Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Falck, Josefina
    KTH, School of Technology and Health (STH), Medical Engineering.
    Effect of side windows, stiffening plate and roof sheet on the stiffness of the bus body2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    As a bus developer, Scania focus to construct a safe vehicle for the passengers, i.e. high strength of the bus structure and good comfort, which is also profitable for the operator, i.e. high passenger capacity and low fuel consumption. The trade-off when developing a bus body structure is to get both high stiffness and low weight. The bus body including exterior panels plays together with the chassis an important role for the stiffness of the bus. By gathering knowledge about how various exterior panels affects the stiffness of the bus body, the design of the panels can be optimized with respect to high stiffness and low weight. Also from a calculation point of view is it of interest to know how important different panels are for the stiffness of the bus body, in order to make conscious simplifications in the calculation model.

    The aim with this master thesis was to investigate how the stiffening plate, side windows and roof sheet influence the strength of the bus body. How the thickness of the side windows affects the stiffness of the bus body is also investigated. The investigations were made as a relative comparison between a complete bus and comparison models.

     

    The results showed that exterior panels participate in distributing load. By distributing the load, the load uptake gets more efficient since a bigger part of the bus structure is used to take up the load. The side windows affect the stiffness for all tested load cases, with increased importance for the load case where a gravity field is applied in the longitudinal direction, for the torsion load case and when a load is applied to the power train in vertical direction. The roof sheet has a high impact on the stiffness in the torsion load case, but has negligible influence on the stiffness of the bus body for the other tested load cases. The stiffening plate has little influence on the stiffness of the bus body in general and is negligible for all tested load cases except for when a lateral load is applied as either a gravity field or locally to the power train.

     

    Thinner side windows are shown to have a positive influence on the stiffness of the bus body.

  • 2.
    Hagman, Anna
    KTH, School of Technology and Health (STH).
    The Knowledge- and Adoption Level of Standards for Technical Interoperability among Providers of Healthcare Information Systems2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis was one of the deliverables of StandIN. The purpose of StandIN was to propose a common framework including standards for technical interoperability. The goal of this thesis was to structure and analyze information about the knowledge- and adoption level of the standards among providers of healthcare information systems (HIS's). Moreover, it aimed to evaluate different aspect that might affect the adoption.

    The target group was providers of HIS's used in Swedish county councils and regions. The information was gathered through a survey and semi-structured interviews, and stored in an Excel database. From the database, Pivot tables and charts were created in order to show the knowledge- as well as adoption level of the different standards. The results were thereafter compared to theory about interoperability and standard adoption.

    It was clear that the knowledge level varied for the different standards. In addition, the adoption level was very low - except from CCOW and HL7 v2. Least adopted were domain-specific standards. The results also indicated a trend for only adopting parts of standards. Moreover, many providers stated that they performed specific integrations rather than followed common standards. This seemed to be due to the choice of standards being too wide, and the actual adoption not being consistent among the different providers. According to the providers, an introduction of a national framework based on uniform and consistent international standards was an awaited solution to the problem.

    A future extension of this thesis would be to perform a similar study involving the customers. The database could also be used to do clustered analyses of the adoption state in different county councils and regions. Moreover, it could be used to analyze the development of standard adoption over time.

  • 3.
    Raghavendra, Jammalamadaka
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Optomyography - Detection ofmuscle surface displacement using reflective photo resistor.2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A human body can carry out many physiological complex processes which can be mechanical, electrical or bio-chemical. Each mechanical activity generates a signal that describes the characteristics of the particular action in the form of pressure or temperature. Any irregularity in the process changes the usual functioning thus affecting the performance of the system. Several techniques were introduced to evaluate these muscular signals in order to get a deeper understanding of the medical abnormalities. Displacement sensors, laser optics, electrodes, accelerometers and microphones are some of the widely used devices in measuring the electrical and mechanical activities produced in the muscles.

    The aim of this thesis project was to find and implement a simple non-contact optical method to measure and monitor the displacements caused on the surface of the skin due to muscular movements. In this study, a device was developed using photo electric sensors that can record surface changes caused on the skin due to the movements forearm muscles.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf