Change search
Refine search result
1234 1 - 50 of 155
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adrian Meredith, Jenny
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Inhibitors Targeting the Aspartic Proteases HIV-1 PR and BACE-12009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the synthesis of molecules designed for inhibition of two aspartic proteases, viral HIV-1 PR and human BACE-1. It also reports on the structure activity relationships of the targeted enzyme inhibitors.

    It is estimated that currently 33 million people are infected with HIV, the causative agent of AIDS. The virus targets T-lymphocytes and macrophages of the human immune system. The HIV-1 PR plays an important role in the viral replication, and by inhibiting the enzyme the disease progression can be slowed down or even halted.

    Herein is reported the design and synthesis of a series of HIV-1 PR inhibitors with novel P2 substituents of which several inhibit the enzyme in the nanomolar range. The aim of the second work was to further develop the inhibitors by the introduction of fluorine. Several attempts were performed to fluorinate different P2-substituents.

    Alzheimer’s disease (AD) is neurodegenerative, progressive and fatal disorder of the brain. It is associated with accumulation of plaques and tangles that cause impairment and functional decline of brain tissue which result in loss of memory and cognition. The plaques are mainly constituted of amyloid-β peptides that are generated in two steps from the amyloid precursor protein (APP). The cleavage sequence is initiated by the aspartic protease BACE-1, which makes the enzyme a key target in the effort of finding a therapy that aim to slow down the progression of AD.

    Herein are enclosed the development of two series of potent BACE-1 inhibitors. In the first work a synthetic strategy was developed to truncate a previously reported hydroxyethylene core structure in order to generate more drug-like inhibitors. This generated a series of truncated inhibitors where two amide bonds have been replaced with an ether - or alternatively a secondary amine linkage. A number of these inhibitors show potency against BACE-1. In the second part of the work the aim was investigate the effect of alterations in the P1 position. Five scaffolds with new P1 substituents were designed, synthesized and coupled with two different P2-P3 substituents. This resulted in a series of potent inhibitors that inhibit BACE-1 in the nanomolar range.

  • 2.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Amino Acid Derived Rhodium Complexes: On the Origin of Enantioselectivity and Enantioswitchability2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 42, p. 11197-11209Article in journal (Refereed)
    Abstract [en]

    Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. Catalysts containing thioamide ligands derived from L-valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L-valine-based hydroxamic acids or hydrazides facilitated the formation of the (S)-alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide-based catalyst systems demonstrate a pseudo-first-order dependence on the substrate, whereas pseudo-zero-order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate-limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate-limiting step of the catalytic reduction reaction.

  • 3.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Livendahl, Madeleine
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fine-tuning catalytic activity and selectivity-[Rh(amino acid thioamide)] complexes for efficient ketone reduction2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 46, p. 6321-6324Article in journal (Refereed)
    Abstract [en]

    Amino acid-derived thioamides are prepared and evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. It is found that increasing the steric bulk at the C-terminus of the ligand had a positive impact on both activity and selectivity in the reduction reaction. In order to find the optimum catalyst, a study is performed on a series of thioamide ligands having substituents of varying size.

  • 4.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines: insights into the mechanism2009In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 351, no 16, p. 2657-2666Article in journal (Refereed)
    Abstract [en]

    The isomerisation of alkenols followed by reaction with aldehydes or N-tosylimines catalysed by rhodium complexes has been studied. The catalytically active rhodium complex is formed in situ from commercially available (cyclooctadiene)rhodium(l) chloride dimer [Rh(COD)Cl](2). The tandem process affords aldol and Mannich-type products in excellent yields. The key to the success of the coupling reaction is the activation of the catalysts by reaction with postassium tert-butoxide (t-BuOK), which promotes a catalytic cycle via alkoxides rather than rhodium hydrides. This mechanism minimises the formation of unwanted by-products. The mechanism has been studied by (1)H NMR spectroscopy and deuterium labelling experiments.

  • 5.
    Andersson, Hans
    Umeå University, Faculty of Science and Technology, Chemistry.
    Reaction Between Grignard reagents and Heterocyclic N-oxides: Synthesis of Substituted Pyridines, Piperidines and Piperazines2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the development of new synthetic methodologies for preparation of bioactive interesting compounds, e.g. substituted pyridines, piperidines or piparazines. Thesecompounds are synthesized from commercially available, cheap and easily prepared reagents, videlicet the reaction between Grignard reagents and heterocyclic N-oxides.

     The first part of this thesis deals with an improvement for synthesis of dienal-oximes and substituted pyridines. This was accomplished by a rapid addition of Grignard reagents to pyridine N-oxides at rt. yielding a diverse set of substituted dienal-oximes. During these studies, it was observed that the obtained dienal-oxmies are prone to ring-close upon heating. By taking advantage of this, a practical synthesis of substituted pyridines was developed.

    In the second part, an ortho-metalation of pyridine N-oxides using Grignard reagents is discussed. The method can be used for incorporation of a range of different electrophiles, including aldehydes, ketones and halogens. Furthermore, the importance for incorporation of halogens are exemplified through a Suzuki–Miyaura coupling reaction of 2-iodo pyridine N-oxides and different boronic acids. Later it was discovered that if the reaction temperature is kept below -20 °C, the undesired ringopening can be avoided. Thus, the synthesis of 2,3-dihydropyridine N-oxide, by reacting Grignard reagents with pyridine N-oxides at -40 °C followed by sequential addition of aldehyde or ketone, was accomplished. The reaction provides complete regio- and stereoselectivity yielding trans-2,3-dihydropyridine N-oxides in good yields. These intermediate products could then be used for synthesis of either substituted piperidines, by reduction, or reacted in a Diels–Alder cycloaddtion to give the aza-bicyclo compound.

    In the last part of this thesis, the discovered reactivity for pyridine N-oxides, is applied on pyrazine N-oxides in effort to synthesize substituted piperazines. These substances are obtained by the reaction of Grignard reagents and pyrazine N-oxides at -78 °C followed by reduction and protection, using a one-pot procedure. The product, a protected piperazine, that easily can be orthogonally deprotected, allowing synthetic modifications at either nitrogens in a fast and step efficient manner. Finally, an enantioselective procedure using a combination of PhMgCl and (-)-sparteine is discussed, giving opportunity for a stereoselective synthesis of substituted piperazines.

  • 6.
    Andersson, Samir
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zou, Dapeng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Rong
    Sun, Shiguo
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Light driven formation of a supramolecular system with three CB 8 s locked between redox-active Ru(bpy)(3) complexes2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 17, p. 3605-3609Article in journal (Refereed)
    Abstract [en]

    Three CB[8]s have been reversibly locked between two Ru(bpy)(3)-viologen complexes by light driven electron transfer reactions.

  • 7. Andersson, Samir
    et al.
    Zou, Dapeng
    Zhang, Rong
    Sun, Shiguo
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Selective positioning of CB[8] on two linked viologens and electrochemically driven movement of the host molecule2009In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 8, p. 1163-1172Article in journal (Refereed)
  • 8.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Larsson, Johanna M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selander, Nicklas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pincer complex-catalyzed redox coupling of alkenes with iodonium salts via presumed palladium(IV) intermediates2009In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 11, no 13, p. 2852-2854Article in journal (Refereed)
    Abstract [en]

    Palladium pincer complexes directly catalyze the redox coupling reactions of functionalized alkenes and iodonium salts. The catalytic process, which is suitable for mild catalytic functionalization of allylic acetates and electron-rich alkenes, probably occurs through Pd(IV) intermediates. Due to the strong metal−ligand interactions, the oxidation of phosphine and amine ligands of the pincer complexes can be avoided in the presented reactions.

  • 9.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Building molecular complexity via tandem Ru-catalyzed reactions of allylic alcohols2009Licentiate thesis, comprehensive summary (Other academic)
  • 10.
    Bartoszewicz, Agnieszka
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Building molecular complexity via tandem Ru-catalyzed isomerization/C-H activation2009In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 11, no 8, p. 1749-1752Article in journal (Refereed)
    Abstract [en]

    A tandem isomerization/C-H activation of allylic alcohols was performed using a catalytic amount of RUCl(2)(PPh(3))(3). A variety of ortho alkylated ketones have been obtained in excellent yields. This tandem process relies on an in situ generation of a carbonyl functional group that directs the ortho C-H bond activation.

  • 11.
    Bielawski, Marcin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient one-pot synthesis of bis(4-tert-butylphenyl)iodonium triflate2009In: Organic Syntheses, ISSN 0078-6209, Vol. 86, p. 308-314Article in journal (Refereed)
  • 12.
    Björklund, Catarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of BACE-1 Inhibitors: Novel Compounds Targeting an Aspartic Protease Important in the Pathogenesis of Alzheimer’s Disease2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the design and synthesis of protease inhibitors targeting the aspartic protease BACE-1 (β-site APP cleaving enzyme-1), an enzyme important in the pathogenesis of Alzheimer’s disease. The inhibitors are evaluated with respect to inhibition data, in a structure-activity relationship part.

    Alzheimer’s disease is a disabling, progressive and ultimately fatal form of dementia afflicting approximately 40 percent of the population over 80 years, with over 30 million people suffering from Alzheimer’s disease worldwide. This makes Alzheimer’s disease the most common form of dementia. The identification of the amyloid-β peptide (Aβ) as the main constituent of extracellular plaques, which characterize Alzheimer’s disease, suggests that Aβ plays a vital role in the pathology of Alzheimer’s disease. The formation of Aβ occurs when amyloid-β precursor protein (APP) is cleaved by β-secretase (BACE-1) and γ-secretase, which differ in length by 39-42 amino acids. This suggests that β-secretase is a suitable target for the development of therapeutics against Alzheimer’s disease.

    The synthetic work of this thesis comprises development of BACE-1 inhibitors containing a hydroxyethylene (HE) central core transition state isostere. The target molecules were readily synthesized from chiral carbohydrate starting materials. Highly potent inhibitors were produced by varying the substituents coupled to the HE central core. Selecting an aryloxymethyl P1 side-chain and a methoxy P1’ side-chain resulted in exceptionally potent BACE-1 inhibitors that also exhibit high selectivity over cathepsin D. In a further development, the ether oxygen linkage in the P1 side-chain was removed, resulting in a carba analogue, providing improved potency in a cell-based assay.

  • 13.
    Björklund Jansson, Marianne
    et al.
    RISE, Innventia.
    Nilvebrant, N. -O
    Wood Extractives2009In: Wood Chemistry and Wood Biotechnology, Walter de Gruyter, 2009, p. 147-171Chapter in book (Refereed)
  • 14.
    Bohman, Björn
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Cavonius, Lillie
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Unelius, C. Rikard
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Vegetables as biocatalysts in stereoselective hydrolysis of labile organic compounds2009In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 11, no 11, p. 1900-1905Article in journal (Refereed)
    Abstract [en]

    Hydrolysis of labile esters of beta-hydroxyketones has been performed with whole plant tissue from various vegetables. The pheromone 5-hydroxy-4-methyl-3-heptanone (1) was used as the model compound. Hydrolysis of acetates and benzoates of 1 was unsuccessful using normal conditions of ester hydrolysis, both by chemical hydrolysis and by the means of commercial lipases. When, however, whole cells of carrot, celery root, eggplant, parsley root, parsnip and potato were used as reagents, hydrolysis of the acetates was successful. At low conversion the hydrolysis was stereoselective and at total conversion virtually no formation of by-products was observed. The selectivity varied among the eight vegetables that were evaluated. Methods of preparation and substrate-to-plant ratio were examined. Furthermore, acetates and benzoates of three analogous compounds [5-hydroxy-3-heptanone (2), 5-hydroxy-5-methyl-3-heptanone (3) and 5-ethyl-6-hydroxy-4-octanone (4)] were hydrolyzed by potato and sweet potato to various degrees, indicating that the method is general for the mild and stereoselective hydrolysis of secondary beta-alkoxy-and beta-aryloxyketones.

  • 15.
    Bohman, Björn
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Unelius, C. Rikard
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Synthesis of all four stereoisomers of 5-hydroxy-4-methyl-3-heptanone using plants and oyster mushrooms2009In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 65, no 42, p. 8697-8701Article in journal (Refereed)
    Abstract [en]

    All four possible stereoisomers of 5-hydroxy-4-methyl-3-heptanone were synthesized from common achiral reagents using fast, straightforward organic synthesis, including the use of whole tissue of Daucus carota, Solanum melongena, and Pleurotus ostreatus.

  • 16.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Asymmetric Transformation of 1,4-diols and Preparation of Trans-2,5-Disubstituted pyrrolidines2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3237-3240Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,4-diols is carried out with Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase II (PS-C II), and a ruthenium catalyst. A β-chloro-substituted 1,4-diol is successfully transformed into an optically pure 1,4-diacetate, which is a highly useful synthetic intermediate. The usefulness of the optically pure 1,4-diacetates is demonstrated by the synthesis of enantiopure 2,5-disubstituted pyrrolidines.

  • 17. Bradley, Jean-Claude
    et al.
    Guha, Rajarshi
    Lang, Andrew
    Lindenbaum, Pierre
    Neylon, Cameron
    Williams, Antony
    Willighagen, Egon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
    Beautifying Data in the Real World2009In: Beautiful Data: The Stories Behind Elegant Data Solutions / [ed] Toby Segaran & Jeff Hammerbacher, Sebastol, USA: O'Reilly , 2009, 1, p. 259-278Chapter in book (Other (popular science, discussion, etc.))
  • 18.
    Buitrago, Elina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zani, Lorenzo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fe/NHC-catalyzed hydrosilylation of aromatic ketones2009In: Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, Washington, DC: American Chemical Society , 2009Conference paper (Other academic)
  • 19.
    Burkhardt, Anja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Department of Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    (Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose O-benzyloxime2009In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. E65, no Part 3, p. o633-o633Article in journal (Refereed)
  • 20.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric synthesis via combined metal and enzyme catalysis2009In: 3rd Hellenic Symposium on Organic Synthesis, October 15-17, 2009, Athens, Greece: Abstracts of papers, Athens, 2009Conference paper (Other academic)
  • 21.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium- and ruthenium-catalyzed redox reactions in selective organic synthesis2009In: Abstract of LOST II Symposium in honour of Prof. Alain Krief, March 18-20, 2009, Namur, Belgium, 2009Conference paper (Other academic)
  • 22.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pd- and Ru-catalyzed redox reactions in catalysis. Application to the combination with enzyme catalysis2009In: Abstract of 42nd Jahrestreffen Deutscher Katalytiker, March 11-13, 2009, Weimar, Germany, 2009Conference paper (Other academic)
  • 23.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Recent advances in the combination of metal and enzyme catalysis2009In: Abstract of the 10th Netherlands Catalysis and Chemistry Conference (NCCC-X), March 2-4, 2009, Noordwijkerhout, the Netherlands, 2009Conference paper (Other academic)
  • 24.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of carbasugar-containing non-glycosidically linked pseudodisaccharides and higher pseudooligosaccharides2009In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 344, no 17, p. 2285-2310Article, review/survey (Refereed)
  • 25.
    Cumpstey, Ian
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Alonzi, Dominic S.
    Butters, Terry D.
    Carbasugar-thioether pseudodisaccharides related to N-glycan biosynthesis2009In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 344, no 4, p. 454-459Article in journal (Refereed)
  • 26.
    Córdova, Armando
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramón
    The University of Barcelona, Departament Química Orgànica.
    Highly Z- and enantioselective ring-opening/cross-metathesis reactions and Z-selective ring-opening metathesis polymerization2009In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 48, no 47, p. 8827-8831Article in journal (Refereed)
  • 27. Daikoku, Shusaku
    et al.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanie, Osamu
    Analysis of a series of isomeric oligosaccharides by energy-resolved mass spectrometry: a challenge on homobranched trisaccharides2009In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 23, no 23, p. 3713-3719Article in journal (Refereed)
  • 28. Dammström, S.
    et al.
    Salmén, Lennart
    RISE, STFI-Packforsk.
    Gatenholm, P.
    On the interactions between cellulose and xylan, a biomimetic simulation of the hardwood cell wall2009In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 4, no 1, p. 3-14Article in journal (Refereed)
    Abstract [en]

    The plant cell wall exhibits a hierarchical structure, in which the organization of the constituents on different levels strongly affects the mechanical properties and the performance of the material. In this work, the interactions between cellulose and xylan in a model system consisting of a bacterial cellulose/glucuronoxylan (extracted from aspen, Populus tremula) have been studied and compared to that of a delignified aspen fiber material. The properties of the materials were analyzed using Dynamical Mechanical Analysis (DMA) with moisture scans together with dynamic Infra Red -spectroscopy at dry and humid conditions. The results showed that strong interactions existed between the cellulose and the xylan in the aspen holocellulose. The same kinds of interactions were seen in a water-extracted bacterial cellulose/xylan composite, while unextracted material showed the presence of xylan not interacting with the cellulose. Based on these findings for the model system, it was suggested that there is in hardwood one fraction of xylan that is strongly associated with the cellulose, taking a similar role as glucomannan in softwood.

  • 29.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic kinetic resolution of primary allenic alcohols. Application to the total synthesis and stereochemical assignment of striatisporolide A2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 17, p. 3379-3381Article in journal (Refereed)
  • 30.
    Dong, Hai
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Efficient Carbohydrate Synthesis By Intra- and Supramolecular Control2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The Lattrell-Dax method of nitrite-mediated substitution of carbohydrate triflates is an efficient method to generate structures of inverse configuration. In this study, the effects of the neighboring group on the Lattrell-Dax inversion were explored. A new carbohydrate/anion host-guest system was discovered and the ambident reactivity of the nitrite anion was found to cause a complicated behavior of the reaction. It has been demonstrated that a neighboring equatorial ester group plays a highly important role in this carbohydrate epimerization reaction, restricting the nitrite N-attack, thus resulting in O-attack only and inducing the formation of inversion compounds in good yields. Based on this effect, efficient synthetic routes to a range of carbohydrate structures, notably β-D-mannosides and β-D-talosides, were designed by use of double parallel and double serial inversion. A supramolecularly activated, triggered cascade reaction was also developed. This cascade reaction is triggered by a deprotonation process that is activated by anions. It was found that the anions can activate this reaction following their hydrogen bonding tendencies to the hydroxyl group in aprotic solvents.

  • 31.
    Dziedzic, Pawel
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Inorganic ammonium salts as catalysts for direct aldol reactions in the presence of water2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 52, p. 7242-7245Article in journal (Refereed)
  • 32. El-Sayed, Ashraf
    et al.
    Manning, Lee-Anne
    Unelius, C. Rikard
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Park, Kye-Chung
    Stringer, Lloyd
    White, Nicola
    Bunn, Barry
    Twidle, Andrew
    Suckling, Max
    Attraction and Antennal Response of the Common Wasp, Vespula vulgaris (L.), to Selected Synthetic Chemicals in New Zealand Beech Forests2009In: Pest Management Science, ISSN 1526-498X, E-ISSN 1526-4998, Vol. 65, no 9, p. 975-981Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The common wasp, Vespula vulgaris (L.), and the German wasp, Vespula germanica (F.), are significant problems in New Zealand beech forests (Nothofagus spp.), adversely affecting native birds and invertebrate biodiversity. This work was undertaken to develop synthetic attractants for these species to enable more efficient monitoring and management. RESULTS: Seven known wasp attractants (acetic acid, butyl butyrate, isobutanol, heptyl butyrate, octyl butyrate and 2,4-hexadienyl butyrate) were field tested, and only heptyl butyrate and octyl butyrate attracted significantly higher numbers of wasps than a non-baited trap. Accordingly, a series of straight-chain esters from methyl to decyl butyrate were prepared and field tested for attraction of social wasps. Peak biological activity occurred with hexyl butyrate, heptyl butyrate, octyl butyrate and nonyl butyrate. Polyethylene bags emitting approximately 18.4-22.6 mg day(-1) of heptyl butyrate were more attractive than polyethylene bags emitting approximately 14.7-16.8 mg day(-1) of heptyl butyrate in the field. Electroantennogram (EAG) studies indicated that queens and workers of V. vulgaris had olfactory receptor neurons responding to various aliphatic butyrates. CONCLUSION: These results are the first to be reported on the EAG response and the attraction of social wasps to synthetic chemicals in New Zealand beech forests and will enable monitoring of social wasp activity in beech forests. (C) 2009 Society of Chemical industry

  • 33.
    Engman, Mattias
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Chemo- and Enantioselective Hydrogenations: The Struggle of Expanding the Substrate Scope of Iridium Catalyzed Asymmetric Hydrogenations of Olefins2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The asymmetric hydrogenation of olefins is a facile and popular method of reaching chiral products. Whereas ruthenium- and rhodium-catalyzed asymmetric hydrogenations have a long history, the use of iridium in this area is new but fast-growing. Since the first chiral N,P-ligated iridium catalyst was created in the late 1990s, the growing pool of N,P ligands has filled up rapidly, but most have been tested with a limited range of standard olefins. To extract the full potential of these complexes, new methods using substrates having many possible applications must be developed. This thesis focuses on the iridium-catalyzed asymmetric hydrogenation of three different new substrate classes to yield very high conversions and enantiomeric excesses (ee's). As the use of fluorine has recently become common in many different fields of chemistry, the asymmetric reduction of fluoroolefins to reach chiral products having fluorine at the stereogenic centers is highly interesting. We studied this reaction and eventually obtained very high ee values and lower degree of defluorination (Paper I and Paper II). The hydrogenations of trifluoromethylated olefins to reach products useful in applications reaching from pharmaceuticals to additives in liquid crystal displays (LCDs) were also challenging, but fruitful (Paper III). As asymmetric hydrogenation usually demands differences in the substituents of the double bond, the highly selective reduction of 1,1-diaryl olefins having similar aryls give a new perspective on the broad scope of substrates that N,P-ligated iridium complexes can reduce selectively (paper IV).

  • 34.
    Erlandsson, Maria
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry.
    Imaging of Enzymes in the Steroid Biosynthetic Pathway: Synthesis of 18F-Labelled Tracers2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the synthesis and development of 18F-labelled alkyl etomidate and vorozole analogues, and their use as positron emission tomography (PET) tracers for the imaging of the steroid enzymes 11β-hydroxylase and aromatase. Two synthetic 18F-labelling approaches to the etomidate and vorozole analogues were developed, and the analogues were evaluated in some biological assays.

    The two-step labelling method was used to synthesise many compounds for biological evaluation. In the first step, a 18F-labelled intermediate based on a ditosylate or a halogenated diethyl ether was synthesised and used directly in the next alkylation step. The decay-corrected (d.c.) radiochemical yield was higher compared to other known two-step labelling methods.

    Once an appropriate candidate has been chosen for clinical evaluation, a one-step labelling method will be more suitable. We therefore developed a method based on precursors that had leaving groups at the end of their alkyl chains, and used these directly in the 18F-labelling synthesis. The one-step 18F-labelling synthesis required less reaction time and produced higher specific radioactivity and d.c. radiochemical yield than our two-step synthesis. With microwave heating, the reaction time was reduced to seconds and the d.c. radiochemical yield was better than that obtained with conventional heating. The one-step synthesis simplified the technical handling by allowing the tracer syntheses to be automated on the TRACERLab FXFN.

  • 35.
    Fjellander, Ester
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Szabó, Zoltán
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Moberg, Christina
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Atropoisomerism in Phosphepines and Azepines2009In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 74, no 23, p. 9120-9125Article in journal (Refereed)
    Abstract [en]

    Free energy barriers to biaryl tropoinversion in metal complexes with tropos phosphepine and azepine ligands were determined by temperature-dependent P-31 NMR inversion-transfer experiments and line shape analysis of the temperature-dependent H-1 NMR spectra, respectively. The barrier in the PdCl2 complex of the azepine ligand was found to be slightly higher than that of the corresponding free ligand. Studies of a tridentate azepine ligand Suggested that Configurational change takes place without prior decoordination from the metal.

  • 36. Forsum, Oskar
    et al.
    Näsholm, Torgny
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Transformation of Plants with D-Amino Acid Resistance Selectable Markers2009In: D-Amino Acids: Practical Methods and Protocols, Volume 4: Enzymes Involved in the Metabolism of D-Amino Acids / [ed] Ryuichi Konno, Hans Brückner, Antimo D'Aniello, George H. Fisher, Noriko Fujii and Hiroshi Homma, Hauppauge: Nova Science Publishers, Inc., 2009, p. 73-79Chapter in book (Other academic)
  • 37.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of carbadisaccharide mimics of galactofuranosides2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 36, p. 5142-5144Article in journal (Refereed)
  • 38.
    Gao, Yan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Liu, Jianhui
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nucleophilic attack of hydroxide on a MnV oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 25, p. 8726-8727Article in journal (Refereed)
  • 39. Georgieva, Polina
    et al.
    Wu, Qian
    McLeish, Michael J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The reaction mechanism of phenylethanolamine N-methyltransferase: A density functional theory study2009In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1794, no 12, p. 1831-1837Article in journal (Refereed)
  • 40.
    Grandin, Anna
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Synthetic Routes towards 2-thia-7,8-diaza-cyclopenta[l]phenanthrene and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene for Molecular Electronics Applications2009Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Electric current is known to flow through the π-bonds in oligothiophenes. In order to use them as molecular wires it is important to use a technique where the potential gradients can be generated and maintained in supramolecular networks. A solution to this problem can be the use of metal complexes as junction points within such a network.

     In this project pathways to synthesize 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) for use in molecular electronic devices have been investigated. 4-(5-Bromo-thiophen-2-yl)2,2’-bipyridine (3) was prepared via Kröhnke reaction from 3-(5-bromothiophene-2-yl)acrolein and 1-(2-Oxo-2-pyridine-2-yl-ethyl)-pyridinium iodide in an overall yield of 14 %.  

     Several routes towards 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) were tested. Since the original planned pathway did not work, lack of time made it impossible to complete the series of experiments that were needed. The synthesis of 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) is almost finished. Due to the solvation problems, after the decarboxylation step, the product could not be analyzed by 1H-NMR in a satisfactory manner. The product was sent for analysis.

     A number of experiments towards 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) were tested but few of them worked as planned. There is a lot of work left to be done in the synthesis of this compound but the lack of time made it impossible.

     The chemistry that has been achieved is the synthesis of 1,10-phenanthroline-5,6-dione in the synthesis of 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1). The following Hinsberg thiophene synthesis probably worked but due to solvation problems the product could not be isolated. The final product after hydrolysis and decarboxylation of the remaining ester groups after the Hinsberg thiophene synthesis was tested but the results were difficult to confirm.

     In the synthesis of 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) several attempts to make 3,4-diamino-N,N-diethyl-benzamide were made. The attack from the primary amines on the carbonyl carbon made it necessary to protect them. The attempt to synthesize 3,4-bis-acetylamino-N,N-diethyl-benzamide also failed, both the attempt directly from the carboxylic acid and through the acylchloride, even though the amines were protected.  

  • 41. Göransson, Ulf
    et al.
    Herrmann, Anders
    Burman, Robert
    Haugaard-Kedström (published under the name Haugaard-Jönsson), Linda M.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Rosengren, K. Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    The conserved Glu in the cyclotide cycloviolacin O2 has a key structural role2009In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 10, no 14, p. 2354-2360Article in journal (Refereed)
    Abstract [en]

    Cyclotides are a large family of plant peptides that are characterised by a head-to-tail circular backbone and three disulfide bonds that are arranged in a cystine knot. This unique structural feature, which is referred to as a cyclic cystine knot, gives the cyclotides remarkable stability against chemical and biological degradation. In addition to their natural function as insecticides for plant defence, the cyclotides have a range of bioactivities with pharmaceutical relevance, including cytotoxicity against cancer cell lines. A glutamic acid residue, aside from the invariable disulfide array, is the most conserved feature throughout the cyclotide family, and it has recently been shown to be crucial for biological activity. Here we have used solution-state NMR spectroscopy to determine the three-dimensional structures of the potent cytotoxic cyclotide cycloviolacin O2, and an inactive analogue in which this conserved glutamic acid has been methylated. The structures of the peptides show that the glutamic acid has a key structural role in coordinating a set of hydrogen bonds in native cycloviolacin O2; this interaction is disrupted in the methylated analogue. The proposed mechanism of action of cyclotides is membrane disruption and these results suggest that the glutamic acid is linked to cyclotide function by stabilising the structure to allow efficient aggregation in membranes, rather than in a direct interaction with a target receptor.

  • 42.
    Hammar, Peter
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Quantum Chemical Studies of Mechanisms and Stereoselectivities of Organocatalytic Reactions2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    As the field of organocatalysis is growing, it is becoming more important to understand the specific modes of action of these new organic catalysts. Quantum chemistry, in particular density functional theory, has proven very powerful in exploring reaction mechanisms as well as selectivities in organocatalytic reactions, and is the tool used in this thesis. Different reaction mechanisms of several organocatalytic reactions have been examined, and we have been able to exclude various reaction pathways based on the calculated reaction barriers. The origins of stereoselection in a number of reactions have been rationalized. The computational method has generally reproduced the experimental stereoselectivities satisfactorily.

    The amino acid-catalyzed aldol reaction has previously been established to go through an enamine intermediate. In the first study of this thesis the understanding of this kind of reactions has been expanded to the dipeptide-catalyzed aldol reaction. The factors governing the enantioselection have been studied, showing how the chirality of the amino acids controls the conformation of the transition state, thereby determining the configuration of the product.

    In the cinchona thiourea-catalyzed Henry reaction two reaction modes regarding substrate binding to the two sites of the catalyst have been investigated, showing the optimal arrangement for this reaction. This enabled the rationalization of the observed stereoselectivity.

    The hydrophosphination of α,β-unsaturated aldehydes was studied. The bulky substituent of the chiral prolinol-derived catalyst was shown to effectively shield one face of the reactive iminium intermediate, thereby inducing the stereoselectivity.

    The transfer hydrogenation of imines using Hantzsch esters as hydride source and axially chiral phosphoric acid catalyst has also been explored. A reaction mode where both the Hantzsch ester and the protonated imine are hydrogen bonded to the phosphoric acid is demonstrated to be the preferred mode of action. The different arrangements leading to the two enantiomers of the product are evaluated for several cases, including the hydride transfer step in the reductive amination of α-branched aldehydes via dynamic kinetic resolution.

    Finally, the intramolecular aldol reaction of ketoaldehydes catalyzed by guanidinebased triazabicyclodecene (TBD) has been studied. Different mechanistic proposals have been assessed computationally, showing that the favoured reaction pathway is catalyzed by proton shuttling. The ability of a range of guanidines to catalyze this reaction has been investigated. The calculated reaction barriers reproduced the experimental reactivities quite well.

  • 43. Hao, Yan
    et al.
    Yang, Xichuan
    Cong, Jiayan
    Tian, Haining
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Efficient near infrared D-pi-A sensitizers with lateral anchoring group for dye-sensitized solar cells2009In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 27, p. 4031-4033Article in journal (Refereed)
    Abstract [en]

    A new strategy in which the anchoring group is separated from the acceptor groups of the dyes was developed; among these dyes, the HY103 dye gives a maximum IPCE value of 86% at 660 nm and an eta value of 3.7% in the NIR region reported in DSCs.

  • 44.
    Haugaard-Kedström (published under the name Haugaard-Jönsson), Linda M.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Hossain, M. Akhter
    Daly, Norelle L.
    Bathgate, Ross A.D.
    Wade, John D.
    Craik, David J.
    Rosengren, K. Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Structural Properties of Relaxin Chimeras: NMR Characterization of the R3/I5 Relaxin Peptide2009In: Annals of the New York Academy of Sciences, ISSN 0077-8923, E-ISSN 1749-6632, Vol. 1160, p. 27-30Article in journal (Refereed)
    Abstract [en]

    Relaxin-3 interacts with high potency with three relaxin family peptide receptors (RXFP1, RXFP3, and RXFP4). Therefore, the development of selective agonist and antagonist analogs is important for in vivo studies characterizing the biological significance of the different receptor-ligand systems and for future pharmaceutical applications. Recent reports demonstrated that a peptide selective for RXFP3 and RXFP4 over RXFP1 can be generated by the combination of the relaxin-3 B chain with the A chain from insulin-like peptide 5 (INSL5), creating an R3/I5 chimera. We have used NMR spectroscopy to determine the three-dimensional structure of this peptide to gain structural insights into the consequences of combining chains from two different relaxins. The R3/I5 structure reveals a similar backbone conformation for the relaxin-3 B chain compared to native relaxin-3, and the INSL5 A chain displays a relaxin/insulin-like fold with two parallel helices. The findings indicate that binding and activation of RXFP3 and RXFP4 mainly require the B chain and that the A chain functions as structural support. RXFP1, however, demonstrates a more complex binding mechanism, involving both the A chain and the B chain. The creation of chimeras is a promising strategy for generating new structure-activity data on relaxins.

  • 45.
    Haugaard-Kedström (published under the name Haugaard-Jönsson), Linda M.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Hossain, M. Akhter
    Daly, Norelle L.
    Craik, David J.
    Wade, John D.
    Rosengren, K. Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Structure of the human insulin-like peptide 5 and characterization of conserved hydrogen bonds and electrostatic interactions within the relaxin framework2009In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 419, p. 619-627Article in journal (Refereed)
    Abstract [en]

    INSL5 (insulin-like peptide 5) is a two-chain peptide hormone related to insulin and relaxin. It was recently discovered through searches of expressed sequence tag databases and, although the fulfil biological significance of INSL5 is still being elucidated, high expression in peripheral tissues such as the colon, as well as in the brain and hypothalamus, suggests roles in gut contractility and neuroendocrine signalling. INSL5 activates the relaxin family peptide receptor 4 with high potency and appears to be the endogenous ligand for this receptor, on the basis of overlapping expression profiles and their apparent co-evolution. In the present Study, we have used solution-state NMR to characterize the three-dimensional structure of synthetic human INSL5. The structure reveals an insulin/relaxin-like fold with three helical segments that are braced by three disulfide bonds and enclose a hydrophobic core. Furthermore, we characterized in detail the hydrogen-bond network and electrostatic interactions between charged groups in INSL5 by NMR-monitored temperature and pH titrations and Undertook a comprehensive structural comparison with other members of the relaxin family, thus identifying the conserved structural features of the relaxin fold. The B-chain helix, which is the primary receptor-binding site of the relaxins, is longer in INSL5 than in its close relative relaxin-3. As this feature results in a different positioning of the receptor-activation domain Arg(B23) and Trp(B24), it may be an important contributor to the difference in biological activity observed for these two peptides. Overall, the structural Studies provide mechanistic insights into the receptor selectivity of this important family of hormones. 

  • 46. Hernández-Toribio, Jorge
    et al.
    Gómez Arrayás, Ramón
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carretero, Juan C.
    Catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with α,β-unsaturated ketones2009In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 11, no 2, p. 393-396Article in journal (Refereed)
  • 47.
    Hirner, Sebastian
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    New Methodologies in Organic Chemistry: Applications to the Synthesis of α-Amino Acids and Natural Products2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the development and application of new synthetic methodology in organic chemistry.

    The first part describes the development of a new protocol for the synthesis of 3-pyrrolines by means of a microwave-assisted ring-expansion reaction of 2-vinylaziridines. In addition, this methodology is implemented as a key-step in a formal total synthesis of the antibiotic (-)-anisomycin.

    In the second part, a new methodology for the synthesis of arylglycines from Weinreb amides is described. In this procedure, a Grignard reagent is added to the iminium ion formed from the Weinreb amide upon treatment with a base. When a chiral amide is used, the nucleophilic addition proceeds with high diastereoselectivity.

    Finally, an easy and straightforward synthesis of α-amino amides via a base-mediated rearrangement of modified Weinreb amides into N,O-acetals is presented. Subsequent arylation, alkylation, alkenylation or alkynylation of this intermediate affords the corresponding α-amino amides in excellent yields. Furthermore, a more generalized protocol for the α-arylation of Weinreb amides lacking an α-amino moiety is also discussed.

  • 48.
    Hirner, Sebastian
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Somfai, Peter
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Synthesis of alpha-Amino Amides via N,O-Acetals Derived from Weinreb Amides2009In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 74, no 20, p. 7798-7803Article in journal (Refereed)
    Abstract [en]

    An easy and straightforward synthesis of alpha-amino amides via a base-mediated rearrangement of modified Weinreb amides into N,O-acetals is presented. Subsequent arylation, alkylation, alkenylation, or alkynylation of this intermediate affords the corresponding alpha-amino amides in excellent yields. Furthermore, a more generalized protocol for the alpha-arylation of Weinreb amides lacking an alpha-amino moiety is also discussed.

  • 49. Hossain, M. Akhter
    et al.
    Bathgate, Ross A.D.
    Rosengren, K. Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Shabanpoor, Fazel
    Zhang, Suode
    Lin, Feng
    Tregear, Geoffrey W.
    Wade, John D.
    The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(B Delta 23-27)R/I5.2009In: Chemical Biology and Drug Design, ISSN 1747-0277, E-ISSN 1747-0285, Vol. 73, no 1, p. 46-52Article in journal (Refereed)
    Abstract [en]

    Relaxin-3, a member of the insulin superfamily, is involved in regulating stress and feeding behavior. It is highly expressed in the brain and is the endogenous ligand for the receptor RXFP3. As relaxin-3 also interacts with the relaxin receptor RXFP1, selective agonists and antagonists are crucial for studying the physiological function(s) of the relaxin-3/RXFP3 pair. The analog R3(B Delta 23-27)R/I5, in which a C-terminally truncated human relaxin-3 (H3) B-chain is combined with the INSL5 A-chain, is a potent selective RXFP3 antagonist and has an Arg residue remaining on the B-chain C-terminus as a consequence of the recombinant protein production process. To investigate the role of this residue in the RXFP3 receptor binding and activation, the analogs R3(B Delta 23-27)R/I5 and R3(B Delta 23-27)R containing the B-chain C-terminal Arg as well as R3(B Delta 23-27)/I5 and R3(B Delta 23-27), both lacking the Arg, were chemically assembled and their secondary structure and receptor activity assessed. The peptides generally had a similar conformation but those with the extra Arg residue displayed a significantly increased affinity for the RXFP3. Interestingly, in contrast to R3(B Delta 23-27)R and R3(B Delta 23-27)R/I5, the peptide R3(B Delta 23-27) is a weak agonist. This suggests that the C-terminal Arg, although increasing the affinity, alters the manner in which the peptide binds to the receptor and thereby prevents activation, giving R3(B Delta 23-27)R/I5 its potent antagonistic activity.

  • 50. Hossain, M. Akhter
    et al.
    Rosengren, K. Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Zhang, Suode
    Bathgate, Ross A.D.
    Tregear, Geoffrey W.
    van Lierop, Bianca J.
    Robinson, Andrea J.
    Wade, John D.
    Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 8, p. 1547-1553Article in journal (Refereed)
    Abstract [en]

    Replacement of disulfide bonds with non-reducible isosteres can be a useful means of increasing the in vivo stability of a protein. We describe the replacement of the A-chain intramolecular disulfide bond of human relaxin-3 (H3 relaxin, INSL7), an insulin-like peptide that has potential applications in the treatment of stress and obesity, with the physiologically stable dicarba bond. Solid phase peptide synthesis was used to prepare an A-chain analogue in which the two cysteine residues that form the intramolecular bond were replaced with allylglycine. On-resin microwave-mediated ring closing metathesis was then employed to generate the dicarba bridge. Subsequent cleavage of the peptide from the solid support, purification of two isomers and their combination with the B-chain via two intermolecular disulfide bonds, then furnished two isomers of dicarba-H3 relaxin. These were characterized by CD spectroscopy, which suggested a structural similarity to the native peptide. Additional analysis by solution NMR spectroscopy also identified the likely cis/trans form of the analogs. Both peptides demonstrated binding affinities that were equivalent to native H3 relaxin on RXFP1 and RXFP3 expressing cells. However, although the cAMP activity of the analogs on RXFP3 expressing cells was similar to the native peptide, the potency on RXFP1 expressing cells was slightly lower. The data confirmed the use of a dicarba bond as a useful isosteric replacement of the disulfide bond.

1234 1 - 50 of 155
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf