Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mirzai, Aria
    et al.
    RISE Research Institutes of Sweden, Safety and Transport, Electrification and Reliability.
    Coban, Ali Zülfükar
    Chalmers University of Technology, Sweden.
    Almgren, Magnus
    Chalmers University of Technology, Sweden.
    Aoudi, Wissam
    Clavister, Sweden.
    Bertilsson, Tobias
    Clavister, Sweden.
    Scheduling to the Rescue; Improving ML-Based Intrusion Detection for IoT2023In: EUROSEC '23: Proceedings of the 16th European Workshop on System Security. May, 2023., Association for Computing Machinery , 2023, p. 44-50Conference paper (Refereed)
    Abstract [en]

    With their inherent convenience factor, Internet of Things (IoT) devices have exploded in numbers during the last decade, but at the cost of security. Machine learning (ML) based intrusion detection systems (IDS) are increasingly proving necessary tools for attack detection, but requirements such as extensive data collection and model training make these systems computationally heavy for resource-limited IoT hardware. This paper’s main contribution to the cyber security research field is a demonstration of how a dynamic user-level scheduler can improve the performance of IDS suited for lightweight and data-driven ML algorithms towards IoT. The dynamic user-level scheduler allows for more advanced computations, not intended to be executed on resource-limited IoT units, by enabling parallel model retraining locally on the IoT device without halting the IDS. It eliminates the need for any cloud resources as computations are kept locally at the edge. The experiments showed that the dynamic user-level scheduler provides several advantages compared to a previously developed baseline system. Mainly by substantially increasing the system’s throughput, which reduces the time until attacks are detected, as well as dynamically allocating resources based on attack suspicion.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf