Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Antoni, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hed, Yvonne
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nordberg, Axel
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Nyström, Daniel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    One-pot dendritic growth and post-functionalization of multifunctional dendrimers: Synthesis and application2009Manuscript (preprint) (Other academic)
  • 2.
    Eriksson, Magnus G.
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Wikander, Jan
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    The use of virtual reality and haptic simulators for training and education of surgical skills2006In: Simulation in Healthcare: journal of the society for simulation in healthcare, ISSN 1559-2332Article in journal (Other academic)
  • 3.
    Ho, Johnson
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    The influence of the falx and tentorium: A 3D computational study of impacts using detailed FE head modelsManuscript (Other academic)
    Abstract [en]

    The influence of the falx and tentorium on biomechanics of the head during impact was studied in the current study with finite element analysis. A study of such has not been done previously in 3D. Three detailed 3D finite element models were created based on images of a healthy person with a normal size head. Two of the models contained the addition of falx and tentorium with different material properties. The models were subjected to coronal and sagittal rotational impulses applied to the skull. The acceleration of the impulse was large enough to theoretically induce diffuse axonal injuries (DAI). Strain distributions in the brain of the different models were compared and the findings indicated that the falx induced large strain to the surrounding brain tissues, especially to the corpus callosum in coronal rotation. The tentorium seemed to constrain motion of the cerebellum while inducing large strain in the brain stem in both rotations. Lower strains in the different lobes while higher strains in the brain stem and corpus callosum which are the classical site for DAI, were found in the model with falx and tentorium. The result indicated the need of modeling dura mater with non-linear elastic material model, which otherwise would have been too stiff. The non-sliding interface of the protruding dura mater is suspected to induce too large strains in adjacent areas and needed to investigate further.

  • 4.
    Kleiven, Svein
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Evaluation of Head Injury Criteria2002Report (Other academic)
  • 5.
    Nilsson, Mats
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Fryxell Westerberg, Annika
    Department Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
    Borg, Jörgen
    Department Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
    Wadell, Carl
    Bioservo Technologies AB, Kista, Sweden.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    A clinical study of a grip strengthening gloveManuscript (preprint) (Other academic)
  • 6.
    Nilsson, Mats
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Fryxell Westerberg, Annika
    Wadell, Carl
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Integrated Product Development.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Borg, Jörgen
    Grip strengthening glove to improve hand function in patients with neuromuscular disorders: A feasibility studyIn: Journal of NeuroEngineering and Rehabilitation, ISSN 1743-0003, E-ISSN 1743-0003Article in journal (Other academic)
  • 7.
    Nilsson, Mats
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Ingvast, Johan
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Wikander, Jan
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    The SEMGlove system for improving the grasping capabilityManuscript (preprint) (Other academic)
  • 8.
    Nilsson, Mats
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Nyberg, Tobias
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    An innovative electrophysiological device for rehabilitation of brain lesionsManuscript (preprint) (Other academic)
  • 9.
    Nilsson, Mats
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Nyberg, Tobias
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    EEG based control of a brain-computer interface for neuromuscular stimulationManuscript (preprint) (Other academic)
  • 10.
    Nordberg, Axel
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Antoni, Per
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Fibre reinforced Thiol-Ene patch fixation of bone fracturesManuscript (preprint) (Other academic)
  • 11.
    Nordberg, Axel
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Halldin, Peter
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Evaluation of fiber reinforced adhesive fixation of vertebral fractures; an experimental and numerical studyManuscript (preprint) (Other academic)
  • 12.
    Nordberg, Axel
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Montañez, Maria I.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Ramakrishnan, Subashiyni
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Higly adhesive DOPA primers for fibre reinforced Thiol-Ene patch fixation of bone fractures.Manuscript (preprint) (Other academic)
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf