Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boss, Annika
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Jansson, Anna
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Emanuelsson, Viktor
    RISE Research Institutes of Sweden.
    Venkatesh, Abhijit
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Brunklaus, Birgit
    RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.
    Sustainable Vehicles with Recycled Plastics2023Report (Other academic)
    Abstract [en]

    The production of vehicles is one of the most resource-intensive industries. 10 % of the overall consumption of plastics, 6 million tonnes/year is used by the European vehicle industry1. Increase the use of recycled plastics in vehicles is one of the key challenges for sustainable transformation of the vehicle industry as it plays an important role in saving resources and reducing greenhouse emissions. The main goal of this project was to contribute to increased use of recycled plastic in the Swedish vehicle industry. Volvo Cars goal is that 25 % of the plastic used in cars should be recycled or biobased by 2025. The goal will most probably be reached according to Volvo Cars. Volvo group has the goal to be fossil neutral, which requires recycled material in the truck components. The recycled plastics evaluated in the project came from both post industrial waste (PIR) and post consumer waste (PCR). Rondo Plast, Polykemi, Albis, Mocom, Biesterfield, Borealis, Sabic, Total and LG Chem have supplied recycled and virgin plastics tested in the project. The plastics we have focusing on in this project were polypropylene (PP) plastics (homo- and copolymer) and PC/ABS plastic compounds. Thus, these plastics are most used in vehicle components and recycled PP plastics are more accessible than the other plastics that can be used in vehicles. Analysis and evaluation of recycled plastics have been performed by RISE. Also, long term ageing and recyclability studies have been performed. A study to upgrade PP plastic recycled from packaging (PCR) with additives from DOW and Rondo Plast were performed.

    Download full text (pdf)
    fulltext
  • 2.
    Boss, Annika
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Strid, Anna
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Olsson, Elisabeth
    RISE Research Institutes of Sweden.
    Andersson, Emelie
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Brodin, Malin
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Andersson, Mattias
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Ämnen som hindrar eller försvårar återvinning av plast i prioriterade produktgrupper inom byggsektorn2023Report (Other academic)
    Abstract [sv]

    I detta uppdrag undersöker vi kemiska tillsatser i plaster som försvårar eller utgör hinder för återvinning av materialet. I denna rapport avser kemiska tillsatser additiv som medvetet introducerats i produkten eller materialet, och det är dessa kemiska ämnens natur som avgör problematiken ur återvinningssynpunkt. Vi fokuserar på byggsektorn eftersom denna sektor använder stora mängder plast av hög kvalité. Trots detta är återvinningsgraden för plast låg och potentialen att öka återvinningsgraden är därmed stor. Ett materials potential för återvinning bestäms av flera faktorer, varav kemikalieinnehåll är en. Det är viktigt att tänka på vilken eller vilka produkter plasten är lämplig att återvinnas till, och hänsyn måste alltid tas till gällande kemikalielagstiftning för just de produkttyperna. Kemiska ämnen som kan vara skadliga för människan och/eller miljön är särskilt viktiga att utreda, men det finns också andra tillsatser i material och produkter som försvårar återvinningsprocessen eller påverkar kvalitén på den återvunna plasten negativt så att marknaden för det återvunna materialet blir begränsad. Ytterligare en faktor att ta i beaktande är hur exponeringen för kemikalierna ser ut, om de är bundna i plasten eller kan emitteras och utsätta människor och miljön för direkta risker. De stora kategorierna i denna kartläggning har varit golv, rör och rördelar, kablar, profiler och lister, isoleringsmaterial, samt tätningsskikt. För dessa produktgrupper dominerar polymertyperna PVC, PE av olika densitetsgrad och comonomer-innehåll, PP (homo- och copolymer), PS och PUR. Då härdplaster, där även PUR ingår, förekommer i form av lacker, adhesiv och ytbeläggningar i byggprodukter behandlas dessa också övergripande. Många materialströmmar finns tillgängliga för återvinning inom kategorin byggplast generellt sett, men möjligheterna och incitamenten att sortera ut dessa i sina ursprungliga fraktioner är låg. Detta beror antingen på att efterfrågan på mekaniskt återvunnet material i dessa produktkategorier inte är stor nog, som för PEX och vissa typer av rör, eller på att volymerna är för låga för lönsamhet. Ett exempel på det sistnämnda är profiler och lister av PVC där etablerad cirkulär återvinning finns ute i Europa, men produktkategorin är för liten i Sverige för att drivkraften ska uppstå. Eftersom flera av de polymermaterial och produkter vi kartlagt i denna rapport har en historisk användning av idag reglerade, eller till och med förbjudna kemiska ämnen, kompliceras återvinningen av byggplast i att de inkommande avfallsströmmarna är av mycket varierande ålder. För att möjliggöra en högre återvinningsgrad och bättre kvalitet krävs därför utökad och mer noggrann sortering så att problematiska, och i vissa fall hälso- och miljöfarliga, innehållsämnen inte följer med i den mekaniska återvinningen, men inte heller så att kvalitativa fraktioner av en viss produkt- och polymertyp avvisas från återvinning av säkerhetsskäl. Ett axplock av problematiska tillsatser är tungmetallstabilisatorer och mjukgörare i produkter av PVC, flamskyddsmedel i isolering av EPS och XPS, samt silanförnätad PEX som innehåller tennkatalysator. Kontaminering i form av härdplastrester, felsorterad PEX i PE-recyklat, samt tejper och fogar på tätskikt utgör de mer oavsiktliga, fysiska hindren för kvalitetsmässig återvinning tillsammans med faktumet att en stor del av kablar och rör helt enkelt inte utvinns ur marken efter sin användningstid. Sammanfattningsvis skulle fler fraktioner av byggplast kunna återvinnas mekaniskt genom att stärka infrastrukturen kring insamling och sortering, men för detta krävs ökad efterfrågan och långsiktig lönsamhet. Kemiska återvinningsmetoder seglar upp som en möjlig lösning för flera av de hinder som identifieras i denna studie, till exempel tvärbundna material, material med hög andel fyllmedel, eller för avskiljning av oönskade tillsatser likt tungmetaller och ftalater. Kartläggningen av detta område får därför ses som en intressant frågeställning för ytterligare arbete.

    Download full text (pdf)
    fulltext
  • 3.
    Jónsdóttir, Hafdís
    et al.
    Chalmers Industriteknik, Sweden.
    Bekken Björkman, Max
    Chalmers Industriteknik, Sweden.
    Boss, Annika
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Lindqvist, Karin
    RISE Research Institutes of Sweden, Materials and Production, Polymeric Materials and Composites.
    Ett cirkulärt system för emballageplastfrån byggindustrin steg 2 (CirEm steg 2)2023Report (Other academic)
    Abstract [en]

    Construction products are the second largest area of use for plastic after packaging. The construction industry also uses a large amount of plastic packaging, but only a small part of the plastic waste from this industry is recycled. From 2020, according to law, all plastic from construction and demolition must be sorted out separately into at least one fraction, but in order to achieve a more sustainable use of plastic as well as increased and qualitative material recycling, the plastic needs to be sorted into several fractions and collected so that the material can be recycled and used in new products. The project CirEm stage 2 ("A circular system for packaging plastic from the construction industry stage 2") is financed by the Swedish Energy Agency within the framework of the innovation program RE:Source and carried out by Chalmers Industriteknik and RISE together with 14 project participants in the form of construction companies, sellers of construction products, waste contractors, recyclers, plastic producers, property owners, architects, branch organizations and IT companies. The goal of the project is to develop and test an efficient collection and recycling system for plastic packaging from the construction industry. The project has investigated and identified opportunities and challenges with collecting and recycling plastic packaging waste and other soft plastics from construction sites and sellers of construction products. Through various collection trials, the project has shown how the waste should be sorted at the source in order to improve the quality of the secondary plastic raw material. Experiments where secondary plastic raw material has been produced and then used in product manufacturing have shown how such collected plastic can find different areas of use. The transparent plastic could, for example, be used for plastic hoods and the colored one for wood cover film and sacks. The project has shown that it works well to produce high-quality plastic products based on secondary plastic raw material from plastic packaging, but that the quality aspect is closely related to how the plastic waste is collected and handled. There are therefore good opportunities to achieve high value retention, but in order to create an effective collection and recycling system for plastic packaging and other soft plastics from the construction industry, it is still necessary to work on improving sorting at the source and to increase awareness of the possibilities for recycling. A challenge in this context is that waste generators do not currently see sufficient financial incentives to sort plastic packaging and other soft plastics into more than one fraction. The cost picture for those who are responsible for the waste therefore needs to change in order to create greater driving forces for increased sorting and thus higher value retention.

    Download full text (pdf)
    fulltext
  • 4.
    Lindqvist, Karin
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Andersson, Mattias
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Boss, Annika
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Oxfall, Henrik
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Thermal and mechanical properties of blends containing PP and recycled XLPE cable waste2019In: Journal of Polymers and the Environment, ISSN 1566-2543, E-ISSN 1572-8919, Vol. 27, no 2, p. 386-394Article in journal (Refereed)
    Abstract [en]

    Recycled XLPE from cable manufacturing waste and end-of-life cables were mixed with virgin polypropylene (PP) in order to evaluate the potential to be used in new injection molded products. The influence of metal contaminations on the mechanical and thermal properties and how the blends could be stabilized in order to be recycled and give reliable properties over time were studied. The results show that blends of 25–50% XLPE in PP give good mechanical properties with retained or improved impact strength independent of the source of XLPE. Ageing at 105 °C for 6 months showed a more severe material degradation and loss of mechanical properties for blends that contained XLPE with end-of-life cable. Addition of metal deactivator proved to retain the mechanical properties for more than 8 months of ageing at 105 °C. Simulated recycling of 50% XLPE in PP stabilized with a metal deactivator, showed that mechanical properties were preserved.

  • 5.
    Jansson, Anna
    et al.
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Boss, Annika
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Lundberg, Lena
    PVC Forum/IKEM, Sweden.
    Återvinning av plast från bygg- och rivningsprocesser.2019Report (Other academic)
    Abstract [en]

    This report is one delivery (Work package 3) within the project CONSTRUCTIVATE focused on plastics construction materials and their recycling possibilities.Aim and objective of this part of the project was to compile the types of plastics present in construction and demolition waste (CDW) and investigate which can and should be recycled based on technical opportunities, environmental impact and economic aspects (such as market potential). Some material fractions were selected and methods to improve the recyclability and evaluate the material quality were studied. Some demonstrator products were manufactured in order to show some examples for use of the CDW material.Methods used were literature studies, market analysis, interviews, study visits and practical tests. The practical tests included material collection, manufacturing of test objects and evaluation of the product quality, for example fire resistance and mechanical strength.The conclusion is that it is technically possible and environmentally and economically justified to collect and recycle most building products in plastic, especially in construction. For installation waste, there are already collection systems for both plastic floors and plastic pipes. However, relatively little of the waste is collected in these systems. Therefore, given the great environmental benefits, it is very positive that projects have now started to develop both of these collection systems. An important prerequisite for recycling to increase is that builders and property owners begin to demand that the waste is collected. In order to have a good impact on the system, both project managers and floor contractors must take an active responsibility in this.

    During demolition and renovation, there may be obstacles if the products are joined or contaminated with other materials. Here, technology has been developed to be able to remove e.g. filler and glue from floors and we see that this development continues for more products. Another obstacle to old products may be the content of substances that are currently regulated at EU level or undesirable for other reasons. Processes are now being developed to remove these old plastic additives, but it is also important that we get a balanced discussion about the levelling between climate benefit and the content of undesirable chemicals in the recycling of long-life products. If recycling can be done safely, this should be given priority because the climate benefits are so great. Another obstacle to really old plastic products may be that they have started to break down and have poorer properties. Here it is important to develop chemical recycling as a complement to the mechanical in order to be able to recycle all plastic products from the construction sector.In construction, packaging plastic is present in significant quantities and it is therefore an interesting fraction to collect and recycle to new plastic packaging or plastic bags, or alternatively to wooden plastic composites. As a result of CONSTRUCTIVATE, a six-month-long project has started to create a circular system for packaging plastic from the construction industry, Cirem.Practical experiments were made to investigate the use of recycled plastic pipes for new pipes (cable protection pipes and optocable pipes) and for plastic profiles (nail strip and © RISE Research Institutes of Swedenjoint strip). Plastic packaging and construction plastic from two construction sites were collected, and recycled into wood fiber composites (VPC materials). The noise reduction plank produced from this material showed good mechanical properties.Washing tests with old PVC-flooring succeeded in dissolving and washing away glue residue from these floorings. This is important because then even glued floors can be recycled to new floor mats. In 2019, Tarkett launched a method to remove glue and putty on an industrial scale and began to recycle floors from demolition/renovation.As a result of CONSTRUCTIVATE, new projects have been started to study certain products in more detail. CiREM will develop a collection and recycling system for building foil and packaging plastic. Several players in the construction industry participate. The Repipe demo project will demonstrate a collection and recycling system for plastic pipes in southern Sweden. About 30 players in the industry participate. Both projects are funded by Re: Source. The Swedish Environmental Protection Agency is financing a development of the recycling system GBR Floor Recycling to increase the recycling of plastic floors in the Swedish market.

    Download full text (pdf)
    fulltext
  • 6.
    Boss, Annika
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Innovativ återvinning av rör och profiler (REPIPE)2018Report (Other academic)
    Abstract [sv]

    I Sverige installeras varje år stora mängder rör i nybyggnationer och vid underhåll av infrastruktur och byggnader. Dessa rör tillverkas till stor del inom landets gränser och tillverkningen i Sverige uppgår till ca 100 000 ton per år. Dessvärre skapas cirka 5000 ton installationsspill per år som idag nästan uteslutande går till energivinning. Om rören istället materialåtervinns kan plastens värde tillvaratas, 50 miljoner kronor per år och det skulle ge minskad klimatpåverkan motsvarande10 000 ton CO2-ekv. per år. Vidare finns också potential att återvinna rör vid rivning. Innovationsprojektets syfte har varit att ta fram nya kostnads- och resurseffektiva modeller för insamling, sortering och materialåtervinning av plaströr. I det här projektet har vi avgränsat oss till att fokusera på det rörspill som uppstår vid installationer. Projektet har haft deltagare som representerar flera viktiga steg i ett cirkulärt system: NPG, Renova, Swerec, Novoplast, Talent Plastics (nu A-Plast), Pipelife, Wavin, Uponor, Inovyn, Rapid Granulator, Du Pont samt forskningsutövarna Chalmers Industriteknik och Swerea IVF (RISE). Sammanfattningsvis är resultaten från innovationsprojektet positiva. Det är genomförbart att samla in, sortera och materialåtervinna rör i ett cirkulärt system i södra delen av Sverige.

    Download full text (pdf)
    fulltext
  • 7. Zackrisson, Mats
    et al.
    Boss, Annika
    RISE - Research Institutes of Sweden (2017-2019), Materials and Production, IVF.
    Recycling production cable waste: Environmental and economic implications2013Conference paper (Other academic)
    Abstract [en]

    The main driver for recycling cable wastes is the high value of the conducting metal, while the plastic with its lower value is often neglected. New improved cable plastic recycling routes could provide both economic and environmental incentive to cable producers for moving up the “cable plastic waste ladder”. The improvement potential for the European cable industry as a whole is roughly estimated to avoidance of 30 750 tonnes of CO2eq annually if these new techniques were to be applied to the 5% plastic waste stream from cable production. Cradle-to-gate life cycle assessment of the waste management of the cable scrap is suggested and explained as a method to analyze the pros and cons of different cable scrap recycling options at hand. Economic and environmental data about different recycling processes and other relevant processes and materials are given. Cable producers could use this data and method to assess the way they deal with the cable plastic waste today and compare it with available alternatives and thus illuminate the improvement potential of recycling cable plastic waste both in an environmental and in an economic sense. Recycling production cable waste - Environmental and economic implications. (PDF Download Available).

  • 8.
    Boss, Annika
    et al.
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energi och Bioekonomi, Klimatisering och installationsteknik.
    Axell, Monica
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energi och Bioekonomi, Klimatisering och installationsteknik.
    Haglund Stignor, Caroline
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energi och Bioekonomi, Klimatisering och installationsteknik.
    Nordman, Roger
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energi och Bioekonomi, Klimatisering och installationsteknik.
    Rolfsman, Lennart
    RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energi och Bioekonomi, Klimatisering och installationsteknik.
    Uppvärmning och kylning av lokaler ur energi- och miljömässigt samt ekonomiskt perspektiv2009Report (Refereed)
    Abstract [sv]

    Demand for cooling of commercial buildings is increasing and there is a potential for expanding district cooling systems, especially in district heating areas. Using district heating and district cooling has been compared to heat pump techniques. Primary energy, environmental influence and economy have been evaluated. Four buildings in Gothenburg have been included in the study and certain differences have been found depending on demands of heating and cooling, which vary according to design and activity. The results are specific for Gothenburg due to the combination of production methods for district heating and cooling and the pricing, which differ compared to other places. Different perspectives on production of electricity, district heating and district cooling, e.g. average or marginal production, is of vital importance when comparing environmental influence. In most of the case studies the demand of primary energy is lower for district heating and cooling compared to heat pump systems. With a marginal perspective district heating and cooling will lead to lower emissions of greenhouse gases. Using the perspective of average production will on the other hand rate heat pump systems to have a lower influence on the greenhouse effect in most of the cases. Which technique is the most cost efficient depends mainly upon relation of heating and cooling demands. Where there is a greater demand for cooling than for heating, district heating and cooling is more advantageous. It is a need for improved data in commercial buildings from reliable field measurements. The quality of the evaluation is very much dependent on reliable measured data from real installations.

    Download full text (pdf)
    FULLTEXT01
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf