Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Grishenkov, Dmitry
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Ultrasound. KTH, School of Technology and Health (STH), Medical Engineering.
    Diagnostic Power of Different Tissue Doppler Parameters during Ultrasound Cardio-Vascular Investigation2007Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The department of Medical Technology, where I have done Master thesis project, develops and researches new method and technique within areas where ultrasound can be used to obtain the image of anatomical structure, functional capabilities and to suggest required treatment.

    Nowadays cardio-vascular diseases, such as infarct, atherosclerosis and ischemic syndrome, are one of the most widespread diseases in the world that’s why timely detection, identification and treatment are so important.

    The Master of Science qualification report consists 3 major parts: Medico-biological part, Design and Research parts.

    In Medico-biological part has been analyzed anatomical and physiological structure of the heart, current status of echocardiography with comparing with other techniques, summary of ultrasound methods with list of parameters that can be achieved is presented.

    In Design part has been developed new graphical modality based on Delta-V pump model using vector based statistical analysis for identification patients with ischemia. Software algorithm for automatically determine characteristic points for state diagram written in MatLab has been developed and implemented.

    In Research part in the first task using commercially available software based on Principal Component Analysis collected data from the hospital patients has been studied, results proved hypothesis concerning time variables importance; in the second task graphical module has been examined using collected data from the hospital patients both normal and with different cardio-vascular disease, and the results show good detection power of the algorithm.

    At the end of the project presentation has been done and report has been published.

    This project has been done in collaboration with the biggest medical institute in Sweden – Karolinska Institute - and results will be used in medical practice in Karolinska University Hospital in Huddinge and for future scientific needs.

     

  • 2.
    Najar, salwan
    KTH, School of Technology and Health (STH).
    Simulering av 1-Wire sensorer2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The 1-wire bus is a communication bus system which is designed to provide data, signals and power over a single signal with low data rates, a high resolution and a long range. It is typically used to communicate with small inexpensive devices, as temperature sensors, which is worked as a slave with the master computer (PC).

    The 1-wire bus system provides the sufficient control and operation signal, a unique ID serial number of each sensor and it supports multiple temperature sensors by a driving power (Parasite Power) on single line.

    On the 1-Wire bus system, temperature sensors are supplied by two types of power supplies, external Power supply and Parasitic Power.

    The aim of this project is to program the microprocessor (Arduino) by using Arduino programming language to work as a temperature sensor type DS18B20 and also as a slave on the 1-Wire bus system.

    This report explains the 1-Wire bus system techniques and how the communication is achieved between the master and the slave (sensors) to measure the temperature values.

    The measured temperature values are collected from the output of each active sensor on the 1-Wire bus. These data are displayed by the personal computer (PC) which is worked as a master on the 1-Wire bus, and the data are represent the measured temperature values from twelve active sensors on the bus system.

    In this thesis, the temperature values from the 12 active sensors can be read and displayed on the master (PC) by using the following programs: Open Logger One Wire (OLOW) program, One Wire Viewer, DigiTemp and OWFS and I validated all the temperature values from these active sensors which are read and monitored by the drive bus programs. The comparison is done among the measured temperature values to see if the active sensors are given accurate temperature values with different drive bus programs.

    The project shows that the sensors can be connected in a network with the master, by using 1-Wire bus techniques. This thesis will be used by Karolinska University Hospital, and it can also be developed for different requirements in the future.

  • 3.
    Svantesson, Oscar
    KTH, School of Technology and Health (STH), Medical Engineering.
    Software platform for gait evaluation using MATLAB and off-the-shelf MEMS sensors2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis presents a real time software program written in MATLAB using off-the-self MEMS sensors from Shimmer-Research®. Parallel to the software development, a proof of concept was conducted using the produced program to quantify stride length, stride length variance and stride time for patients diagnosed with Parkinson's disease. Results from testing showed that the system measured the mean stride length error to 2.4% of stride length and a standard deviation of 13.7% of stride length. Results from testing further showed a stride time error of 2.70% of individual stride times with a standard deviation of 1.89%. The system shows promise as a pedagogical, gait analysis training tool for physiotherapists as well as in academic teaching. The system is flexible and data processing functions can be readily re-programmed with other or additional processing features while maintaining user feedback, storage and plotting functionalities implemented in the current version of the program. 

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf