Change search
Refine search result
1234 1 - 50 of 152
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aare, Magnus
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Evaluation of head response to ballistic helmet impacts, using FEM2003Conference paper (Refereed)
  • 2.
    Aare, Magnus
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Halldin, Peter
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Proposed global injury thresholds for oblique helmet impacts2003Conference paper (Refereed)
  • 3. Abtahi, Farhad
    et al.
    Forsman, Mikael
    Diaz-Olivazrez, Jose A.
    KTH, School of Technology and Health (STH).
    Yang, Liyun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Ergonomics.
    Lu, Ke
    KTH, School of Technology and Health (STH).
    Eklund, Jörgen
    KTH, School of Technology and Health (STH).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH).
    Seoane, Fernando
    Teriö, Heikki
    Mediavilla Martinez, Cesar
    Aso, Santiago
    Tiemann, Christian
    Big Data & Wearable Sensors Ensuring Safety and Health @Work2017In: GLOBAL HEALTH 2017, The Sixth International Conference on Global Health Challenges, 2017Conference paper (Refereed)
    Abstract [en]

    —Work-related injuries and disorders constitute a major burden and cost for employers, society in general and workers in particular. We@Work is a project that aims to develop an integrated solution for promoting and supporting a safe and healthy working life by combining wearable technologies, Big Data analytics, ergonomics, and information and communication technologies. The We@Work solution aims to support the worker and employer to ensure a healthy working life through pervasive monitoring for early warnings, prompt detection of capacity-loss and accurate risk assessments at workplace as well as self-management of a healthy working life. A multiservice platform will allow unobtrusive data collection at workplaces. Big Data analytics will provide real-time information useful to prevent work injuries and support healthy working life

  • 4.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Ji, Guangchao
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lu, Ke
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Rodby, Kristian
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype2015In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, IEEE , 2015, Vol. 2015, p. 3121-3124Conference paper (Refereed)
    Abstract [en]

    Heart rate variability (HRV) biofeedback is a method based on paced breathing at specific rate called resonance frequency by giving online feedbacks from user respiration and its effect on HRV. Since the HRV is also influence by different factors like stress and emotions, stress related to an unfamiliar measurement device, cables and skin electrodes may cover the underling effect of such kind of intervention. Wearable systems are usually considered as intuitive solutions which are more familiar to the end-user and can help to improve usability and hence reducing the stress. In this work, a prototype of a knitted garment using intarsia technique is developed and evaluated. Results show the satisfactory level of quality for Electrocardiogram and thoracic electrical bioimpedance i.e. for respiration monitoring as a part of HRV biofeedback system. Using intarsia technique and conductive yarn for making the connection instead of cables will reduce the complexity of fabrication in textile production and hence reduce the final costs in a final commercial product. Further development of garment and Android application is ongoing and usability and efficiency of final prototype will be evaluated in detail.

  • 5.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Aslamy, Benjamin
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Boujabir, Imaneh
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    An Affordable ECG and Respiration Monitoring System Based on Raspberry PI and ADAS1000: First Step towards Homecare Applications2015In: 16th Nordic-Baltic Conference on Biomedical Engineering: 16. NBC & 10. MTD 2014 joint conferences. October 14-16, 2014, Gothenburg, Sweden, Springer, 2015, p. 5-8Conference paper (Refereed)
    Abstract [en]

    Homecare is a potential solution for problems associated with an aging population. This may involve several physiological measurements, and hence a flexible but affordable measurement device is needed. In this work, we have designed an ADAS1000-based four-lead electrocardiogram (ECG) and respiration monitoring system. It has been implemented using Raspberry PI as a platform for homecare applications. ADuM chips based on iCoupler technology have been used to achieve electrical isolation as required by IEC 60601 and IEC 60950 for patient safety. The result proved the potential of Raspberry PI for the design of a compact, affordable, and medically safe measurement device. Further work involves developing a more flexible software for collecting measurements from different devices (measuring, e.g., blood pressure, weight, impedance spectroscopy, blood glucose) through Bluetooth or user input and integrating them into a cloud-based homecare system.

  • 6.
    Abtahi, Farhad
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Löfgren, Nils
    Elimination of ECG Artefacts in Foetal EEG Using Ensemble Average Subtraction and Wavelet Denoising Methods: A Simulation2014In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, Springer, 2014, p. 551-554Conference paper (Refereed)
    Abstract [en]

    Biological signals recorded from surface electrodes contain interference from other signals which are not desired and should be considered as noise. Heart activity is especially present in EEG and EMG recordings as a noise. In this work, two ECG elimination methods are implemented; ensemble average subtraction (EAS) and wavelet denoising methods. Comparison of these methods has been done by use of simulated signals achieved by adding ECG to neonates EEG. The result shows successful elimination of ECG artifacts by using both methods. In general EAS method which remove estimate of all ECG components from signal is more trustable but it is also harder for implementation due to sensitivity to noise. It is also concluded that EAS behaves like a high-pass filter while wavelet denoising method acts as low-pass filter and hence the choice of one method depends on application.

  • 7.
    Alvarez, Victor S
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Importance of Windscreen Modelling Approach for Head Injury Prediction2016In: 2016 IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury, 2016Conference paper (Refereed)
    Abstract [en]

    The objective of this study is to evaluate the capability of two modelling approaches in capturing  both accelerations and deformations from head impacts, and to evaluate the effect of modelling approach on  brain injury prediction. The first approach is a so‐called smeared technique, in which the properties of the two  glass  sheets and  the intermediate  polyvinyl  butyral  (PVB) are  combined and  divided into  two  coinciding  shell layers, of which one can fracture. The second approach consists of three shell layers, representing the glass and  PVB,  separated by  the  distance of  their  thickness, using a non‐local  failure criterion  to initiate  fracture in  the  glass.  The  two  modelling  approaches  are  compared  to  impact  experiments  of  flat  circular  windscreens,  measuring  deformations  and  accelerations  as  well  as  accelerations  from  impacts  against  full  vehicle  windscreens.  They  are  also  used  to  study  head‐to‐windscreen  impacts  using  a  detailed  Finite  Element  (FE)  model,  varying  velocity,  impact  direction  and  impact  point.  Only  the  non‐local  failure  model  is  able  to  adequately  capture  both  the accelerations and  deformations  of an  impactor. The FE  head model  simulations  also reveal that the choice of modelling approach has a large effect on the both localisation of the strain in the  brain and the characteristics of the strain‐time curve, with a difference in peak strain between 8% and 40%.  

  • 8.
    Asplund, Maria
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Hamedi, Mahiar
    Inganäs, Olle
    Forchheimer, Robert
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Neural microcontacts with wire electrodes and woven logic2007Conference paper (Refereed)
  • 9.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Buendia, Ruben
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS) (Closed 20130701).
    Cole Function and Conductance-Based Parasitic Capacitance Compensation for Cerebral Electrical Bioimpedance Measurements2012In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, San Diego: IEEE press , 2012, p. 3368-3371Conference paper (Refereed)
    Abstract [en]

    One of the most common measurement artifacts present in Electrical Bioimpedance Spectroscopy measurements (EBIS) comes from the capacitive leakage effect resulting from parasitic stray capacitances. This artifact produces a deviation in the measured impedance spectrum that is most noticeable at higher frequencies. The artifact taints the spectroscopy measurement increasing the difficulty of producing reliable EBIS measurements at high frequencies. In this work, an approach for removing such capacitive influence from the spectral measurement is presented making use of a novel method to estimate the value of the parasitic capacitance equivalent that causes the measurement artifact. The proposed method has been tested and validated theoretically and experimentally and it gives a more accurate estimation of the value of the parasitic capacitance than the previous methods. Once a reliable value of parasitic capacitance has been estimated the capacitive influence can be easily compensated in the EBIS measured data. Thus enabling analysis of EBIS data at higher frequencies, i.e. in the range of 300-500 kHz like measurements intended for cerebral monitoring, where the characteristic frequency is remarkably higher than EBIS measurements i.e. within the range 30 to 50 kHz, intended for body composition assessment.

  • 10.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Electrical Bioimpedance cerebral monitoring. Preliminary results from measurements on stroke patients2012In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE , 2012, p. 126-129Conference paper (Refereed)
    Abstract [en]

    Electrical Bioimpedance Spectroscopy (EBIS) is currently used in different tissue characterization applications. In this work we aim to use EBIS to study changes in electrical properties of the cerebral tissues after an incident of hemorrhage/ischemic stroke. To do so a case-control study was conducted using six controls and three stroke cases. The preliminary results of this study show that by using Cole-based analysis on EBIS measurements and analyzing the Cole parameters R0 and R∞, it is possible to detect changes on electrical properties of cerebral tissue after stroke. 

  • 11.
    Atefi, Seyed Reza
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Study of the dynamics of transcephalic cerebral impedance data during cardio-vascular surgery2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), Institute of Physics (IOP), 2013, Vol. 434, no 1, p. 012045-Conference paper (Refereed)
    Abstract [en]

    Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.

  • 12.
    Ayllon, David
    et al.
    Department of Signal Theory and Communications.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Gil-Pita, Roberto
    Department of Signal Theory and Communications.
    Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements: A comparative study2009In: EMBC: 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, Buenos Aires: IEEE Engineering in Medicine and Biology , 2009, p. 3779-3782Conference paper (Refereed)
    Abstract [en]

    Since there are several applications of Electrical Bioimpedance (EBI) that use the Cole parameters as base of the analysis, to fit EBI measured data onto the Cole equation is a very common practice within Multifrequency-EBI and spectroscopy. The aim of this paper is to compare different fitting methods for EBI data in order to evaluate their suitability to fit the Cole equation and estimate the Cole parameters. Three of the studied fittings are based on the use of Non-Linear Least Squares on the Cole model, one using the real part only, a second using the imaginary part and the third using the complex impedance. Furthermore, a novel fitting method done on the impedance plane, without using any frequency information has been implemented and included in the comparison. Results show that the four methods perform relatively well but the best fitting in terms of standard error of estimate is the fitting obtained from the resistance only. The results support the possibility of measuring only the resistive part of the bioimpedance to accurately fit Cole equation and estimate the Cole parameters, with entailed advantages.

  • 13. Azar, J.C.
    et al.
    Hamid Muhammed, Hamed
    KTH, School of Technology and Health (STH), Medical Engineering.
    Automated Tracking of the Carotid Artery in Ultrasound Image Sequences Using a Self Organizing Neural Network2010In: Proceedings of 20th International Conference on Pattern Recognition (ICPR 2010), Istanbul, Turkey, Istanbul, Turkey, 2010, p. 2548-2551Conference paper (Refereed)
    Abstract [en]

    An automated method for the segmentation and tracking of moving vessel walls in 2D ultrasound image sequences is introduced. The method was tested on simulated and real ultrasound image sequences of the carotid artery. Tracking was achieved via a self organizing neural network known as Growing Neural Gas. This topology-preserving algorithm assigns a net of nodes connected by edges that distributes itself within the vessel walls and adapts to changes in topology with time. The movement of the nodes was analyzed to uncover the dynamics of the vessel wall. By this way, radial and longitudinal strain and strain rates have been estimated. Finally, wave intensity signals were computed from these measurements. The method proposed improves upon wave intensity wall analysis, WIWA, and opens up a possibility for easy and efficient analysis and diagnosis of vascular disease through noninvasive ultrasonic examination.

  • 14.
    Batool, Nazre
    KTH, School of Technology and Health (STH).
    Detection and Spatial Analysis of Hepatic Steatosis in Histopathology Images using Sparse Linear Models2016In: 2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    Hepatic steatosis is a defining feature of nonalcoholic fatty liver disease, emerging with the increasing incidence of obesity and metabolic syndrome. The research in image-based analysis of hepatic steatosis mostly focuses on the quantification of fat in biopsy images. This work furthers the image-based analysis of hepatic steatosis by exploring the spatial characteristics of fat globules in whole slide biopsy images after performing fat detection. An algorithm based on morphological filtering and sparse linear models is presented for fat detection. Then the spatial properties of detected fat globules in relation to the hepatic anatomical structures of central veins and portal tracts are explored. The test dataset consists of 38 high resolution images from 21 patients. The experimental results provide an insight into the size distributions of fat globules and their location with respect to the anatomical structures.

  • 15. Beillas, P.
    et al.
    Petit, P.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Kirscht, S.
    Chawla, A.
    Jolivet, E.
    Faure, F.
    Praxl, N.
    Bhaskar, A.
    Specifications of a software framework to position and personalise human body models2015In: 2015 IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury, International Research Council on the Biomechanics of Injury , 2015, p. 594-595Conference paper (Refereed)
  • 16.
    Bergholm, Fredrik
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering.
    Hamid Muhammed, Hamed
    KTH, School of Technology and Health (STH), Medical Engineering.
    Larsolle, A.
    Acquiring instantaneous multispectral imagery using a single image sensor with multiple filter mosaic2007Conference paper (Other academic)
  • 17. Bora, K.
    et al.
    Chowdhury, Manish
    KTH, School of Technology and Health (STH).
    Mahanta, L. B.
    Kundu, M. K.
    Das, A. K.
    Pap smear image classification using convolutional neural network2016In: ACM International Conference Proceeding Series, Association for Computing Machinery , 2016Conference paper (Refereed)
    Abstract [en]

    This article presents the result of a comprehensive study on deep learning based Computer Aided Diagnostic techniques for classification of cervical dysplasia using Pap smear images. All the experiments are performed on a real indigenous image database containing 1611 images, generated at two diagnostic centres. Focus is given on constructing an effective feature vector which can perform multiple level of representation of the features hidden in a Pap smear image. For this purpose Deep Convolutional Neural Network is used, followed by feature selection using an unsupervised technique with Maximal Information Compression Index as similarity measure. Finally performance of two classifiers namely Least Square Support Vector Machine (LSSVM) and Softmax Regression are monitored and classifier selection is performed based on five measures along with five fold cross validation technique. Output classes reflects the established Bethesda system of classification for identifying pre-cancerous and cancerous lesion of cervix. The proposed system is also compared with two existing conventional systems and also tested on a publicly available database. Experimental results and comparison shows that proposed system performs efficiently in Pap smear classification.

  • 18. Brown, Shannon
    et al.
    Ortiz-Catalan, Max
    Petersson, Joel
    Rodby, Kristian
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Computer and Electronic Engineering. University of Borås, Sweden.
    Intarsia-Sensorized Band and Textrodes for Real-Time Myoelectric Pattern Recognition2016In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS / [ed] Patton, J Barbieri, R Ji, J Jabbari, E Dokos, S Mukkamala, R Guiraud, D Jovanov, E Dhaher, Y Panescu, D Vangils, M Wheeler, B Dhawan, AP, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 6074-6077, article id 7592114Conference paper (Refereed)
    Abstract [en]

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  • 19.
    Brown, Shannon
    et al.
    Högskolan i Borås.
    Ortiz-Catalan, Max
    Chalmers University of Technology.
    Petersson, Joel
    Högskolan i Borås.
    Rödby, Kristian
    Högskolan i Borås.
    Seoane, Fernando
    KTH, School of Technology and Health (STH). Högskolan i Borås, Akademin för vård, arbetsliv och välfärd.
    Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition2016In: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 6074-6077Conference paper (Refereed)
  • 20.
    Buendia, Ruben
    et al.
    School of Engineering, University of Borås.
    Gil-Pita, Roberto
    Department of Theory of the Signal and Communications, University of Alcala, Madrid, Spain.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Cole parameter estimation from total right side electrical bioimpedance spectroscopy measurements: Influence of the number of frequencies and the upper limit2011In: 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, p. 1843-1846Conference paper (Refereed)
    Abstract [en]

    Applications based on measurements of Electrical Bioimpedance Spectroscopy (EBIS) analysis are proliferating. The most spread and known application of EBIS is the non-invasive assessment of body composition. Fitting to the Cole function to obtain the Cole parameters, R<sub>0</sub> and R<sub>&#x221E;</sub>, is the core of the EBIS analysis to obtain the body fluid distribution. An accurate estimation of the Cole parameters is essential for the Body Composition Assessment (BCA) and the estimation process depends on several factors. One of them is the upper frequency limit used for the estimation and the other is the number of measured frequencies in the measurement frequency range. Both of them impose requirements on the measurement hardware, influencing largely in the complexity of the bioimpedance spectrometer. In this work an analysis of the error obtained when estimating the Cole parameters with several frequency ranges and different number of frequencies has been performed. The study has been done on synthetic EBIS data obtained from experimental Total Right Side (TRS) measurements. The results suggest that accurate estimations of R<sub>0</sub> and R<sub>&#x221E;</sub> for BCA measurements can be achieved using much narrower frequency ranges and quite fewer frequencies than electrical bioimpedance spectrometers commercially available nowadays do.

  • 21.
    Buendia, Ruben
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Harris, Matthew
    Phillips Research.
    Caffarel, Jeniffer
    Phillips Research.
    Gil-Pita, Roberto
    Department of Theory of the Signal and Communications, University of Alcala, Madrid, Spain.
    Hook Effect correction & resistance-based Cole fitting prior Cole model-based analysis: Experimental validation2010In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, IEEE Engineering in Medicine and Biology , 2010, p. 6563-6566Conference paper (Refereed)
    Abstract [en]

    The analysis of measurements of Electrical Bioimpedance (EBI) is on the increase for performing non-invasive assessment of health status and monitoring of pathophysiological mechanisms. EBI measurements might contain measurements artefacts that must be carefully removed prior to any further analysis. Cole model-based analysis is often selected when analysing EBI data and might lead to miss-conclusion if it is applied on data contaminated with measurement artefacts. The recently proposed Correction Function to eliminate the influence of the Hook Effect from EBI data and the fitting to the real part of the Cole model to extract the Cole parameters have been validated on experimental measurements. The obtained results confirm the feasible experimental use of these promising pre-processing tools that might improve the outcome of EBI applications using Cole model-based analysis.

  • 22.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH).
    Jörgens, Daniel
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Wang, Chunliang
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. KTH, School of Technology and Health (STH), Medical Engineering, Medical Imaging.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Segmentation of Cortical Bone using Fast Level Sets2017In: MEDICAL IMAGING 2017: IMAGE PROCESSING / [ed] Styner, MA Angelini, ED, SPIE - International Society for Optical Engineering, 2017, article id UNSP 1013327Conference paper (Refereed)
    Abstract [en]

    Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.

  • 23.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH).
    Klintström, Benjamin
    KTH, School of Technology and Health (STH). Linköping University, Sweden.
    Klintström, E.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization. Linköping University, Sweden.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Granulometry-based trabecular bone segmentation2017In: 20th Scandinavian Conference on Image Analysis, SCIA 2017, Springer, 2017, Vol. 10270, p. 100-108Conference paper (Refereed)
    Abstract [en]

    The accuracy of the analyses for studying the three dimensional trabecular bone microstructure rely on the quality of the segmentation between trabecular bone and bone marrow. Such segmentation is challenging for images from computed tomography modalities that can be used in vivo due to their low contrast and resolution. For this purpose, we propose in this paper a granulometry-based segmentation method. In a first step, the trabecular thickness is estimated by using the granulometry in gray scale, which is generated by applying the opening morphological operation with ball-shaped structuring elements of different diameters. This process mimics the traditional sphere-fitting method used for estimating trabecular thickness in segmented images. The residual obtained after computing the granulometry is compared to the original gray scale value in order to obtain a measurement of how likely a voxel belongs to trabecular bone. A threshold is applied to obtain the final segmentation. Six histomorphometric parameters were computed on 14 segmented bone specimens imaged with cone-beam computed tomography (CBCT), considering micro-computed tomography (micro-CT) as the ground truth. Otsu’s thresholding and Automated Region Growing (ARG) segmentation methods were used for comparison. For three parameters (Tb.N, Tb.Th and BV/TV), the proposed segmentation algorithm yielded the highest correlations with micro-CT, while for the remaining three (Tb.Nd, Tb.Tm and Tb.Sp), its performance was comparable to ARG. The method also yielded the strongest average correlation (0.89). When Tb.Th was computed directly from the gray scale images, the correlation was superior to the binary-based methods. The results suggest that the proposed algorithm can be used for studying trabecular bone in vivo through CBCT.

  • 24.
    Chowdhury, Manish
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Rota Bulò, S.
    Moreno, Rodrigo
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    Kundu, M.K.
    Smedby, Örjan
    KTH, School of Technology and Health (STH), Medical Engineering, Medical Image Processing and Visualization.
    An Efficient Radiographic Image Retrieval System Using Convolutional Neural Network2016In: 2016 23rd International Conference on Pattern Recognition (ICPR), Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 3134-3139, article id 7900116Conference paper (Refereed)
    Abstract [en]

    Content-Based Medical Image Retrieval (CBMIR) is an important research field in the context of medical data management. In this paper we propose a novel CBMIR system for the automatic retrieval of radiographic images. Our approach employs a Convolutional Neural Network (CNN) to obtain high- level image representations that enable a coarse retrieval of images that are in correspondence to a query image. The retrieved set of images is refined via a non-parametric estimation of putative classes for the query image, which are used to filter out potential outliers in favour of more relevant images belonging to those classes. The refined set of images is finally re-ranked using Edge Histogram Descriptor, i.e. a low-level edge-based image descriptor that allows to capture finer similarities between the retrieved set of images and the query image. To improve the computational efficiency of the system, we employ dimensionality reduction via Principal Component Analysis (PCA). Experiments were carried out to evaluate the effectiveness of the proposed system on medical data from the “Image Retrieval in Medical Applications” (IRMA) benchmark database. The obtained results show the effectiveness of the proposed CBMIR system in the field of medical image retrieval.

  • 25.
    Cloots, Rudy J.H.
    et al.
    Eindhoven University of Technology, Department of Mechanical Engineering.
    van Dommelen, JAW
    Eindhoven University of Technology, Department of Mechanical Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Geers, Marc
    Eindhoven University of Technology, Department of Mechanical Engineering.
    Traumatic Brain Injury at Multiple Length Scales: Relating Diffuse Axonal Injury to Discrete Axonal Impairment2010In: 2010 INTERNATIONAL IRCOBI CONFERENCE ON THE BIOMECHANICS OF INJURY PROCEEDINGS, 2010, p. 119-130Conference paper (Refereed)
  • 26.
    Cuba-Gyllensten, Illapha
    et al.
    KTH, School of Technology and Health (STH). Philips Research Europe, High Tech. Campus 34, 5656AE, Eindhoven, Netherlands; ACTLab., Signal Processing Systems, TU Eindhoven, 5600MB Eindhoven, Netherlands.
    Abtahi, Farhad
    Philips Research Europe, High Tech. Campus 34, 5656AE, Eindhoven, Netherlands.
    Bonomi, Alberto G.
    KTH, School of Technology and Health (STH).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems. University of Borås, Sweden.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems. Karolinska Institute, Sweden.
    Amft, O.
    ACTLab., Signal Processing Systems, TU Eindhoven, 5600MB Eindhoven, Netherlands.
    Removing respiratory artefacts from transthoracic bioimpedance spectroscopy measurements2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), Institute of Physics Publishing (IOPP), 2013, Vol. 434, no 1Conference paper (Refereed)
    Abstract [en]

    Transthoracic impedance spectroscopy (TIS) measurements from wearable textile electrodes provide a tool to remotely and non-invasively monitor patient health. However, breathing and cardiac processes inevitably affect TIS measurements, since they are sensitive to changes in geometry and air or fluid volumes in the thorax. This study aimed at investigating the effect of respiration on Cole parameters extracted from TIS measurements and developing a method to suppress artifacts. TIS data were collected from 10 participants at 16 frequencies (range: 10 kHz - 1 MHz) using a textile electrode system (Philips Technologie Gmbh). Simultaneously, breathing volumes and frequency were logged using an electronic spirometer augmented with data from a breathing belt. The effect of respiration on TIS measurements was studied at paced (10 and 16 bpm) deep and shallow breathing. These measurements were repeated for each subject in three different postures (lying down, reclining and sitting). Cole parameter estimation was improved by assessing the tidal expiration point thus removing breathing artifacts. This leads to lower intra-subject variability between sessions and a need for less measurements points to accurately assess the spectra. Future work should explore algorithmic artifacts compensation models using breathing and posture or patient contextual information to improve ambulatory transthoracic impedance measurements.

  • 27. Cunico, F. J.
    et al.
    Marquez, Juan Carlos
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Hilke, H.
    Skrifvars, M.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Studying the performance of conductive polymer films as textile electrodes for electrical bioimpedance measurements2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), 2013, Vol. 434, no 1, p. 012027-Conference paper (Refereed)
    Abstract [en]

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  • 28.
    Fahlstedt, Madelen
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Baeck, Katrien
    Mechanical Engineering Department, Biomechanics Section, Katholieke Universiteit Leuven, Belgium.
    Halldin, Peter
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Vander Sloten, Jos
    Mechanical Engineering Department, Biomechanics Section, Katholieke Universiteit Leuven, Belgium.
    Goffin, Jan
    Mechanical Engineering Department, Biomechanics Section, Katholieke Universiteit Leuven, Belgium.
    Depreitere, Bart
    Mechanical Engineering Department, Biomechanics Section, Katholieke Universiteit Leuven, Belgium.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Influence of impact velocity and angle in a detailed reconstruction of a bicycle accident2012In: 2012 IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury, 2012, p. 787-799Conference paper (Refereed)
    Abstract [en]

    Bicycle accidents have become the most common cause of serious injury in the traffic during the last couple of years in Sweden. The objective of this study was to investigate the effect of the input variables, initial velocity and head orientation, of a bicycle accident reconstruction on the strain levels in the brain using a detailed FE head model. The accident involved a non-helmeted 68 year old male who sustained a linear skull fracture, contusions, acute subdural hematoma, and small bleeding at the swelling (subarachnoid blood). The orientation of the head just before impact was determined from the swelling appearing in the computer tomography (CT) scans. The head model used in this study was developed at the Royal Institute of Technology in Stockholm. The stress in the cranial bone, first principal strain in the brain tissue and acceleration were determined. The model was able to predict a strain pattern that correlated well with the medical images from the victim. The variation study showed that the tangential velocity had a large effect on the strain levels in the studied case. The strain pattern indicated larger areas of high strain with increased tangential velocity especially at the more superior sections.

  • 29.
    Fahlstedt, Madelen
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Halldin, Peter
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    S. Alvarez, Victor
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Medical Engineering, Neuronic Engineering.
    Influence of the Body and Neck on Head Kinematics and Brain Injury Risk in Bicycle Accident Situations2016In: IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury, International Research Council on the Biomechanics of Injury , 2016, p. 459-478Conference paper (Refereed)
    Abstract [en]

    Previous studies about the influence of the neck on head kinematics and brain injuries have shown different results. Today bicycle helmets are certified with only a headform in radial experiments but could be improved with oblique impacts. Then the question is how the helmet's performance will be affected by the neck and the rest of the body. Therefore, the objective of this study was to use finite element simulations to investigate the influence of the body on head kinematics and injury prediction in single bicycleaccident situations with and without a helmet. The THUMS-KTH model was used to study the difference between head only and full body. In total, a simulation matrix of 120 simulations was compared by altering initial impact posture, head protection, and muscle activation. The results show that the body in impacts against a hard surface can change the amplitudes and curve shapes of the kinematics and brain tissue strain. The study found an average ratio between head only and full body for peak brain tissue strain to be 1.04 (SD 0.11), for peak linear acceleration 1.06 (SD 0.04), for peak angular acceleration 1.08 (SD 0.09) and for peak angular velocity 1.05 (SD 0.13).

  • 30. Ferreira, J.
    et al.
    Seoane, Fernando
    School of Engineering, University of Borås, Borås 501 90, Sweden .
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Portable bioimpedance monitor evaluation for continuous impedance measurements: Towards wearable plethysmography applications2013In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, p. 559-562Conference paper (Refereed)
    Abstract [en]

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  • 31.
    Ferreira, Javier
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Lindecrantz, Kaj
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    AD5933-based electrical bioimpedance spectrometer: Towards textile-enabled applications2011In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011, Vol. 2011, p. 3282-3285Conference paper (Refereed)
    Abstract [en]

    Advances on System-On-Chip and Textile technology allows the development of Textile-enabled measurement instrumentation. Textile Electrodes (Textrodes) have been proven reliable for performing Electrical Bioimpedance Spectroscopy (EBIS) measurements, and the availability of a integrated circuit impedance spectrometer, the AD5933, has allowed the implementation of small size EBIS spectrometers. In this work an AD5933-based spectrometer has been implemented, and its performance on 2R1C circuits and for tetrapolar total right side EBIS measurements has been compared against the commercially available spectrometer SFB7. The study has been focused on the working upper frequency range and the estimation of the Cole parameters required for assessment of body fluid distribution: R(0) and R(∞). The results indicate that AD5933-based spectrometer implemented in this work can perform accurate impedance measurements well above the upper limits recommended in the datasheet. The AD5933-EBIS presents a good performance compared with the SFB7 on the 2R1C circuit and the total right side measurements, showing a smaller error in the resistance spectrum and small deviation error in the reactance when measuring over 270 kHz. The comparison on the Cole parameters estimation obtained with the SFB7 and the AD5933-based spectrometer exhibit a difference below 1% for the estimation of R(0) and R(∞). Consequently the overall measurement performance shown by the implemented AD5933-based spectrometer suggests its feasible use for EBIS measurements using dry Textrodes. This is of special relevance for the proliferation of EBI-based personalized health monitoring systems for patients that require to monitor the distribution of body fluids, like in dialysis.

  • 32.
    Ferreira, Javier
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Álvarez, L.
    Buendía, R.
    Ayllón, D.
    Llerena, C.
    Gil-Pita, R.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Bioimpedance-based wearable measurement instrumentation for studying the autonomic nerve system response to stressful working conditions2013In: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT), 2013, Vol. 434, no 1, p. 012015-Conference paper (Refereed)
    Abstract [en]

    The assessment of mental stress on workers under hard and stressful conditions is critical to identify which workers are not ready to undertake a mission that might put in risk their own life and the life of others. The ATREC project aims to enable Real Time Assessment of Mental Stress of the Spanish Armed Forces during military activities. Integrating sensors with garments and using wearable measurement devices, the following physiological measurements were recorded: heart and respiration rate, skin galvanic response as well as peripheral temperature. The measuring garments are the following: a sensorized glove, an upper-arm strap and a repositionable textrode chest strap system with 6 textrodes. The implemented textile-enabled instrumentation contains: one skin galvanometer, two temperature sensors, for skin and environmental, and an Impedance Cardiographer/Pneumographer containing a 1 channel ECG amplifier to record cardiogenic biopotentials. The implemented wearable systems operated accordingly to the specifications and are ready to be used for the mental stress experiments that will be executed in the coming phases of the project in healthy volunteers.

  • 33. Granåsen, G.
    et al.
    Grönlund, C.
    Öhberg, F.
    Lindberg, Frida
    KTH, School of Technology and Health (STH), Medical Engineering.
    Karlsson, J. S.
    Comparison between ultrasonic muscle strain and electromyography during an isometric ramp contraction2010In: World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, Springer Berlin/Heidelberg, 2010, Vol. 25/4, p. 1565-1567Conference paper (Refereed)
    Abstract [en]

    This study aims to explore multi modal relationships between ultrasonic muscle strain and electromyography (EMG). Canonical Correlation Analysis (CCA) is technique which can be used to explore multivariate associations between sets of variables. Multi-channel EMG and a spatial differentiated Tissue Velocity Imaging (TVI)-strain signal was compared from measurements on biceps brachii on eight subjects. A data analysis using CCA was then applied to obtain useful information of the relationship between signals.

  • 34.
    Grishenkov, Dmitry
    KTH, School of Technology and Health (STH), Medical Engineering.
    Three modality contrast imaging using multi-functionalized microballoons2011Conference paper (Refereed)
    Abstract [en]

    In vivo multimodality imaging is a fast growing field in medical research and, although the achievements at clinical level of this diagnostic method are recent, it is already one of the most promising approaches in the diagnosis of diseases in many research addressed medical centres. At present in this area, the USA plays the protagonist role as a result of the amount of resources engaged in the arena in the last decade. Both government and private companies agree, when considering the potential of this approach, that it is one of the foremost medical advancements as it will lead to early diagnosis of diseases with high impact on the societies of western countries. Multimodality imaging is currently viewed as a simple and powerful integration of two or more imaging methods (e.g. PET-CT). 3MICRON is an ambitious project which gathers some of the most advanced European medical and technical institutions together to address the design of new strategies in diagnostics, and to push the potential of medical imaging beyond the state-of-the-art. The multimodality approaches are supported by a class of next-generation micro/nanodevices called microballoons. These subsystems are able to implement the function of an ultrasound contrast agent with other imaging methods (SPECT, MRI). In the future, they may act as a minimally invasive drug delivery method and hyperthermia device. In 3MICRON, this multi-functional device will be tested in vitro and in vivo in order to assess bioclearance and cytoxicity effects toward high impact diseases, e.g. cardiovascular and inflammation pathologies. Finally, selected types of microballoons will undergo pre-clinical screening for a consolidated assessment of the “bench-to-bed” pathway for these new microdevices.

  • 35.
    Grishenkov, Dmitry
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering.
    Brodin, Lars-Åke
    KTH, School of Technology and Health (STH), Medical Engineering.
    Brismar, Torkel B.
    CLINTEC, Department of Radiology, Karolinska University Hospital.
    Paradossi, Gaio
    Dipartimento di Chimica, Università di Roma Tor Vergata.
    On comparison between polymer- and phospholipid-shelled microbubbles for contrast-enhanced ultrasound measurements of capillary microcirculation.2011In: Proceedings of the 34th Scandinavian Symposium on Physical Acoustics / [ed] Rolf J. Korneliussen, 2011Conference paper (Refereed)
    Abstract [en]

    The focus of contrast-enhanced ultrasound research has developed beyond visualizing the blood circulation to new areas such as perfusion and molecular imaging, drug and gene therapy. This work compares the application of polymer- and phospholipid-shelled ultrasound contrast agents (UCAs) employed for characterization of the capillary microcirculation. To quantify microcirculation destruction/replenishment technique with varied time intervals between destructive and monitoring pulses is used. The dependence of the peak-to-peak amplitude of backscattered wave versus pulse interval is fitted with an exponential function of the time y=A(1-exp(-βt)) , where A represents capillary volume and the time constant β represents velocity of the flow. Working under assumption that backscattered signal is linearly proportional to the microbubble concentration, for both types of the UCAs it is observed that capillary volume, A, is in linearly relationship with the concentration, and the flow velocity, β, remain unchanged. Using 500 µm diameter microtube as a vessel phantom a delay of about 0.25 s in evaluation of the perfusion characteristics is found for the phospholipid-shelled UCA, while polymer-shelled UCA provide response immediately. In conclusion, these results suggest that the novel polymer-shelled microbubbles have a potential to be used for perfusion evaluation.

  • 36.
    Grishenkov, Dmitry
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering.
    Paradossi, Gaio
    Diapartimento di Chimica, Università di Roma Tor Vergata.
    Assessment of ultrasound-induced fracture of polymer-shelled ultrasound contrast agents using superharmonic technique2012Conference paper (Refereed)
    Abstract [en]

    Ultrasound imaging techniques can be greatly improved by the use of ultrasound contrast agents. Knowledge of the peak negative pressure at which contrast agents fracture is paramount for the imaging application as well as for local drug delivery. Gasholdning microbubbles encapsulated into biocompatible poly vinyl alcohol shells are of particular interest for their enhanced shelf life and demonstratedchemical versatility. A gas core allows microbubbles to efficiently scatter ultrasound waves. In vitro ultrasound tests showed a sufficient enhancement of the backscattered power (25±1 dB), comparable to the soft tissue attenuation coefficients (0.8±0.04 dB/cm MHz) and phase velocities (1519±2 m/s). At temperature values between 24 and 37 °C the monotonic increase of the attenuation and phase velocity with frequency indicates that thick-shelled microbubbles do not resonate in a typical medical ultrasound frequency range of 1-15 MHz. In fact, they work as an amplifier of the incident acoustic wave. The novel approach based on detection of superharmonics (3f and 4f) is proposed for assessment of the fracture pressure threshold, Pthr. In vitro tests suggests that fatigue, i.e. accumulation of damage within the shell, is the major physical mechanism responsible for the fracturing process. It has been observed that there is a decrease of Pthr from 1.15±0.09 MPa to 0.9±0.05 MPa when the number of cycles in the pulse, N, increases from 6 to 12. It is worth noting that the reported pressure values are within clinically approved safety limits. The main conclusion to be drawn from our study is that superharmonic approach appears to be more sensitive in Pthr assessment than traditional second harmonic imaging. This claim is supported also by images acquired with a commercially available system, where contrast pulse sequencing technique, specific to third harmonic, is required for visualization of thick-shelled microbubbles.

  • 37.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Aare, Magnus
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Improved helmet design and test methods to reduce rotational induced brain injuries2003Conference paper (Refereed)
  • 38.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Aare, Magnus
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Reduced risk for DAI by use of a new safety helmet2003Conference paper (Refereed)
  • 39.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Improved helmet design and test methods to reduce rotational induced brain injuries2009Conference paper (Other (popular science, discussion, etc.))
  • 40.
    Halvorsen, Kjartan
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Brechbühl, Simon
    ETH Zurich, Switzerland.
    Minimal set of markers for center of mass estimation in gravitational fall2009In: Proceedings of the ISB XXII Congress, 2009Conference paper (Refereed)
  • 41.
    Halvorsen, Kjartan
    et al.
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Eriksson, Martin
    KTH, School of Technology and Health (STH), Medical sensors, signals and systems (MSSS).
    Nilsson, Johnny
    The Swedish School of Sport and Health Sciences.
    Tinmark, Fredrik
    The Swedish School of Sport and Health Sciences.
    Gullstrand, Lennart
    The Swedish Sport Confederation.
    The antero-posterior movement of the sacrum as an indicator of the antero-posterior movement of center of mass in running2011In: Proceedings of ECSS 16th Congress, 2011Conference paper (Refereed)
  • 42.
    Hamid Muhammed, Hamed
    KTH, School of Technology and Health (STH), Health Systems Engineering.
    Image Enhancement And Reduction Of Radiation Dose For Panoramic Dental X-Ray Imaging2013In: Swedish Medical Engineering Conference 2013, Medicinteknikdagarna 2013, 2013Conference paper (Other academic)
    Abstract [en]

    1.  Background Reducing the X-ray dose too much produces images with low quality; Noisy, blurred, faded, under exposed. The approach used in this work aims at enhancing image quality by using advanced  automatic image processing algorithms.

    2.  Purpose To minimize X-ray dose exposure during panoramic dental X-ray imaging, in addition to automatically enhancing the acquired X-ray images to achieve high quality images that can be viewed using ordinary monitors.

    3.  Method An automatic, adaptive image enhancement algorithm was developed and implemented on multi-core CPU as well as GPU to achieve real time performance.

    4.  ResultsThe method was tested on panoramic dental X-ray images acquired with varying radiation dose. The results were promising and indicated the possibility of obtaining diagnostically usable images using a reduced dose by 50%. A group of ten dentists and specialists evaluated the resulted images. Figure (1) shows a comparison between an enhanced panoramic dental X-ray acquired with reduced dose by 50% and an original (unprocessed) panoramic dental X-ray acquired with a standard dose.

    5.  Discussion and conclusionsThis study shows the possibility to achieve a number of goals that can lead to better patient safety and better healthcare in general, such as:Minimized X-ray dose to the patient, which can lead to reduced risk of physical damage (e.g. cancer) and psycological consequences (e.g. stress).Better image quality which can lead to better, faster and more accurate and confident diagnostic.The resulted enhanced images can be automatically produced without any noticeable waiting time and viewed using any ordinary monitor (LCD/LED TV or computer screens) without any need for any expensive/exclusive high-dynamic-range displays.

  • 43.
    Hamid Muhammed, Hamed
    KTH, School of Technology and Health (STH), Medical Engineering.
    Image Enhancement Combined with Reduction of X-Ray Dose During PCI-Operations2010Conference paper (Other academic)
  • 44.
    Hamid Muhammed, Hamed
    KTH, School of Technology and Health (STH), Health Systems Engineering, Systems Safety and Management.
    Optimization of radiation doses in panoramic X-ray examination using automated image processing2014In: IST 2014 - 2014 IEEE International Conference on Imaging Systems and Techniques, Proceedings, 2014, p. 361-364Conference paper (Refereed)
    Abstract [en]

    Radiological techniques based on X-rays are well established in medical diagnostics and there are known risks associated with the use of ionizing radiation like X-rays. That explains why the X-ray technology is constantly under development in the pursuit of new technologies that can contribute to reduce radiation dose to patients. Since the reduction of a radiation dose generally results in a poorer image quality, we have investigated whether the use of digital image processing can provide panoramic radiographs with enhanced image quality. An automated image processing algorithm was proposed and employed for this purpose. Panoramic X-ray examination is an important and common tool in dental radiology, used especially for children and teenagers. The technique is used to create an overview of a patient's jaw.

  • 45.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering.
    Bergholm, Fredrik
    KTH, School of Technology and Health (STH), Medical Engineering.
    Camera-spectrometer for instantaneous multi- and hyperspectral imaging2005Conference paper (Other academic)
  • 46.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering.
    Bergholm, Fredrik
    KTH, School of Technology and Health (STH), Medical Engineering.
    Camera-spectrometer for multi- and hyperspectral imaging2005Conference paper (Other academic)
  • 47.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Informatics, logistics and management (Closed 20130701).
    Kothapalli, Veeravenkata S
    KTH, School of Technology and Health (STH), Medical Engineering.
    Using Ultrasonic Spectrometry to Estimate the Stability of a Dental Implant Phantom2012Conference paper (Refereed)
  • 48.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Health Systems Engineering.
    Moustafa, A.N.
    KTH, School of Technology and Health (STH), Health Systems Engineering, Systems Safety and Management.
    Hassan, Moustapha
    Department of Laboratory Medicine, Karolinska University Hospital.
    Temperaturvariationsanalys för hudcancerscreening, Poster, Barncancerfondens tredje konferens2013In: Barncancerfondens tredje konferens: Medicinsk Teknik för Barn med Cancer, 2013Conference paper (Other academic)
    Abstract [sv]

    Den här studien visar att det är möjligt att detektera tydliga temperaturskillnader mellan cancervävnad och frisk vävnad. Detta kan vara ett resultat av både angiogenes (processen som leder till nybildning av blodkärl från de minsta befintliga blodkärl) och ökad ämnesomsättning hos cancerceller (medan cancertumörer formas) jämfört med friska normala celler, som ändrar och ökar intensiteten av den termiska IR-strålningen inom cancervävnads områden. Temperaturförändringarna detekterades genom mätningar av termisk IR-strålning inom våglängdsområdet 8-14 μm. Intensiva experiment utfördes på möss med hudcancer. Cancerområdet hade i genomsitt 0.3 – 0.5 °C högre temperatur än de friska grannområdena. Både kvalitativa och kvantitativa statistiska metoder användes för att analysera dessa mätningar. Analysresultaten verifierar användbarheten av att mäta termisk IR-strålning för att kunna detektera hudcancerområden.

  • 49.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Health Systems Engineering.
    Raghavendra, Jammalamadaka
    KTH, School of Technology and Health (STH).
    A New Approach for Rehabilitation and Upper-Limb Prosthesis Control Using Optomyography (OMG)2016In: THE 1ST 2016 INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (IBIOMED 2016), IEEE, 2016, p. 27-32Conference paper (Refereed)
    Abstract [en]

    Myoelectric (EMG) and mechano-myographic (MMG) signals recorded during muscular activities are useful not only for monitoring and assessing these activities but can also help in providing effective rehabilitation for disabled patients as well as constructing and controlling sophisticated prosthesis for various amputees. While the existing training methods using EMG and MMG signal data have compelling benefits, many engineering challenges still remain with regard to the sensory control system. Studies show that prosthesis' users support arguments considering the continued development of comfortable, reliable and better functionality of the sensors of the available applications. The aim of this paper is to study muscular activity by using an armband with embedded OptoMyoGraphy (OMG) sensors arranged as a one dimensional sensor array. The armband and the signals' acquisition system are designed and developed at the beginning of the research project. The used sensors are capable of measuring lateral dimensional changes, on the landscape formed by the skin surface, caused due to underlying muscles' activities around the forearm region. As a novel contribution, the paper discusses a possible methodology to control portable upper limb prosthetic devices using the OMG technique. Furthermore, the developed armband can be used as a biofeedback system for rehabilitation purposes in upper-limb amputees (ULAs) cases with below-the-forearm amputation and help them gain control over their remaining sensory-motor system and get rid of phantom and/or residual limb pain (PLP, RLP).

  • 50.
    Hamid Muhammed, Hamed
    et al.
    KTH, School of Technology and Health (STH), Health Systems Engineering.
    Raghavendra, Jammalamadaka
    KTH, School of Technology and Health (STH), Health Systems Engineering, Systems Safety and Management.
    Optomyography (OMG): A Novel Technique for the Detection of Muscle Surface Displacement Using Photoelectric Sensors2015In: Measurements - Proceedings of the 10th International Conference on Bioelectromagnetism, International Society for Bioelectromagnetism, 2015, Vol. 10Conference paper (Refereed)
    Abstract [en]

    Several techniques have been introduced for detecting, measuring, processing and analyzing the signals generated during muscular activities. With the development of more advanced technical solutions, the measurement and analysis of these signals help not only to understand the medical abnormalities and characterization of muscle activities but also to develop human machine interfaces of higher efficiency. In this work, a novel technique to detect and measure the displacement caused on the surface of the skin due to muscle activities was introduced and developed using near-infrared photoelectric sensors. The new technique was coined as OptoMyoGraphy (OMG). In order to evaluate the new technique, real-time pairs of signals were registered using two photoelectric sensors measuring near-infrared rays reflected on the forearm while moving the hand to make a number of different gestures. Different pairs of signals, changing over time and showing repeated patterns while repeating the same hand gesture, were measured for different hand gesture. The signal to noise ratio (SNR) of these signals was good enough to be able to differentiate among the pairs of signals which correspond to different hand gestures using visual inspection.

1234 1 - 50 of 152
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf