Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Berndtsson, Andreas
    Abtahi, Shirin
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Development and preliminary evaluation of an Android based heart rate variability biofeedback system2014In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, IEEE conference proceedings, 2014, p. 3382-3385Conference paper (Refereed)
    Abstract [en]

    The reduced Heart Rate Variability (HRV) is believed to be associated with several diseases such as congestive heart failure, diabetes and chronic kidney diseases (CKD). In these cases, HRV biofeedback may be a potential intervention method to increase HRV which in turn is beneficial to these patients. In this work, a real-time Android biofeedback application based on a Bluetooth enabled ECG and thoracic electrical bioimpedance (respiration) measurement device has been developed. The system performance and usability have been evaluated in a brief study with eight healthy volunteers. The result demonstrates real-time performance of system and positive effects of biofeedback training session by increased HRV and reduced heart rate. Further development of the application and training protocol is ongoing to investigate duration of training session to find an optimum length and interval of biofeedback sessions to use in potential interventions.

  • 2. Abtahi, Farhad
    et al.
    Forsman, Mikael
    Diaz-Olivazrez, Jose A.
    KTH, School of Technology and Health (STH).
    Yang, Liyun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics.
    Lu, Ke
    KTH, School of Technology and Health (STH).
    Eklund, Jörgen
    KTH, School of Technology and Health (STH).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH).
    Seoane, Fernando
    Teriö, Heikki
    Mediavilla Martinez, Cesar
    Aso, Santiago
    Tiemann, Christian
    Big Data & Wearable Sensors Ensuring Safety and Health @Work2017In: GLOBAL HEALTH 2017, The Sixth International Conference on Global Health Challenges, 2017Conference paper (Refereed)
    Abstract [en]

    —Work-related injuries and disorders constitute a major burden and cost for employers, society in general and workers in particular. We@Work is a project that aims to develop an integrated solution for promoting and supporting a safe and healthy working life by combining wearable technologies, Big Data analytics, ergonomics, and information and communication technologies. The We@Work solution aims to support the worker and employer to ensure a healthy working life through pervasive monitoring for early warnings, prompt detection of capacity-loss and accurate risk assessments at workplace as well as self-management of a healthy working life. A multiservice platform will allow unobtrusive data collection at workplaces. Big Data analytics will provide real-time information useful to prevent work injuries and support healthy working life

  • 3.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Aslamy, Benjamin
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Boujabir, Imaneh
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    An Affordable ECG and Respiration Monitoring System Based on Raspberry PI and ADAS1000: First Step towards Homecare Applications2015In: 16th Nordic-Baltic Conference on Biomedical Engineering: 16. NBC & 10. MTD 2014 joint conferences. October 14-16, 2014, Gothenburg, Sweden, Springer, 2015, p. 5-8Conference paper (Refereed)
    Abstract [en]

    Homecare is a potential solution for problems associated with an aging population. This may involve several physiological measurements, and hence a flexible but affordable measurement device is needed. In this work, we have designed an ADAS1000-based four-lead electrocardiogram (ECG) and respiration monitoring system. It has been implemented using Raspberry PI as a platform for homecare applications. ADuM chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 and IEC 60950 for patient safety. The result proved the potential of Raspberry PI for the design of a compact, affordable, and medically safe measurement device. Further work involves developing a more flexible software for collecting measurements from different devices (measuring, e.g., blood pressure, weight, impedance spectroscopy, blood glucose) through Bluetooth or user input and integrating them into a cloud-based homecare system.

  • 4.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Löfgren, Nils
    Elimination of ECG Artefacts in Foetal EEG Using Ensemble Average Subtraction and Wavelet Denoising Methods: A Simulation2014In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, Springer, 2014, p. 551-554Conference paper (Refereed)
    Abstract [en]

    Biological signals recorded from surface electrodes contain interference from other signals which are not desired and should be considered as noise. Heart activity is especially present in EEG and EMG recordings as a noise. In this work, two ECG elimination methods are implemented; ensemble average subtraction (EAS) and wavelet denoising methods. Comparison of these methods has been done by use of simulated signals achieved by adding ECG to neonates EEG. The result shows successful elimination of ECG artifacts by using both methods. In general EAS method which remove estimate of all ECG components from signal is more trustable but it is also harder for implementation due to sensitivity to noise. It is also concluded that EAS behaves like a high-pass filter while wavelet denoising method acts as low-pass filter and hence the choice of one method depends on application.

  • 5.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Buendia, Ruben
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Cole Function and Conductance-Based Parasitic Capacitance Compensation for Cerebral Electrical Bioimpedance Measurements2012In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, San Diego: IEEE press , 2012, p. 3368-3371Conference paper (Refereed)
    Abstract [en]

    One of the most common measurement artifacts present in Electrical Bioimpedance Spectroscopy measurements (EBIS) comes from the capacitive leakage effect resulting from parasitic stray capacitances. This artifact produces a deviation in the measured impedance spectrum that is most noticeable at higher frequencies. The artifact taints the spectroscopy measurement increasing the difficulty of producing reliable EBIS measurements at high frequencies. In this work, an approach for removing such capacitive influence from the spectral measurement is presented making use of a novel method to estimate the value of the parasitic capacitance equivalent that causes the measurement artifact. The proposed method has been tested and validated theoretically and experimentally and it gives a more accurate estimation of the value of the parasitic capacitance than the previous methods. Once a reliable value of parasitic capacitance has been estimated the capacitive influence can be easily compensated in the EBIS measured data. Thus enabling analysis of EBIS data at higher frequencies, i.e. in the range of 300-500 kHz like measurements intended for cerebral monitoring, where the characteristic frequency is remarkably higher than EBIS measurements i.e. within the range 30 to 50 kHz, intended for body composition assessment.

  • 6.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Electrical Bioimpedance cerebral monitoring. Preliminary results from measurements on stroke patients2012In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE , 2012, p. 126-129Conference paper (Refereed)
    Abstract [en]

    Electrical Bioimpedance Spectroscopy (EBIS) is currently used in different tissue characterization applications. In this work we aim to use EBIS to study changes in electrical properties of the cerebral tissues after an incident of hemorrhage/ischemic stroke. To do so a case-control study was conducted using six controls and three stroke cases. The preliminary results of this study show that by using Cole-based analysis on EBIS measurements and analyzing the Cole parameters R0 and R∞, it is possible to detect changes on electrical properties of cerebral tissue after stroke. 

  • 7.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Study of the dynamics of transcephalic cerebral impedance data during cardio-vascular surgery2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), Institute of Physics (IOP), 2013, Vol. 434, no 1, p. 012045-Conference paper (Refereed)
    Abstract [en]

    Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.

  • 8.
    Cuba-Gyllensten, Illapha
    et al.
    KTH, School of Technology and Health (STH). Philips Research Europe, High Tech. Campus 34, 5656AE, Eindhoven, Netherlands; ACTLab., Signal Processing Systems, TU Eindhoven, 5600MB Eindhoven, Netherlands.
    Abtahi, Farhad
    Philips Research Europe, High Tech. Campus 34, 5656AE, Eindhoven, Netherlands.
    Bonomi, Alberto G.
    KTH, School of Technology and Health (STH).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems. University of Borås, Sweden.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems. Karolinska Institute, Sweden.
    Amft, O.
    ACTLab., Signal Processing Systems, TU Eindhoven, 5600MB Eindhoven, Netherlands.
    Removing respiratory artefacts from transthoracic bioimpedance spectroscopy measurements2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), Institute of Physics Publishing (IOPP), 2013, Vol. 434, no 1Conference paper (Refereed)
    Abstract [en]

    Transthoracic impedance spectroscopy (TIS) measurements from wearable textile electrodes provide a tool to remotely and non-invasively monitor patient health. However, breathing and cardiac processes inevitably affect TIS measurements, since they are sensitive to changes in geometry and air or fluid volumes in the thorax. This study aimed at investigating the effect of respiration on Cole parameters extracted from TIS measurements and developing a method to suppress artifacts. TIS data were collected from 10 participants at 16 frequencies (range: 10 kHz - 1 MHz) using a textile electrode system (Philips Technologie Gmbh). Simultaneously, breathing volumes and frequency were logged using an electronic spirometer augmented with data from a breathing belt. The effect of respiration on TIS measurements was studied at paced (10 and 16 bpm) deep and shallow breathing. These measurements were repeated for each subject in three different postures (lying down, reclining and sitting). Cole parameter estimation was improved by assessing the tidal expiration point thus removing breathing artifacts. This leads to lower intra-subject variability between sessions and a need for less measurements points to accurately assess the spectra. Future work should explore algorithmic artifacts compensation models using breathing and posture or patient contextual information to improve ambulatory transthoracic impedance measurements.

  • 9. Ferreira, J.
    et al.
    Seoane, Fernando
    School of Engineering, University of Borås, Borås 501 90, Sweden .
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Portable bioimpedance monitor evaluation for continuous impedance measurements: Towards wearable plethysmography applications2013In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, p. 559-562Conference paper (Refereed)
    Abstract [en]

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  • 10.
    Ferreira, Javier
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    AD5933-based electrical bioimpedance spectrometer: Towards textile-enabled applications2011In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, Vol. 2011, p. 3282-3285Conference paper (Refereed)
    Abstract [en]

    Advances on System-On-Chip and Textile technology allows the development of Textile-enabled measurement instrumentation. Textile Electrodes (Textrodes) have been proven reliable for performing Electrical Bioimpedance Spectroscopy (EBIS) measurements, and the availability of a integrated circuit impedance spectrometer, the AD5933, has allowed the implementation of small size EBIS spectrometers. In this work an AD5933-based spectrometer has been implemented, and its performance on 2R1C circuits and for tetrapolar total right side EBIS measurements has been compared against the commercially available spectrometer SFB7. The study has been focused on the working upper frequency range and the estimation of the Cole parameters required for assessment of body fluid distribution: R(0) and R(∞). The results indicate that AD5933-based spectrometer implemented in this work can perform accurate impedance measurements well above the upper limits recommended in the datasheet. The AD5933-EBIS presents a good performance compared with the SFB7 on the 2R1C circuit and the total right side measurements, showing a smaller error in the resistance spectrum and small deviation error in the reactance when measuring over 270 kHz. The comparison on the Cole parameters estimation obtained with the SFB7 and the AD5933-based spectrometer exhibit a difference below 1% for the estimation of R(0) and R(∞). Consequently the overall measurement performance shown by the implemented AD5933-based spectrometer suggests its feasible use for EBIS measurements using dry Textrodes. This is of special relevance for the proliferation of EBI-based personalized health monitoring systems for patients that require to monitor the distribution of body fluids, like in dialysis.

  • 11.
    Marquez, Juan Carlos
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Ferreira, Javier
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Buendia, Ruben
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Textile electrode straps for wrist-to-ankle bioimpedance measurements for Body Composition Analysis: Initial validation & experimental results2010In: 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), IEEE Engineering in Medicine and Biology Society , 2010, p. 6385-6388Conference paper (Refereed)
    Abstract [en]

    Electrical Bioimpedance (EBI) is one of the non-invasive monitoring technologies that could benefit from the emerging textile based measurement systems. If reliable and reproducible EBI measurements could be done with textile electrodes, that would facilitate the utilization of EBI-based personalized healthcare monitoring applications. In this work the performance of a custom-made dry-textile electrode prototype is tested. Four-electrodes ankle-to-wrist EBI measurements have been taken on healthy subjects with the Impedimed spectrometer SFB7 in the frequency range 5 kHz to 1 MHz. The EBI spectroscopy measurements taken with dry electrodes were analyzed via the Cole and Body Composition Analysis (BCA) parameters, which were compared with EBI measurements obtained with standard electrolytic electrodes. The analysis of the obtained results indicate that even when dry textile electrodes may be used for EBI spectroscopy measurements, the measurements present remarkable differences that influence in the Cole parameter estimation process and in the final production of the BCA parameters. These initial results indicate that more research work must be done to in order to obtain a textile-based electrode that ensures reliable and reproducible EBI spectroscopy measurements.

  • 12.
    Marquez, Juan Carlos
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Skin-electrode contact area in electrical bioimpedance spectroscopy. Influence in total body composition assessment2011In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, IEEE Engineering In Medicine and Biology Society , 2011, Vol. 2011, p. 1867-1870Conference paper (Refereed)
    Abstract [en]

    Electrical Bioimpedance Spectroscopy (EBIS) has been widely used for assessment of total body composition and fluid distribution. (EBIS) measurements are commonly performed with electrolytic electrodes placed on the wrist and the ankle with a rather small skin-electrode contact area. The use of textile garments for EBI requires the integration of textrodes with a larger contact area surrounding the limbs in order to compensate the absence of electrolytic medium commonly present in traditional Ag/AgCl gel electrodes. Recently it has been shown that mismatch between the measurements electrodes might cause alterations on the EBIS measurements. When performing EBIS measurements with textrodes certain differences have been observed, especially at high frequencies, respect the same EBIS measurements using Ag/AgCl electrodes. In this work the influence of increasing the skin-electrode area on the estimation of body composition parameters has been studied performing experimental EBIS measurement. The results indicate that an increment on the area of the skin-electrode interface produced noticeable changes in the bioimpedance spectra as well as in the body composition parameters. Moreover, the area increment showed also an apparent reduction of electrode impedance mismatch effects. This influence must be taken into consideration when designing and testing textile-enable EBIS measurement systems.

  • 13. Marquez, Juan Carlos
    et al.
    Seoane, Fernando
    Välimäki, Elina
    University of Borås.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Comparison of dry-textile electrodes for electrical bioimpedance spectroscopy measurements2010Conference paper (Refereed)
    Abstract [en]

    Textile Electrodes have been widely studied for biopotentials recordings, specially for monitoring the cardiac activity. Commercially available applications, such as Adistar T-shirt and Textronics Cardioshirt, have proved a good performance for heart rate monitoring and are available worldwide. Textile technology can also be used for Electrical Bioimpedance Spectroscopy measurements enabling home and personalized health monitoring applications however solid ground research about the measurement performance of the electrodes must be done prior to the development of any textile-enabled EBI application. In this work a comparison of the measurement performance of two different types of dry-textile electrodes and manufacturers has been performed against standardized RedDot 3M Ag/AgCl electrolytic electrodes. 4-Electrode, whole body, Ankle-to-Wrist EBI measurements have been taken with the Impedimed spectrometer SFB7 from healthy subjects in the frequency range of 3kHz to 500kHz. Measurements have been taken with dry electrodes at different times to study the influence of the interaction skin-electrode interface on the EBI measurements. The analysis of the obtained complex EBI spectra shows that the measurements performed with textile electrodes produce constant and reliable EBI spectra. Certain deviation can be observed at higher frequencies and the measurements obtained with Textronics and Ag/AgCl electrodes present a better resemblance. Textile technology, if successfully integrated it, may enable the performance of EBI measurements in new scenarios allowing the rising of novel wearable monitoring applications for home and personal care as well as car safety.

  • 14.
    Pau, Ivan
    et al.
    Universidad Politecnica de Madrid.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Lindecrantz, Kaj
    Valero, Miguel Angel
    Universidad Politecnica de Madrid.
    Carracedo, Justo
    Universidad Politecnica de Madrid.
    Home e-health system integration in the Smart Home through a common media server.2009In: EMBC: 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, Vol. 2009, p. 6171-6174Conference paper (Refereed)
    Abstract [en]

    Home e-health systems and services are revealed as one of the most important challenges to promote Quality of Life related to Health in the Information Society. Leading companies have worked on e-health systems although the majority of them are addressed to hospital or primary care settings. The solution detailed in this paper offers a personal health system to be integrated with Smart Home services platform to support home based e-care. Thus, the home e-health system and architecture detailed in this research work is ready to supply a seamless personal care solution both from the biomedical data analysis, service provision, security guarantee and information management s point of view. The solution is ready to be integrated within the Accessible Digital Home, a living lab managed by Universidad Politécnica de Madrid for R&D activities.

  • 15.
    Seoane, Fernando
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Bragós, Ramon
    Technical University of Catalonia.
    Lindecrantz, Kaj
    Current Source for Wideband Electrical Bioimpedance Spectroscopy Based on a Single Operational Amplifier2006In: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6 / [ed] Kim, SI; Suh, TS, 2006, p. 707-710Conference paper (Refereed)
    Abstract [en]

    Traditionally, measurements of electrical bioimpedance for medical diagnostic purposes have used only low frequencies, usually below 100 kHz. The analysis focused only on the resistive part of the impedance; very often at low frequencies the reactive part of the impedance is negligible. Recent studies of the electrical bioimpedance spectrum, both real and imaginary parts, have indicated new potential applications e.g. detection of meningitis, skin cancer assessment and brain cellular edema detection. An important functional unit in a wideband impedance spectrometer is the current source used to inject the current into the tissue under study. A current source must provide an output current virtually constant over the frequency range of interest and independent of the load at the output. Several designs have been proposed over the years but the performance of them all degraded markedly near bellow 1 MHz e.g. Ackmann in 1993, Bragos et al in 1994 and Bertemes-Filho et al in 2000. The development of electronic technology has made available devices that allow us to obtain a current source with large output impedance, larger than 100 k Omega, above I MHz and based in a simple single Op-Amp circuit topology. Simulation results and experimental measurements are compared and the most important parameters of the VCCS are analytically studied and experimentally tested, including the dependency to changes in the circuit elements and the incidence of the Op-Amp parameters on the current source features.

  • 16.
    Seoane, Fernando
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Ferreira, Javier
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Buendia, Ruben
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Adaptive frequency distribution for Electrical Bioimpedance Spectroscopy measurements2012In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE , 2012, p. 562-565Conference paper (Refereed)
    Abstract [en]

    This paper presents a novel frequency distribution scheme intended to provide more accurate estimations of Cole parameters. Nowadays a logarithmic frequency distribution is mostly used in Electrical Bioimpedance Spectroscopy (EBIS) applications. However it is not optimized following any criterion. Our hypothesis is that an EBIS signal contains more information where the variation of the measurement regarding the frequency is larger; and that there ought to be more measuring frequencies where there is more information. Results show that for EBIS data with characteristic frequencies up to 200 kHz the error obtained with both frequency distribution schemes is similar. However, for EBIS data with higher values of characteristic frequency the error produced when estimating the values from EBIS measurements using an adaptive frequency distribution is smaller. Thus it may useful for EBIS applications with high values of characteristic frequency, e.g. cerebral bioimpedance.

  • 17.
    Seoane, Fernando
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Lindecrantz, Kaj
    Influence of the Skull and the Scalp on the Electrical Impedance of the Head and the Implications on Detection of Brain Cellular Edema2005In: IFMBE proceedings of the 12th International Conference on Biomedical Engineering, Singapore: Springer , 2005Conference paper (Refereed)
  • 18.
    Seoane, Fernando
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Rempfer, Markus
    University of Borås.
    Marquez, Juan Carlos
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Textile-enabled Instrumentation for Impedance Cardiographic Signals2011Conference paper (Other academic)
  • 19.
    Yang, Liyun
    et al.
    KTH, School of Technology and Health (STH).
    Lu, Ke
    Abtahi, Farhad
    Lindecrantz, Kaj
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics.
    Seoane, Fernando
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics.
    Forsman, Mikael
    Institute of Environmental Medicine, Karolinska Institutet.
    Eklund, Jörgen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics.
    A pilot study of using smart clothes for physicalworkload assessment2017In: JOY AT WORK, Lund, Sweden, 2017, p. 169-170Conference paper (Refereed)
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf