Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Warwas, Niklas
    et al.
    University of Gothenburg, Sweden.
    Veide Vilg, Jenny
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Langeland, Markus
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food. University of Gothenburg, Sweden; SLU Swedish University of Agricultural Sciences, Sweden.
    Roques, Jonathan
    University of Gothenburg, Sweden.
    Hinchcliffe, James
    University of Gothenburg, Sweden.
    Sundh, Henrik
    University of Gothenburg, Sweden.
    Undeland, Ingrid
    University of Gothenburg, Sweden; Chalmers University of Technology, Sweden.
    Sundell, Kristina
    University of Gothenburg, Sweden.
    Marine yeast (Candida sake) cultured on herring brine side streams is a promising feed ingredient and omega-3 source for rainbow trout (Oncorhynchus mykiss)2023In: Aquaculture, ISSN 0044-8486, E-ISSN 1873-5622, Vol. 571, article id 739448Article in journal (Refereed)
    Abstract [en]

    A major challenge for the aquaculture industry is the supply of sustainable feeds. A promising model to achieve this is to utilize circular flows where feed ingredients, such as single cell protein, are cultivated using side streams of the food industry. The aim of this study was to evaluate the marine yeast Candida sake, produced on herring brine side streams, as a source of protein and immune stimulant in feed for salmonid fish. The dry C. sake product contained 54% protein (3.3% lysine and 0.8% methionine) and 13% lipids (1.1% eicosapentaenoic, EPA, and 1% docosahexaenoic acid, DHA). Four experimental diets were designed and tested in a 9-week feeding trial using juvenile rainbow trout (Oncorhynchus mykiss). A control diet containing both fish and plant-based ingredients constituted the base feed to which 20% (to evaluate effects on digestibility, growth and intestinal physiology), 20% heat-treated (to evaluate effects of downstream processing) and 3% (to evaluate immune stimulatory properties, replacing 3% soy protein concentrate) C. sake was added. The apparent digestibility coefficient of C. sake for protein, fat and gross energy was above 80%, and for amino acids above 90% regardless of treatment, suggesting a high bioavailability of C. sake. All three yeast containing diets performed equally to the control regarding specific growth rate, feed conversion ratio and functional intestinal health. These results suggest that C. sake is a promising alternative protein source for circular feeds in the salmonid industry. The presence of EPA and DHA represents an added value. The heat treatment increased the apparent digestibility coefficient of dry matter by 8% but decreased amino acid digestibility by on average 3%, indicating that heat treatment may not be the optimal downstream processing technique. Furthermore, the inclusion of 3% C. sake increased the intestinal lamina propria width and TGF-β transcription, indicating an immune stimulating effect. Future research is needed to understand these immune modulatory effects of C. sake supplementation. © 2023 The Authors

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf