banteknik, VBA.
    Hellman, Fredrik
    Statens väg- och transportforskningsinstitut, Väg- och banteknik, VBA.
    Jägerbrand, Annika K.
    Statens väg- och transportforskningsinstitut, Miljö, MILJÖ.
    Öberg, Gudrun
    Statens väg- och transportforskningsinstitut, Drift och underhåll, DOU.
    Klimatanpassning av vägkonstruktion, drift och underhåll2012Rapport (Annet vitenskapelig)
    Abstract [sv]

    Klimatförändringarna är en realitet och påverkar vårt samhälle och därigenom även våra transporter. Genom att klimatanpassa transportsystemen blir systemen mer robusta och risken för transportstörningar blir mindre. För vägars konstruktion, drift och underhåll innebär klimatanpassningen i de flesta fall relativt stora förändringar men det saknas idag en övergripande bild av det totala klimatanpassningsbehovet nationellt sett samt vilka åtgärder som behöver tas och som är rimliga att tas. Eftersom klimatförändringarna generellt varierar mellan Sveriges klimatzoner är det förenat med stora svårigheter att förutsäga vilken påverkan klimatförändringarna får på vägarnas beteende och livslängd. Inom vinterväghållningen i Sverige kommer saltanvändandet totalt sett att minska på grund av det varmare klimatet. Plogningstillfällena kommer antagligen minska, men beredskapen bör inte minskas för mycket eftersom de mer extrema tillfällena kommer att öka. För att lyckas klimatanpassa vägtransportsystemen så att de blir robusta konstaterar vi att det finns ett stort behov för att ta fram mer kunskap om vägkonstruktionens påverkan av ett förändrat klimat, samt inom drift och underhåll hur man skall anpassa sig genom olika typer av varierande och flexibla klimatanpassningsåtgärder och till effekterna av extrema väderhändelser.

  • 41.
    Arvidsson, Anna K
    et al.
    Statens väg- och transportforskningsinstitut, Infrastruktur, INFRA, Drift och underhåll, DOU.
    Blomqvist, Göran
    Statens väg- och transportforskningsinstitut, Samhälle, miljö och transporter, SAMT, Miljö, MILJÖ.
    Erlingsson, Sigurdur
    Statens väg- och transportforskningsinstitut, Infrastruktur, INFRA, Väg- och banteknik, VBA.
    Hellman, Fredrik
    Statens väg- och transportforskningsinstitut, Infrastruktur, INFRA, Väg- och banteknik, VBA.
    Jägerbrand, Annika
    Statens väg- och transportforskningsinstitut, Samhälle, miljö och transporter, SAMT, Miljö, MILJÖ.
    Öberg, Gudrun
    Statens väg- och transportforskningsinstitut, Infrastruktur, INFRA, Drift och underhåll, DOU.
    Klimatanpassning av vägkonstruktion, drift och underhåll2012Rapport (Annet vitenskapelig)
    Abstract [sv]

    Klimatförändringarna är en realitet och påverkar vårt samhälle och därigenom även våra transporter. Genom att klimatanpassa transportsystemen blir systemen mer robusta och risken för transportstörningar blir mindre. För vägars konstruktion, drift och underhåll innebär klimatanpassningen i de flesta fall relativt stora förändringar men det saknas idag en övergripande bild av det totala klimatanpassningsbehovet nationellt sett samt vilka åtgärder som behöver tas och som är rimliga att tas. Eftersom klimatförändringarna generellt varierar mellan Sveriges klimatzoner är det förenat med stora svårigheter att förutsäga vilken påverkan klimatförändringarna får på vägarnas beteende och livslängd. Inom vinterväghållningen i Sverige kommer saltanvändandet totalt sett att minska på grund av det varmare klimatet. Plogningstillfällena kommer antagligen minska, men beredskapen bör inte minskas för mycket eftersom de mer extrema tillfällena kommer att öka. För att lyckas klimatanpassa vägtransportsystemen så att de blir robusta konstaterar vi att det finns ett stort behov för att ta fram mer kunskap om vägkonstruktionens påverkan av ett förändrat klimat, samt inom drift och underhåll hur man skall anpassa sig genom olika typer av varierande och flexibla klimatanpassningsåtgärder och till effekterna av extrema väderhändelser.

  • 42.
    Asokan, Shilpa M.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Destouni, Georgia
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Appendix to Paper V: Climate model performance versus basin-scalehydro-climatic dataManuskript (preprint) (Annet vitenskapelig)
  • 43.
    Asokan, Shilpa M.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Destouni, Georgia
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Irrigation effects on hydro-climatic change: Basin-wise water balance-constrained quantification and cross-regional comparison2014Inngår i: Surveys in geophysics, ISSN 0169-3298, E-ISSN 1573-0956, Vol. 35, nr 3, s. 879-895Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hydro-climatic changes driven by human land and water use, including water use for irrigation, may be difficult to distinguish fromthe effects of global, natural and anthropogenic climate change. This paper quantifies and compares the hydro-climatic change effects ofirrigation using a data-driven, basin-wise quantification approach in two different irrigated world regions: the Aral Sea drainage basinin Central Asia, and the Indian Mahanadi River Basin draining into the Bay of Bengal. Results show that irrigation-driven changesin evapotranspiration and latent heat fluxes and associated temperature changes at the land surface may be greater in regions withsmall relative irrigation impacts on water availability in the landscape (here represented by the MRB) than in regions with severe suchimpacts (here represented by the Aral region). Different perspectives on the continental part of Earth’s hydrological cycle may thus implydifferent importance assessment of various drivers and impacts of hydro-climatic change. Regardless of perspective, however, actualbasin-wise water balance constraints should be accounted to realistically understand and accurately quantify continental water change.

  • 44.
    Asokan, Shilpa M.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Dutta, Dushmanta
    Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions2008Inngår i: Hydrological Processes, ISSN 0885-6087, E-ISSN 1099-1085, Vol. 22, nr 18, s. 3589-3603Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The paper presents the outcomes of a study conducted to analyse water resources availability and demand in the Mahanadi River Basin in India under climate change conditions. Climate change impact analysis was carried out for the years 2000, 2025, 2050, 2075 and 2100, for the months of September and April (representing wet and dry months), at a sub-catchment level. A physically based distributed hydrologic model (DHM) was used for estimation of the present water availability. For future scenarios under climate change conditions, precipitation output of Canadian Centre for Climate Modelling and Analysis General Circulation Model (CGCM2) was used as the input data for the DHM. The model results show that the highest increase in peak runoff (38%) in the Mahanadi River outlet will occur during September, for the period 2075-2100 and the maximum decrease in average runoff (32·5%) will be in April, for the period 2050-2075. The outcomes indicate that the Mahanadi River Basin is expected to experience progressively increasing intensities of flood in September and drought in April over the considered years. The sectors of domestic, irrigation and industry were considered for water demand estimation. The outcomes of the analysis on present water use indicated a high water abstraction by the irrigation sector. Future water demand shows an increasing trend until 2050, beyond which the demand will decrease owing to the assumed regulation of population explosion. From the simulated future water availability and projected water demand, water stress was computed. Among the six sub-catchments, the sub-catchment six shows the peak water demand. This study hence emphasizes on the need for re-defining water management policies, by incorporating hydrological response of the basin to the long-term climate change, which will help in developing appropriate flood and drought mitigation measures at the basin level.

  • 45.
    Asokan, Shilpa M.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Jarsjö, Jerker
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Destouni, Georgia
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi och kvartärgeologi (INK).
    Vapor flux by evapotranspiration: effects of changes in climate, land-use and water-use2010Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 115, nr D24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Enhanced evapotranspiration (ET) over irrigated land and associated latent heat flux change can modify the climate. Model studies of such climate change effects of irrigation are commonly based on land use parameterizations, in terms of irrigated land area, or land area equipped for irrigation. Actual ET change, however, may also be driven by water use change in addition to land use change. This study quantifies and compares ET changes due to changes in climate, land use, and water use from the preirrigation period 1901–1955 to the recent period 1990–2000 (with irrigation) for the example case of Mahanadi River Basin (MRB) in India. The results show that actual water use per unit area of irrigated land may vary greatly over a hydrological drainage basin. In MRB, much higher water use per irrigated land unit in the downstream humid basin parts leads to higher vapor flux by ET, and irrigation‐induced ET flux change, than in the upstream, water‐stressed basin parts. This is consistent with water supply limitations in water‐stressed basins. In contrast, the assumption in land use−based models that irrigation maintains high soil moisture contents can imply higher modeled water use and therefore also higher modeled ET fluxes under dry conditions than under humid conditions. The present results indicate water use as an important driver of regional climate change, in addition to land use and greenhouse gas‐driven changes.

  • 46. Asselt, Harro van
    et al.
    Mehling, Michael E.
    Siebert, Clarisse Kehler
    Stockholms universitet, Stockholm Environment Institute.
    The Changing Architecture of International Climate Change Law2015Inngår i: Research Handbook on Climate Change Mitigation Law / [ed] G. van Calster et al., Cheltenham: Edward Elgar Publishing, 2015, s. Ch. 2-Kapittel i bok, del av antologi (Fagfellevurdert)
  • 47. Asselt, Harro van
    et al.
    Pauw, Pieter
    Sælen, Håkon
    Assessment and Review under a 2015 Climate Change Agreement2015Bok (Annet vitenskapelig)
    Abstract [en]

    In 2013, Parties to the UNFCCC were invited to prepare and communicate their Intended Nationally Determined Contributions (INDCs) under a 2015 agreement. Assessment and review of INDCs can help to ensure that these contributions are in line with internationally agreed objectives and principles, help establish and enhance transparency, trust and accountability between Parties, and raise ambition over time.

     This report analyses the existing review processes both under and outside the UNFCCC. It suggests that some form of ex ante assessment and review process of INDCs could help ensure that they are ambitious and fair. Such process can be complemented by assessments by observer organizations and informal discussions among Parties. In addition, a periodic review of collective ambition is desirable from the perspective of environmental effectiveness, and can build on existing review processes.

  • 48.
    Asselt, Harro van
    et al.
    Stockholms universitet, Stockholm Environment Institute.
    Zelli, Fariborz
    Lund University.
    Connect the dots: Managing the fragmentation of global climate governance2014Inngår i: Environmental Economics and Policy Studies, ISSN 1432-847X, E-ISSN 1867-383X, Vol. 16, nr 2, s. 137-155Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The debate about post-2012 global climate governance has been framed largely by proponents and opponents of the policymaking process established by the United Nations Framework Convention on Climate Change (UNFCCC). In light of the proliferation of institutions governing some aspects of climate change, analysts have asked whether a centralized or a polycentric climate governance architecture will be more effective, efficient, equitable, or viable. While these are valid questions, they obscure the fact that global climate governance is already polycentric, or rather: fragmented. This article argues that the more pertinent questions are how to sensibly link the different elements of global climate governance, and what the role of the UNFCCC could be in this regard. We examine these two questions for three aspects of global climate governance: international climate technology initiatives, emerging emissions trading systems, and unilateral trade measures. The article shows that there are strong arguments for coordination in all of these cases, and illustrates the possible role of the UNFCCC. It concludes, however, that possibilities for coordination will eventually be limited by underlying tensions that will plague any future climate governance architecture.

  • 49. Astrom, Christofer
    et al.
    Orru, Hans
    Rocklov, Joacim
    Strandberg, Gustav
    SMHI, Forskningsavdelningen, Klimatforskning - Rossby Centre.
    Ebi, Kristie L.
    Forsberg, Bertil
    Heat-related respiratory hospital admissions in Europe in a changing climate: a health impact assessment2013Inngår i: BMJ Open, ISSN 2044-6055, E-ISSN 2044-6055, Vol. 3, nr 1, artikkel-id e001842Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Objectives: Respiratory diseases are ranked second in Europe in terms of mortality, prevalence and costs. Studies have shown that extreme heat has a large impact on mortality and morbidity, with a large relative increase for respiratory diseases. Expected increases in mean temperature and the number of extreme heat events over the coming decades due to climate change raise questions about the possible health impacts. We assess the number of heat-related respiratory hospital admissions in a future with a different climate. Design: A Europe-wide health impact assessment. Setting: An assessment for each of the EU27 countries. Methods: Heat-related hospital admissions under a changing climate are projected using multicity epidemiological exposure-response relationships applied to gridded population data and country-specific baseline respiratory hospital admission rates. Times-series of temperatures are simulated with a regional climate model based on four global climate models, under two greenhouse gas emission scenarios. Results: Between a reference period (1981-2010) and a future period (2021-2050), the total number of respiratory hospital admissions attributed to heat is projected to be larger in southern Europe, with three times more heat attributed respiratory hospital admissions in the future period. The smallest change was estimated in Eastern Europe with about a twofold increase. For all of Europe, the number of heat-related respiratory hospital admissions is projected to be 26 000 annually in the future period compared with 11 000 in the reference period. Conclusions: The results suggest that the projected effects of climate change on temperature and the number of extreme heat events could substantially influence respiratory morbidity across Europe.

  • 50.
    Axelsson, Pia
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för naturgeografi.
    Minskad trädtillväxt under Lilla sitiden?: En dendroklimatologisk jämförelse mellan nutid och 1600-talet invid trädgränsen i norra Skandinavien2015Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
    Abstract [en]

    During the period called Little Ice Age (1400 ~ 1900) the climate of northern Europe was in an annual year-basis overall colder than it was before and after that period. The numbers of short, cold and rainy summers and long, bitter-cold winters where often repetitive under the approximately 500-years the period lasted. In Scandinavia, the coldest time during this period is estimated to have started around the end of the 16th century and lasted to the beginning of the 18th century. Trees growing at the tree-line are limited by temperature for their annual growth and hence showing differences of growth during changes in the climate,  a method called dendroclimatology. The variations of growth can be read in the tree-rings either by analyze the width of the ring or by look into the density of the wood and is used to reconstruct past climates. The aim of this study is to investigate how the tree-growth responded to the colder temperatures compared to today. Trees (Scots pine) close to the tree-line in northern Scandinavia where used to enhance the temperature signal in the data.  The proxy used is the growth density (MXD – maximum latewood density). The result reveals that during the coldest century, the trees show a larger number of negative growth-years with comparison with the 20th century and the negative and positive growth follows a more united trend. The result also shows a great number of negative growth-years at the end of the Little Ice Age, with a lot of extreme low growth - indexes (lower than -1.5). The conclusion then leans towards a cooler climate with overall lower temperatures under the 17th century compared to 1900-2004. 

1234567 1 - 50 of 1219
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf