Change search
Refine search result
1234567 1 - 50 of 1775
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Abbasi, Alireza
    et al.
    Skripkin, Mikhail Yu.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Torapava, Natallia
    Ambidentate coordination of dimethyl sulfoxide in rhodium(III) complexes2011In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 40, no 5, p. 1111-1118Article in journal (Refereed)
    Abstract [en]

    The two dimethyl sulfoxide solvated rhodium(III) compounds, [Rh(dmso-kappa O)(5)(dmso-kappa S)](CF(3)SO(3))(3) (1 & 1* at 298 K and 100 K, respectively) and [Rh(dmso-kappa O)(3)(dmso-kappa S)(2)Cl](CF(3)SO(3))(2) (2), crystallize with orthorhombic unit cells in the space group Pna2(1) (No. 33), Z = 4. In the [Rh(dmso)(6)](3+) complex with slightly distorted octahedral coordination geometry, the Rh-O bond distance is significantly longer with O trans to S, 2.143(6) angstrom (1) and 2.100(6) angstrom (1*), than the mean Rh-O bond distance with O trans to O, 2.019 angstrom (1) and 2.043 angstrom (1*). In the [RhCl(dmso)(5)](3+) complex, the mean Rh-O bond distance with O trans to S, 2.083 angstrom, is slightly longer than that for O trans to Cl, 2.067(4) angstrom, which is consistent with the trans influence DMSO-kappa S > Cl > DMSO-kappa O of the opposite ligands. Raman and IR absorption spectra were recorded and analyzed and a complete assignment of the vibrational bands was achieved with support by force field calculations. An increase in the Rh-O stretching vibrational frequency corresponded to a decreasing trans-influence from the opposite ligand. The Rh-O force constants obtained were correlated with the Rh-O bond lengths, also including previously obtained values for other M(dmso)(6)(3+) complexes with trivalent metal ions. An almost linear correlation was obtained for the MO stretching force constants vs. the reciprocal square of the MO bond lengths. The results show that the metal ion-oxygen bonding of dimethyl sulfoxide ligands is electrostatically dominated in those complexes and that the stretching force constants provide a useful measure of the relative trans-influence of the opposite ligands in hexa-coordinated Rh(III)-complexes.

  • 2. Abdel-Hamid, Mohammed K
    et al.
    Macgregor, Kylie A
    Odell, Luke R
    Chau, Ngoc
    Mariana, Anna
    Whiting, Ainslie
    Robinson, Phillip J
    McCluskey, Adam
    1,8-Naphthalimide derivatives: new leads against dynamin I GTPase activity.2015In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 29Article in journal (Refereed)
    Abstract [en]

    Fragment-based in silico screening against dynamin I (dynI) GTPase activity identified the 1,8-naphthalimide framework as a potential scaffold for the design of new inhibitors targeting the GTP binding pocket of dynI. Structure-based design, synthesis and subsequent optimization resulted in the development of a library of 1,8-naphthalimide derivatives, called the Naphthaladyn™ series, with compounds 23 and 29 being the most active (IC50 of 19.1 ± 0.3 and 18.5 ± 1.7 μM respectively). Compound 29 showed effective inhibition of clathrin-mediated endocytosis (IC50(CME) 66 μM). The results introduce 29 as an optimised GTP-competitive lead Naphthaladyn™ compound for the further development of naphthalimide-based dynI GTPase inhibitors.

  • 3.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Substituent Effects in Molecular Ruthenium Water Oxidation Catalysts Based on Amide Ligands2017In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 9, no 9, p. 1583-1587Article in journal (Refereed)
    Abstract [en]

    The production of clean and sustainable energy is considered as one of the most urgent issues for our society. Mastering the oxidation of water to dioxygen is essential for the production of solar fuels. A study of the influence of the substituents on the catalytic activity of a series of mononuclear Ru complexes (2a-e) based on a tetradentate ligand framework is presented. At neutral pH, using [Ru(bpy)(3)](PF6)(3) (bpy=2,2'-bipyridine) as the terminal oxidant, a good correlation between the turnover frequency (TOF) and the Hammett sigma(meta) parameters was obtained. Additionally, a general pathway for the deactivation of Ru-based catalysts 2a-e during the catalytic oxidation of water through poisoning by carbon monoxide was demonstrated. These results highlight the importance of ligand design for fine-tuning the catalytic activity of water oxidation catalysts.

  • 4.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University Fayoum, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Bjorn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 24, p. 3448-3456Article in journal (Refereed)
    Abstract [en]

    Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.

  • 5.
    Acharya, P
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Chattopadhyaya, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    The Hydrogen Bonding and Hydration of 2'-OH in Adenosine and Adenosine 3'-ethylphosphate.2002In: J. Org. Chem., Vol. 67, p. 1852-1865Article in journal (Refereed)
  • 6.
    Adbo, Karina
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Andersson, Håkan S.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ankarloo, Jonas
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Karlsson, Jesper G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Norell, M C
    Olofsson, Linus
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Svenson, Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Örtegren, U
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Enantioselective synthetic receptors for Tröger’s base1999In: Bioorganic Chemistry, Vol. 27, no 5, p. 363-371Article in journal (Refereed)
  • 7.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Direct regiospecific and highly enantioselective intermolecular a-allylic alkylation of aldehydes by combination of transition metal and chiral amine catalysts2012Conference paper (Refereed)
    Abstract [en]

    The direct intermolecular regiospecific and highly enantioselective a-allylic alkylation of linear aldehydes by combination of achiral bench stable Pd(0) complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecific a-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 er). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals and 2-alkyl-butane-1,4-diols.

  • 8. Afewerki, Samson
    et al.
    Breistein, Palle
    Deiana, Luca
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ibrahem, Ismail
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic enantioselective β -alkylation of α,β-unsaturated aldehydes by combination of transition-metal- and aminocatalysis: Total synthesis of bisabolane sesquiterpenes2011In: Chemistry: a European Journal, ISSN 0947-6539, Vol. 17, no 32, p. 8784-8788Article in journal (Refereed)
  • 9.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Pirttilä, Kristian
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Deiana, Luca
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden.
    Dziedzic, Pawel
    Univ Stockholm, Arrhenius Lab, Dept Organ Chem, S-10691 Stockholm, Sweden.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences, Engineering and Mathematics.
    Catalytic Enantioselective beta-Alkylation of alpha,beta-Unsaturated Aldehydes by Combination of Transition-Metal- and Aminocatalysis: Total Synthesis of Bisabolane Sesquiterpenes2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 32, p. 8784-8788Article in journal (Refereed)
    Abstract [en]

    Branching out! The first co-catalytic enantioselective (up to 98:2 e.r.) β-alkylation of α,β-unsaturated aldehydes by combination of simple chiral amine and copper catalysts provides β-branched aldehydes in a one-pot protocol (see scheme). The methodology was applied to the short total syntheses of bisabolane sesquiterpenes (S)-(+)-curcumene, (E)-(S)-(+)-3- dehydrocurcumene and (S)-(+)-tumerone. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 10. Afewerki, Samson
    et al.
    Ibrahem, Ismail
    Rydfjord, Jonas
    Breistein, Palle
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Direct Regiospecific and Highly Enantioselective Intermolecular α-Allylic Alkylation of Aldehydes by a Combination of Transition-Metal and Chiral Amine Catalysts2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 10, p. 2972-2977Article in journal (Refereed)
    Abstract [en]

    The first direct intermolecular regiospecific and highly enantioselective a-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd0 complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecific a-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 e.r.; e.r.=enantiomeric ratio). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals, 2-alkyl-butane-1,4-diols, and amines. The concise co-catalytic asymmetric total syntheses of biologically active natural products (e.g., Arundic acid) are disclosed.

  • 11.
    Afewerki, Samson
    et al.
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Ibrahem, Ismail
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Rydfjord, Jonas
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Breistein, Palle
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Córdova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of applied science and design.
    Direct Regiospecific and Highly Enantioselective Intermolecular α-Allylic Alkylation of Aldehydes By Combination of Transition Metal and amine Catalysts2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 10, p. 2972-2977Article in journal (Refereed)
    Abstract [en]

    The first direct intermolecular regiospecific and highly enantioselective α-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd 0 complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecificα-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 e.r.; e.r.=enantiomeric ratio). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals, 2-alkyl-butane-1,4-diols, and amines. The concise co-catalytic asymmetric total syntheses of biologically active natural products (e.g., Arundic acid) are disclosed. Go organic! Directintermolecular regiospecific and highly enantioselective α-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd 0complexes and simple chiral amines as co-catalysts is disclosed (see scheme). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • 12. Agasti, Soumitra
    et al.
    Maity, Soham
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Maiti, Debabrata
    Palladium-Catalyzed Synthesis of 2,3-Disubstituted Benzofurans: An Approach Towards the Synthesis of Deuterium Labeled Compounds2015In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 357, no 10, p. 2331-2338Article in journal (Refereed)
    Abstract [en]

    Palladium-catalyzed oxidative annulations between phenols and alkenylcarboxylic acids produced a library of benzofuran compounds. Depending on the nature of the substitution of the phenol precursor, either 2,3-dialkylbenzofurans or 2-alkyl-3-methylene-2,3-dihydrobenzofurans can be synthesized with excellent regioselectivity. Reactions between conjugated 5-phenylpenta-2,4-dienoic acids and phenol gave 3-alkylidenedihydrobenzofuran alkaloid motifs while biologically active 7-arylbenzofuran derivatives were prepared by starting from 2-phenylphenols. More interestingly, selective incorporation of deuterium from D2O has been discovered, which offers an attractive one-step method to access deuterated compounds.

  • 13.
    Aggarwal, Varinder K.
    et al.
    Bristol University.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University of Bristol, Bristol, UK.
    Enantioselective α-arylation of cyclohexanones with diaryl iodonium salts: Application to the synthesis of (-)-epibatidine.2005In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 44, no 34, p. 5516-5519Article in journal (Refereed)
    Abstract [en]

    The direct asym. α-arylation of prochiral ketones has been effected using chiral lithium amide bases and diaryl iodonium salts. The methodol. has been employed in a short total synthesis of the alkaloid (-)-epibatidine. [on SciFinder(R)]

  • 14.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martinez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic alpha-Hydroxy Ketones2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 8, p. 2256-2259Article in journal (Refereed)
    Abstract [en]

    A ruthenium complex formed from commercially available [Ru(p-cymene)Cl-2](2) and 1,4-bis(diphenylphosphino)butane catalyzes the racemization of aromatic alpha-hydroxy ketones very efficiently at room temperature. The racemization is fully compatible with a kinetic resolution catalyzed by a lipase from Pseudomonas stutzeri. This is the first example of dynamic kinetic resolution of alpha-hydroxy ketones at ambient temperature in which the metal and enzyme catalysts work in concert in one pot at room temperature to give quantitative yields of esters of alpha-hydroxy ketones with very high enantioselectivity.

  • 15.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Amino acid-derived amides and hydroxamic acids as ligands for asymmetric transfer hydrogenation in aqueous media2011In: Catalysis communications, ISSN 1566-7367, E-ISSN 1873-3905, Vol. 12, no 12, p. 1118-1121Article in journal (Refereed)
    Abstract [en]

    Amides and hydroxamic acids derived from α-amino acids were evaluated as ligands in combination with rhodium and iridium half-sandwich complexes in asymmetric transfer hydrogenation (ATH) of ketones. The reactions were performed in aqueous media using lithium formate as hydride source. The catalyst systems turned out to be highly efficient and ees up to 90% were obtained.

  • 16.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Amino Acid Derived Rhodium Complexes: On the Origin of Enantioselectivity and Enantioswitchability2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 42, p. 11197-11209Article in journal (Refereed)
    Abstract [en]

    Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. Catalysts containing thioamide ligands derived from L-valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L-valine-based hydroxamic acids or hydrazides facilitated the formation of the (S)-alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide-based catalyst systems demonstrate a pseudo-first-order dependence on the substrate, whereas pseudo-zero-order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate-limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate-limiting step of the catalytic reduction reaction.

  • 17.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric transfer hydrogenation of ketones catalyzed by amino acid derived rhodium complexes: on the origin of enantioselectivity and enantioswitchability: Corrigendum to vol 15(2009) 42, pp. 11197-2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 35, p. 10610-10610Article in journal (Refereed)
  • 18.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lind, Jesper
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalyzed asymmetric transfer hydrogenation of alkyl and aryl ketones in aqueous media2008In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 10, no 8, p. 832-835Article in journal (Refereed)
    Abstract [en]

    A novel lipophilic rhodium catalyst was evaluated in the enantioselective transfer hydrogenation of ketones in water using sodium formate as the hydride donor, and in the presence of sodium docecylsulfonate. Alkyl alkyl ketones were reduced in good yields and in moderate to good enantioselectivities, and the reduction of aryl alkyl ketones proceeded with excellent enantioselectivity (up to 97% ee).

  • 19.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Livendahl, Madeleine
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fine-tuning catalytic activity and selectivity-[Rh(amino acid thioamide)] complexes for efficient ketone reduction2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 46, p. 6321-6324Article in journal (Refereed)
    Abstract [en]

    Amino acid-derived thioamides are prepared and evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. It is found that increasing the steric bulk at the C-terminus of the ligand had a positive impact on both activity and selectivity in the reduction reaction. In order to find the optimum catalyst, a study is performed on a series of thioamide ligands having substituents of varying size.

  • 20.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Simple and Efficient Catalyst System for the Asymmetric Transfer Hydrogenation of Ketones2007In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, no 16, p. 2541-2544Article in journal (Refereed)
  • 21.
    Ahlgren, Joakim
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Limnology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry.
    Reitzel, Kasper
    Danielsson, Rolf
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Limnology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry.
    Gogoll, Adolf
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Limnology.
    Rydin, Emil
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry, Analytical Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I. Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Limnology.
    Biogenic phosphorus in oligotropic mountain lake sediments: Differences in composition measured with NMR spectroscopy2006In: Water Research, no 40, p. 3705-3712Article in journal (Refereed)
  • 22.
    Ahlgren, Joakim
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Tranvik, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Limnology.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Waldebäck, Monica
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Markides, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Analytical Chemistry.
    Rydin, Emil
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Evolution, Limnology.
    Sediment Depth Attenuation of Biogenic Phosphorus Compounds Measured by 31P NMR2005In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 39, no 3, p. 867-872Article in journal (Refereed)
    Abstract [en]

    Being a major cause of eutrophication and subsequent loss of water quality, the turnover of phosphorus (P) in lake sediments is in need of deeper understanding. A major part of the flux of P to eutrophic lake sediments is organically bound or of biogenic origin. This P is incorporated in a poorly described mixture of autochthonous and allochthonous sediment and forms the primary storage of P available for recycling to the water column, thus regulating lake trophic status. To identify and quantify biogenic sediment P and assess its lability, we analyzed sediment cores from Lake Erken, Sweden, using traditional P fractionation, and in parallel, NaOH extracts were analyzed using 31P NMR. The surface sediments contain orthophosphates (ortho-P) and pyrophosphates (pyro-P), as well as phosphate mono- and diesters. The first group of compounds to disappear with increased sediment depth is pyrophosphate, followed by a steady decline of the different ester compounds. Estimated half-life times of these compound groups are about 10 yr for pyrophosphate and 2 decades for mono- and diesters. Probably, these compounds will be mineralized to ortho-P and is thus potentially available for recycling to the water column, supporting further growth of phytoplankton. In conclusion, 31P NMR is a useful tool to asses the bioavailability of certain P compound groups, and the combination with traditional fractionation techniques makes quantification possible.

  • 23.
    Ahlquist, Mårten
    et al.
    Technical University of Denmark.
    Nielsen, T E
    Le Quement, S
    Tanner, David
    Technical University of Denmark.
    Norrby, Per-Ola
    Technical Univeristy of Denmark.
    An experimental and theoretical study of the mechanism of stannylcupration of alpha, beta-acetylenic ketones and esters2006In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 12, no 10, p. 2866-2873Article in journal (Refereed)
    Abstract [en]

    The title reaction has been investigated by experimental and computational (DFT) techniques, and subsequently compared to the corresponding carbocupration reaction, with particular emphasis oil the stereoselectivity. For stannylcupration of an ynone substrate, only the anti-addition product is observed, whereas for the corresponding ynoate substrate, the stereoselectivity can be affected by the reaction conditions: in the presence of methanol as proton donor, the initial syn-addition product can be trapped, whereas a syn/anti mixture is obtained in a non-protic solvent. This is in sharp contrast to the carbocupration of the same ynone substrate with a cyanocuprate (RCu(CN)Li), which is highly selective for syn-addition. The product selectivities can be understood from a detailed computational characterization of the reaction paths, and in particular from the relative stabilities of the vinyl cuprate and allenolate intermediates. It is suggested that the stereodetermining step is protonation of vinyl cuprate intermediates.

  • 24.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A facile synthesis of α-fluoro ketones catalyzed by [Cp*IrCl2](2)2011In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, no 16, p. 2600-2608Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols are isomerized into enolates (enols) by [Cp*IrCl2]2. The enolates react with Selectfluor present in the reaction media. This method produces α-fluoro ketones as single constitutional isomers in high yields.

  • 25.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 6, p. 1660-1670Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols can be isomerised into carbonyl compounds by transition metal complexes. In the last few years, catalyst design and development have resulted in highly efficient isomerisations under mild reaction conditions, including enantioselective versions. In addition, the isomerisation of allylic alcohols has been combined with C-C bond forming reactions when electrophiles such as aldehydes or imines were present in the reaction mixture. Also, C-F bonds can be formed when electrophilic fluorinating reagents are used. Thus, allylic alcohols can be treated as latent enol(ate)s. In this article, we highlight the latest developments concerning the isomerisation of allylic alcohols into carbonyl compounds, focusing in particular on tandem isomerisation/C-C or C-heteroatom bond formation processes. Significant attention is given to the mechanistic aspects of the reactions.

  • 26.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundberg, Helena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature2010In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 12, no 9, p. 1628-1633Article in journal (Refereed)
    Abstract [en]

    An environmentally benign method for the transformation of allylic alcohols into carbonyl compounds is described. Using [Rh(COD(CH3CN)(2)]BF4 (2) in combination with 1,3,5-triaza-7-phosphaadamantane (PTA, 1) as the catalytic system in water results in a very fast redox isomerisation of a variety of secondary allylic alcohols at ambient temperature. Also, some primary allylic alcohols can be isomerised into the corresponding aldehydes. The active complex, which in some cases can be used in catalyst loadings as low as 0.5 mol%, is formed in situ from commercially available reagents. Based on deuterium labelling studies, a tentative mechanism involving metal-enone intermediates is presented.

  • 27.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ir-catalysed formation of C-F bonds. From allylic alcohols to α-fluoroketones2011In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 47, no 29, p. 8331-8333Article in journal (Refereed)
    Abstract [en]

    A novel iridium-catalysed tandem isomerisation/C-F bond formation from allylic alcohols and Selectfluor® to prepare α-fluorinated ketones as single constitutional isomers is reported.

  • 28.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines: insights into the mechanism2009In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 351, no 16, p. 2657-2666Article in journal (Refereed)
    Abstract [en]

    The isomerisation of alkenols followed by reaction with aldehydes or N-tosylimines catalysed by rhodium complexes has been studied. The catalytically active rhodium complex is formed in situ from commercially available (cyclooctadiene)rhodium(l) chloride dimer [Rh(COD)Cl](2). The tandem process affords aldol and Mannich-type products in excellent yields. The key to the success of the coupling reaction is the activation of the catalysts by reaction with postassium tert-butoxide (t-BuOK), which promotes a catalytic cycle via alkoxides rather than rhodium hydrides. This mechanism minimises the formation of unwanted by-products. The mechanism has been studied by (1)H NMR spectroscopy and deuterium labelling experiments.

  • 29. Ahmad, Anees
    et al.
    Scarassati, Paulo
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universidade de São Paulo, Brazil.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Silva, Luiz F., Jr.
    Oxidative rearrangement of alkenes using in situ generated hypervalent iodine(III)2013In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 54, no 43, p. 5818-5820Article in journal (Refereed)
    Abstract [en]

    A novel protocol for the oxidative rearrangement of alkenes using in situ generated hypervalent iodine(III) was developed. This approach uses inexpensive, readily available, and stable chemicals (PhI, mCPBA, and TsOH) giving rearrangement products in yields comparable to those obtained using the more expensive commercially available [hydroxy(tosyloxy)iodo]benzene [HTIB or Koser's reagent]. Additionally, an alternative protocol for the synthesis of 1-methyl-2-tetralone through the one-step epoxidation/rearrangement of 4-methyl-1,2-dihydronaphthalene using mCPBA and TsOH was developed.

  • 30. Ai, Yue-Jie
    et al.
    Liao, Rong-zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Shu-feng
    Luo, Yi
    Fang, Wei-Hai
    Theoretical Studies on Photoisomerizations of (6-4) and Dewar Photolesions in DNA2010In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 114, no 44, p. 14096-14102Article in journal (Refereed)
    Abstract [en]

    The (6-4) photoproduct ((6-4) PP) is one of the main lesions in UV-induced DNA damage. The (6-4) PP and its valence isomer Dewar photoproduct (Dewar PP) can have a great threat of mutation and cancer but gained much less attention to date. In this study, with density functional theory (DFT) and the complete active space self-consistent field (CASSCF) methods, the photoisomerization processes between the (6-4) PP and the Dewar PP in the gas phase, the aqueous solution, and the photolyase have been carefully examined. Noticeably, the solvent effect is treated with the CASPT2//CASSCF/Amber (QM/MM) method. Our calculations show that the conical intersection (Cl) points play a crucial role in the photoisomerization reaction between the (6-4) PP and the Dewar PP in the gas and the aqueous solution. The ultrafast internal conversion between the S-2 ((1)pi pi*) and the So states via a distorted intersection point is found to be responsible for the formation of the Dewar PP lesion at 313 nm, as observed experimentally. For the reversed isomeric process, two channels involving the "dark" excited states have been identified. In addition to the above passages, in the photolyase, a new electron-injection isomerization process as an efficient way for the photorepair of the Dewar PP is revealed.

  • 31. Aili, Daniel
    et al.
    Enander, Karin
    Rydberg, Johan
    Lundström, Ingemar
    Baltzer, Lars
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Biochemistry and Organic Chemistry. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry II.
    Liedberg, Bo
    Aggregation-Induced Folding of a de novo Designed Polypeptide Immobilized on Gold Nanoparticles2006In: J. Am. Chem. Soc., no 128, p. 2194-2195Article in journal (Refereed)
  • 32. Aili, Daniel
    et al.
    Enander, Karin
    Rydberg, Johan
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry II.
    Nesterenko, Irina
    Björefors, Fredrik
    Baltzer, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry II.
    Liedberg, Bo
    Folding Induced Assembly of Polypeptide Decorated Gold Nanoparticles2008In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 130, no 17, p. 5780-5788Article in journal (Refereed)
    Abstract [en]

    Reversible assembly of gold nanoparticles controlled by the homodimerization and folding of an immobilized de novo designed synthetic polypeptide is described. In solution at neutral pH, the polypeptide folds into a helix-loop-helix four-helix bundle in the presence of zinc ions. When immobilized on gold nanoparticles, the addition of zinc ions induces dimerization and folding between peptide monomers located on separate particles, resulting in rapid particle aggregation. The particles can be completely redispersed by removal of the zinc ions from the peptide upon addition of EDTA. Calcium ions, which do not induce folding in solution, have no effect on the stability of the peptide decorated particles. The contribution from folding on particle assembly was further determined utilizing a reference peptide with the same primary sequence but containing both D and L amino acids. Particles functionalized with the reference peptide do not aggregate, as the peptides are unable to fold. The two peptides, linked to the nanoparticle surface via a cysteine residue located in the loop region, form submonolayers on planar gold with comparable properties regarding surface density, orientation, and ability to interact with zinc ions. These results demonstrate that nanoparticle assembly can be induced, controlled, and to some extent tuned, by exploiting specific molecular interactions involved in polypeptide folding.

  • 33.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Arindam
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective allylboration of imines and indoles under mild conditions. An in situ E/Z isomerization of imines by allylboroxines2014In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 5, no 7, p. 2732-2738Article in journal (Refereed)
    Abstract [en]

    Direct allylboration of various acyclic and cyclic aldimine, ketimine and indole substrates was performed using allylboronic acids. The reaction proceeds with very high anti-stereoselectivity for both E and Z imines. The allylboroxines formed by dehydration of allylboronic acids have a dual effect: promoting E/Z isomerization of aldimines and triggering the allylation by efficient electron withdrawal from the imine substrate.

  • 34.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mihai, Raducan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Szabo, Kalman J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Formation of Adjacent Stereocenters by Allylboration of Ketones under Mild Neutral Conditions2013In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 15, no 10, p. 2546-2549Article in journal (Refereed)
    Abstract [en]

    Allylboronic acids readily react with a broad variety of ketones, affording homoallylic alcohols with adjacent quaternary and tertiary stereocenters. The reaction proceeds with very high anti stereoselectivity even if the substituents of the keto group have a similar size. a-Keto acids react with syn stereoselectivity probably due to the formation of acyl boronate intermediates. The allylation reactions proceed without added acids/bases under mild conditions. Because of this, many functionalities are tolerated even with in situ generated allylboronic acids.

  • 35.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pilarski, Lukasz T.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pershagen, Elias
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabo, Kalman J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective intermolecular allylic C-H trifluoroacetoxylation of functionalized alkenes2012In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 21, p. 8778-8781Article in journal (Refereed)
    Abstract [en]

    Pd-catalyzed allylic C-H trifluoroacetoxylation of substituted alkenes was performed using PhI(OCOCF3)(2) as the oxidant and acyloxy source. Trifluoroacetoxylation of monosubstituted cyclopentenes and cyclohexenes proceeds with excellent regio- and diastereoselectivity. Studies with one of the possible (eta(3)-allyl)Pd(II) intermediates suggest that the reaction proceeds via stereoselective formation of Pd(IV) intermediates and subsequent stereo- and regioselective reductive elimination of the product.

  • 36.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Raducan, Mihai
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diastereoselective allylboration of wide variety of carbonyl compounds using allylboronic acids: Construction of adjacent tertiary and quaternary centers2013In: Abstracts of papers of The American Chemical Society, American Chemical Society (ACS), 2013, Vol. 246, p. 364-ORGN-Conference paper (Refereed)
  • 37.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vollgraff, Tobias
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylboration2015In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 137, no 35, p. 11262-11265Article in journal (Refereed)
    Abstract [en]

    Allylboration of ketones with gamma-disubstituted allylboronic acids is performed in the presence of chiral BINOL derivatives. The reaction is suitable for single-step creation of adjacent quaternary stereocenters with high selectivity. We show that, with an appropriate choice of the chiral catalyst and the stereoisomeric prenyl substrate, full control of the stereo- and enantioselectivity is possible in the reaction.

  • 38.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 5, p. 1434-1437Article in journal (Refereed)
    Abstract [en]

    An efficient and simple methodology was developed for the synthesis of oxazolidinones, oxazolidinthiones, imidazolidinthiones, and imidazolidinones from the corresponding propargylic starting materials using Pd(OAc)(2) and n-Bu4NOAc as catalysts in DCE at room temperature.

  • 39.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Scalable Synthesis of Oxazolones from Propargylic Alcohols through Multistep Palladium(II) Catalysis: beta-Selective Oxidative Heck Coupling of Cyclic Sulfonyl Enamides and Aryl Boroxines2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 51, p. 13745-13750Article in journal (Refereed)
  • 40.
    Albers, Michael F
    et al.
    Department of Chemical Biology, Max Planck Institute for Molecular Physiology.
    Hedberg, Christian
    Amino acid building blocks for Fmoc solid-phase synthesis of peptides phosphocholinated at serine, threonine, and tyrosine2013In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 78, no 6, p. 2715-2719Article in journal (Refereed)
    Abstract [en]

    Phosphocholination of eukaryotic host cell proteins has recently been identified as a novel post-translational modification important for bacterial pathogenesis. Here, we describe the first straightforward synthetic strategy for peptides containing phosphocholinated serine, threonine, or tyrosine residues using preformed functional amino acid building blocks, fully compatible with standard Fmoc solid-phase peptide synthesis.

  • 41.
    Albers, Michael F
    et al.
    Department of Chemical Biology, Max-Planck Institute of Molecular Physiology.
    van Vliet, Bart
    Hedberg, Christian
    Amino acid building blocks for efficient Fmoc solid-phase synthesis of peptides adenylylated at serine or threonine2011In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 13, no 22, p. 6014-6017Article in journal (Refereed)
    Abstract [en]

    The first straightforward building block based (non-interassembly) synthesis of peptides containing adenylylated serine and threonine residues is described. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The described Thr-AMP SPPS-building block has been employed in the synthesis of the Thr-adenylylated sequence of human GTPase CDC42 (Ac-SEYVP-T(AMP)-VFDNYGC-NH(2)). Further, we demonstrate proof-of-concept for the synthesis of an Ser-adenylylated peptide (Ac-GSGA-S(AMP)-AGSGC-NH(2)) from the corresponding adenylylated serine building block.

  • 42. Albrecht, Christiane
    et al.
    Fechner, Peter
    Honcharenko, Dmytro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Baltzer, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Gauglitz, Günther
    A new assay design for clinical diagnostics based on alternative recognition elements2010In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 25, no 10, p. 2302-2308Article in journal (Refereed)
  • 43.
    Algarra, Andres G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Insights into the Isomerism of Hexacoordinate Metal-Sarcophagine Complexes: The Relationship between Structure and Stability2015In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, no 3, p. 503-511Article in journal (Refereed)
    Abstract [en]

    The hexacoordinate complexes that the macrobicyclic ligands {(NH3)(2)sar)(2+) and {NMe3)(2)sar}(2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) form with transition metals such as Co-III, Co-II and Cu-II can adopt several isomeric structures. In this article, we have firstly employed DFT methods lo compute the relative stability of their Delta-ob(3), Delta-ob(2)lel, Delta-lel(2)ob and Delta-lel(3) isomers, as well as the activation barriers for their interconversion. In agreement with the experimental data, the results show that, in general, the different isomers of the Co-III and Co-II complexes present similar free energies, whereas the Cu-II complexes show a strong tendency towards the lel(3) form. In addition, the interplay between the structure and stability of these species has been studied by combining shape maps with a distortion/interaction energy analysis. In contrast to the geometries close to the ideal octahedron that all the studied Co complexes present, the le)3 structures of [Cu{(NH3)(2)sar}](4+) and [Cu{(NMe3)(2)sar](4+) are better described. as trigonal prisms. In such structures the ligand adopts a conformation significantly more stable than in the other isomers, and this drives the formation of lel(3)-[Cu{(NH3)(2)sar}](4+) and lel(3)-[Cu{(NNe3)(2)sar}](4+). Overall, the results show a clear relationship between the stability of a given isomer and its degree of distortion with respect to the ideal octahedron (or trigonal prism), with the latter being ultimately dependent on the transition metal and its radius.

  • 44. Ali, Majid
    et al.
    Bashir, Tariq
    University of Borås, School of Engineering.
    Persson, Nils-Krister
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Stretch Sensing Properties of PEDOT Coated Conductive Yarns Produced by OCVD Process2011Conference paper (Refereed)
  • 45.
    Ali, Tara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural determination of the O-antigenic polysaccharide from Escherichia coli O1662007In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 342, no 2, p. 274-278Article in journal (Refereed)
  • 46. Almroth, Bethanie M. Carney
    et al.
    Gunnarsson, Lina M.
    Cuklev, Filip
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kristiansson, Erik
    Larsson, D. G. Joakim
    Waterborne beclomethasone dipropionate affects the physiology of fish while its metabolite beclomethasone is not taken up2015In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 511, p. 37-46Article in journal (Refereed)
    Abstract [en]

    Asthma is commonly treated with inhalable glucocorticosteroids, including beclomethasone dipropionate (BDP). This is a synthetic prodrug which is metabolized to the more active monopropionate (BMP) and free beclomethasone in humans. To evaluate potential effects of residual drugs on fish, we conducted a 14 day flow-through exposure experiment with BDP and beclomethasone using rainbow trout, and analyzed effects on plasma glucose, hepatic glutathione and catalase activity together with water and body concentrations of the BDP, BMP and beclomethasone. We also analyzed hepatic gene expression in BDP-exposed fish by micro-array and quantitative PCR Beclomethasone (up to 0.65 mu g/L) was not taken up in the fish while BDP (0.65 and 0.07 mu g/L) resulted in accumulation of both beclomethasone, BMP and BDP in plasma, reaching levels up to those found in humans during therapy. Accordingly, exposure to 0.65 mu g/L of BDP significantly increased blood glucose as well as oxidized glutathione levels and catalase activity in the liver. Exposure to beclomethasone or the low concentration of BDP had no effect on these endpoints. Both exposure concentrations of BDP resulted in significantly higher transcript abundance of phosphoenolpyruvate carboxykinase involved in gluconeogenesis, and of genes involved in immune responses. As only the rapidly metabolized prodrug was potent in fish, the environmental risks associated with the use of BDP are probably small. However, the observed physiological effects in fish of BDP at plasma concentrations known to affect human physiology provides valuable input to the development of read-across approaches in the identification of pharmaceuticals of environmental concern.

  • 47. Alogheli, Hiba
    Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffoldIn: Article in journal (Refereed)
  • 48. Alonso, Diego
    et al.
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Deprotection of Sulfonyl Aziridines1998In: J. Org. Chem., no 63, p. 9455-9461Article in journal (Refereed)
  • 49. Alonso, Diego
    et al.
    Bertilsson, Sophie
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Johnsson, Sandra
    Nordin, Sofia
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Södergren, Mikael
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    New Expedient Route to Both Enantiomers of Nonproteinogenic a-Amino Acid Derivatives from the Unsaturated 2-Aza-Bicyclo Moiety1999In: J. Org. Chem., no 64, p. 2276-2280Article in journal (Refereed)
  • 50. Alonso, Diego
    et al.
    Brandt, Peter
    Nordin, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Andersson, Pher
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones: Mechanism and Origin of Enantioselectivity1999In: J. Am. Chem. Soc., no 121, p. 9580-9588Article in journal (Refereed)
    Abstract
1234567 1 - 50 of 1775
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf