Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Transparent Wood Biocomposites for Sustainable Development2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Sustainable wood nanotechnologies that combine optical transmittance and mechanical performance are interesting for new functionalities utilizing transparency. Wood is a sophisticated bio-based material with a natural hierarchical, anisotropic and porous structure. The wood cellular structure can be functionalized at the micro and nanostructural level for the design of advanced functional materials. In recent years, the development of transparent wood biocomposites derived from delignified wood substrates have gained interest because they combine attractive structural properties with optical functionality. Nanostructural tailoring of transparent wood biocomposites is required to improve optical transmittance, mechanical performance, and to add new functionalities. In this thesis, environmentally friendly material components and green chemical processes have been developed for the fabrication of nanostructurally tailored transparent wood biocomposites.

    Mesoporous delignified wood substrates with preserved microstructure and cellulose microfibril alignment in the cell wall are used as reinforcement in transparent wood biocomposites. Chemical functionalization strategies using renewable maleic, itaconic and succinic anhydrides have been explored for molecular and nanostructural tailoring of delignified cell walls. Cyclic anhydride functionalization results in high degree of esterification, reduces moisture content in the wood substrate, improves monomer diffusion within the cell wall, and further enables interface tailoring at the molecular scale with possibility for covalent attachment with polymer matrix. Transparent wood biocomposites were prepared by methyl methacrylate monomer impregnation followed by in situ polymerization within the chemically modified wood substrates. The anhydride-functionalized transparent wood biocomposites have improved wood-polymer interfacial interactions, resulting in improved optical and mechanical properties. Moreover, a bio-based polymer matrix was designed from renewable limonene oxide and acrylic acid for the fabrication of fully bio-based transparent wood biocomposites. The bio-based monomer can diffuse into the cell wall, and the polymer phase is both refractive index-matched and covalently linked to the wood substrate. The bio-based transparent wood biocomposites are nanostructured and demonstrate superior optical transmittance, low haze, and excellent mechanical performance.

    Nanostructural functionalization using phase-change materials is also demonstrated for the design of transparent wood biocomposites that combine thermal energy storage, tunable optical properties, and load bearing functions. Molecular and nanoscale interactions in transparent wood biocomposites are critical as they contribute to the favorable distribution of the phase-change material across the wood structure, which is a key component in optimizing thermal energy storage capacity. Bio-based design of transparent wood is also explored for thermal energy storage applications. Low environmental impact is achieved by combining the use of bio-based resources with green processing routes. Environmentally friendly transparent wood nanotechnologies can compete with petroleum-based plastics in applications such as load-bearing transparent panel and energy saving.

    Download full text (pdf)
    fulltext
  • 2.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Chen, Hui
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lidfeldt, Matilda
    Gunnarsson, Josefin
    Olsén, Peter
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood2023In: Small, ISSN 1613-6810, E-ISSN 1613-6829Article in journal (Refereed)
    Abstract [en]

    Abstract The sustainable development of functional energy-saving building materials is important for reducing thermal energy consumption and promoting natural indoor lighting. Phase-change materials embedded in wood-based materials are candidates for thermal energy storage. However, the renewable resource content is usually insufficient, the energy storage and mechanical properties are poor, and the sustainability aspect is unexplored. Here a novel fully bio-based transparent wood (TW) biocomposite for thermal energy storage, combining excellent heat storage properties, tunable optical transmittance, and mechanical performance is introduced. A bio-based matrix based on a synthesized limonene acrylate monomer and renewable 1-dodecanol is impregnated and in situ polymerized within mesoporous wood substrates. The TW demonstrates high latent heat (89 J g?1) exceeding commercial gypsum panels, combined with thermo-responsive optical transmittance (up to 86%) and mechanical strength up to 86 MPa. The life cycle assessment shows that the bio-based TW has a 39% lower environmental impact than transparent polycarbonate panels. The bio-based TW holds great potential as scalable and sustainable transparent heat storage solution.

  • 3.
    Chen, Bin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    A distortion-map-based method for morphology generation in multi-phase materials - application to wood2023In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 244, article id 110262Article in journal (Refereed)
    Abstract [en]

    Increased use of multi-phase, wood-based biocomposites may contribute to sustainable development. The porous microstructure offers unique possibilities for modification, but global properties are often predicted based on simplified unit cells and homogenization. For materials design, simulations based on complex 3D microstructures with statistical variability are alternatives to better understanding physical properties. Parametric models are developed in a distortion-map-based method to represent 3D wood microstructures. Basic structures of uniform tubular cells and other features are generated followed by distortion mapping. These maps are highly adaptable and can generate realistic features and variability. Fibers, vessels, and ray cells are realistically distributed. The models are realistic, versatile, and scalable, as well as can be used to simulate the mechanical, optical, and hydrodynamic properties of complex composites. The model is promising for generating large sets of data to train deep learning networks for multi-physics research.

  • 4.
    Samanta, Pratick
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Samanta, Archana
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Maddalena, Lorenza
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, I-15121 Alessandria, Italy..
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, I-15121 Alessandria, Italy..
    Gao, Ying
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Nanjing 210037, Peoples R China..
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nero, Mathias
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden..
    Willhammar, Tom
    Stockholm Univ, Dept Mat & Environm Chem, SE-10691 Stockholm, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Yuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Coloration and Fire Retardancy of Transparent Wood Composites by Metal Ions2023In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 15, no 50, p. 58850-58860Article in journal (Refereed)
    Abstract [en]

    Transparent wood composites (TWs) offer the possibility of unique coloration effects. A colored transparent wood composite (C-TW) with enhanced fire retardancy was impregnated by metal ion solutions, followed by methyl methacrylate (MMA) impregnation and polymerization. Bleached birch wood with a preserved hierarchical structure acted as a host for metal ions. Cobalt, nickel, copper, and iron metal salts were used. The location and distribution of metal ions in C-TW as well as the mechanical performance, optical properties, and fire retardancy were investigated. The C-TW coloration is tunable by controlling the metal ion species and concentration. The metal ions reduced heat release rates and limited the production of smoke during forced combustion tests. The potential for scaled-up production was verified by fabricating samples with a dimension of 180 x 100 x 1 (l x b x h) mm(3).

  • 5.
    Dobryden, Illia
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Montanari, Celine
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Bhattacharjya, DHRUBAJYOTI
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Aydin, Juhanes
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Ahniyaz, Anwar
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Bio-Based Binder Development for Lithium-Ion Batteries.2023In: Materials, E-ISSN 1996-1944, Vol. 16, no 16, article id 5553Article in journal (Refereed)
    Abstract [en]

    The development of rechargeable lithium-ion battery (LIB) technology has facilitated the shift toward electric vehicles and grid storage solutions. This technology is currently undergoing significant development to meet industrial applications for portable electronics and provide our society with "greener" electricity. The large increase in LIB production following the growing demand from the automotive sector has led to the establishment of gigafactories worldwide, thus increasing the substantial consumption of fossil-based and non-sustainable materials, such as polyvinylidene fluoride and/or styrene-butadiene rubber as binders in cathode and anode formulations. Furthermore, the use of raw resources, such as Li, Ni, and Mn in cathode active materials and graphite and nanosilicon in anodes, necessitates further efforts to enhance battery efficiency. To foster a global sustainable transition in LIB manufacturing and reduce reliance on non-sustainable materials, the implementation of bio-based binder solutions for electrodes in LIBs is crucial. Bio-based binders such as cellulose, lignin, alginate, gums, starch, and others can address environmental concerns and can enhance LIBs' performance. This review aims to provide an overview of the current progress in the development and application of bio-based binders for LIB electrode manufacturing, highlighting their significance toward sustainable development.

  • 6.
    Samanta, Pratick
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Samanta, Archana
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Maddalena, Lorenza
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fire-retardant and transparent wood biocomposite based on commercial thermoset2022In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 156, article id 106863Article in journal (Refereed)
    Abstract [en]

    Transparent wood (TW) biocomposites combine high optical transmittance and good mechanical properties and can contribute to sustainable development. The safety against fire is important for building applications. Here, a "green" bleached wood reinforcement is impregnated by water soluble and flame-retardant melamine formaldehyde (MF) in a scalable process, for a wood content of 25 vol%. FE-SEM is used for characterization of optical defects and EDX to examine MF distribution at nanoscale cell wall pore space. Curing (FTIR-ATR), mechanical properties, optical transmittance (74% at 1.2 mm thickness) and flame-retardant properties are also characterized (self-extinguishing behavior and cone calorimetry), and scattering mechanisms are discussed. The fire growth rate of transparent wood was less than half the values for neat wood. Transparent wood/MF biocomposites show interesting wood-MF synergies and are of practical interest in building applications. Critical aspects of processing are analyzed for minimization of optical defects.

  • 7.
    Subbotina, Elena
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Olsén, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fully bio-based cellulose nanofiber/epoxy composites with both sustainable production and selective matrix deconstruction towards infinite fiber recycling systems2022In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 2, p. 570-576Article in journal (Refereed)
    Abstract [en]

    Design of nanocellulose-based composite materials suitable for selective disintegration, recovery and recycling of individual components is of great scientific and technical interest. Cellulose nanofiber/epoxy (CNF/EP) composites are candidate bio-based substitutes for petroleum-based materials. However, chemical recovery of such intimately mixed nanocomposites has not been addressed, due to the limited chemical stability of nanocellulose and due to the covalently crosslinked epoxy network. In this work we develop CNF/EP composites designed for selective disintegration. Deconstruction is achieved by including two types of labile linkages to the polymer network; acetals and esters. Besides enabling recycling of the CNF reinforcement, the thermoset constituents were further depolymerized into valuable monomeric units in 63-95% yield. In addition, the preparation of both; epoxy monomers and final composite materials is performed using solely bio-derived materials and solvents. 

  • 8.
    Chen, Hui
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Shanker, Ravi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Marcinkevičius, Saulius
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Photon Walk in Transparent Wood: Scattering and Absorption in Hierarchically Structured Materials2022In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, article id 2102732Article in journal (Refereed)
    Abstract [en]

    The optical response of hierarchical materials is convoluted, which hinders their direct study and property control. Transparent wood (TW) is an emerging biocomposite in this category, which adds optical function to the structural properties of wood. Nano- and microscale inhomogeneities in composition, structure and at interfaces strongly affect light transmission and haze. While interface manipulation can tailor TW properties, the realization of optically clear wood requires detailed understanding of light-TW interaction mechanisms. Here we show how material scattering and absorption coefficients can be extracted from a combination of experimental spectroscopic measurements and a photon diffusion model. Contributions from different length scales can thus be deciphered and quantified. It is shown that forward scattering dominates haze in TW, primarily caused by refractive index mismatch between the wood substrate and the polymer phase. Rayleigh scattering from the wood cell wall and absorption from residual lignin have minor effects on transmittance, but the former affects haze. Results provide guidance for material design of transparent hierarchical composites towards desired optical functionality; we demonstrate experimentally how transmittance and haze of TW can be controlled over a broad range.

    Download full text (pdf)
    fulltext
  • 9.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, L.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, F.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials2022In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 5, no 7, p. 9188-9200Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF-gibbsite and CNF-graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF-gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF-graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials. 

  • 10.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Görür, Yunus Can
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toward Li-ion Graphite Anodes with Enhanced Mechanical and Electrochemical Properties Using Binders from Chemically Modified Cellulose Fibers2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 8, p. 9333-9342Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibers (CNFs) are bio-sourced nanomaterials, which, after proper chemical modification, exhibit a unique ability to disperse carbon-rich micro- and nanomaterials and can be used in the design of mechanically strong functional nanocomposites. When used in the preparation of graphite anodes for Li-ion batteries, they have the potential to outperform conventional binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) both electrochemically and mechanically. In this study, cellulose-rich fibers were subjected to three different chemical modifications (including carbonyl-, carboxyl-, and aldehyde-functionalization) to facilitate their fibrillation into CNFs during the preparation of aqueous slurries of graphite and carbon black. Using these binders, graphite anodes were prepared through conventional blade coating. Compared to CMC/SBR reference anodes, all anodes prepared with modified cellulosic fibers as binders performed better in the galvanostatic cycling experiments and in the mechanical cohesion tests they were subjected to. Among them, the aldehyde- and carboxyl-rich fibers performed the best and resulted in a 10% increase in specific capacity with a simultaneous two- and three-fold increase of the electrode material's stress-at-failure and strain-at-break, respectively. In-depth characterizations attributed these results to the distinctive nanostructure and surface chemistry of the composites formed between graphite and these fiber-based binders. 

  • 11.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsen, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. ..
    Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization2021In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 9, article id 682883Article in journal (Refereed)
    Abstract [en]

    The development of large, multifunctional structures from sustainable wood nanomaterials is challenging. The need to improve mechanical performance, reduce moisture sensitivity, and add new functionalities, provides motivation for nanostructural tailoring. Although existing wood composites are commercially successful, materials development has not targeted nano-structural control of the wood cell wall, which could extend the property range. For sustainable development, non-toxic reactants, green chemistry and processing, lowered cumulative energy requirements, and lowered CO2-emissions are important targets. Here, modified wood substrates in the form of veneer are suggested as nanomaterial components for large, load-bearing structures. Examples include polymerization of bio-based monomers inside the cell wall, green chemistry wood modification, and addition of functional inorganic nanoparticles inside the cell wall. The perspective aims to describe bio-based polymers and green processing concepts for this purpose, along with wood nanoscience challenges.

    Download full text (pdf)
    fulltext
  • 12.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ogawa, Yu
    Univ Grenoble Alpes.
    Olsen, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    High Performance, Fully Bio‐Based, and Optically Transparent Wood Biocomposites2021In: Advanced Science, E-ISSN 2198-3844Article in journal (Refereed)
    Abstract [en]

    The sustainable development of engineering biocomposites has been limited due to a lack of bio‐based monomers combining favorable processing with high performance. Here, the authors report a novel and fully bio‐based transparent wood biocomposite based on green synthesis of a new limonene acrylate monomer from renewable resources. The monomer is impregnated and readily polymerized in a delignified, succinylated wood substrate to form optically transparent biocomposites. The chemical structure of the limonene acrylate enables diffusion into the cell wall, and the polymer phase is both refractive index‐matched and covalently linked to the wood substrate. This results in nanostructured biocomposites combining an excellent optical transmittance of 90% at 1.2 mm thickness and a remarkably low haze of 30%, with a high mechanical performance (strength 174 MPa, Young's modulus 17 GPa). Bio‐based transparent wood holds great potential towards the development of sustainable wood nanotechnologies for structural applications, where transparency and mechanical performance are combined.

    Download full text (pdf)
    fulltext
  • 13.
    Pang, Jiu
    et al.
    Wallenberg Wood Science Center Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE-60174 Sweden.
    Baitenov, Adil
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Montanari, Céline
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Samanta, Archana
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zozoulenko, Igor
    Wallenberg Wood Science Center Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping SE-60174 Sweden.
    Light Propagation in Transparent Wood: Efficient Ray‐Tracing Simulation and Retrieving an Effective Refractive Index of Wood Scaffold2021In: Advanced Photonics Research, ISSN 2699-9293, Vol. 2, no 11, p. 2100135-2100135Article in journal (Refereed)
    Abstract [en]

    Transparent wood (TW), a biocomposite material demonstrating optical transparency in the visible range, has attracted much interest in recent years due to great potential for ecofriendly applications, for instance, in construction industry and functionalized organic materials. Optical properties of TW, including transparency and haze, depend on a particular structure of cellulose-based backbone compound, (mis-)matching of the refractive indices (RIs) between TW compounds, and the polymer matrix. Although there are data of cellulose RIs for various forms of cellulose (fibers, powder, hot-pressed films, etc.), these values might differ from an effective RI of the TW substrate. Herein, a numerical model of light propagation in the TW, based on the real cellular structure in wood, is presented and applied to estimate an effective RI of the delignified wood reinforcement in the experimentally investigated TW material. Ray-tracing and rigorous electromagnetic approaches are compared for modeling light propagation in the TW. Ray tracing demonstrates considerably simplified yet accurate and efficient solutions. The work brings substantial progress toward realistic and practical wood modeling for the purpose of applications, materials design, and fundamental studies.

    Download full text (pdf)
    fulltext
  • 14.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per Tomas
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters2021In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, no 27, p. 32467-32478Article in journal (Refereed)
    Abstract [en]

    Thorough characterization and fundamental understanding of cellulose fibers can help us develop new, sustainable material streams and advanced functional materials. As an emerging nanomaterial, cellulose nanofibrils (CNFs) have high specific surface area and good mechanical properties; however, handling and processing challenges have limited their widespread use. This work reports an in-depth characterization of self-fibrillating cellulose fibers (SFFs) and their use in smart, responsive filters capable of regulating flow and retaining nanoscale particles. By combining direct and indirect characterization methods with polyelectrolyte swelling theories, it was shown that introduction of charges and decreased supramolecular order in the fiber wall were responsible for the exceptional swelling and nanofibrillation of SFFs. Different microscopy techniques were used to visualize the swelling of SFFs before, during, and after nanofibrillation. Through filtration and pH adjustment, smart filters prepared via in situ nanofibrillation showed an ability to regulate the flow rate through the filter and a capacity of retaining 95% of 300 nm (diameter) silica nanoparticles. This exceptionally rapid and efficient approach for making smart filters directly addresses the challenges associated with dewatering of CNFs and bridges the gap between science and technology, making the widespread use of CNFs in high-performance materials a not-so-distant reality.

    Download full text (pdf)
    fulltext
  • 15.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Olsén, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Interface tailoring by a versatile functionalization platform for nanostructured wood biocomposites2020In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 22, p. 8012-8023Article in journal (Refereed)
    Abstract [en]

    Wood templates are promising biobased substrates that can be functionalized for controlled nanostructure, and the development of novel nanotechnologies. A sustainable, selective and versatile chemical functionalization platform for cellulosic wood templates is developed. Bulk wood templates are delignified using peracetic acid, and the nanoporous delignified wood templates are functionalized with cyclic anhydrides (maleic, itaconic and succinic) from renewable resources. The synthetic pathway uses solvent-free reaction conditions, short reaction times, and has possibilities for chemical recovery. Anhydrides become covalently attached inside the nanoporous wood cell wall and yields wood templates with lower moisture sorption, preserved nano- and ultrastructure, and high degree of esterification with carboxyl content as high as 3.93 mmol g−1. The functionalization platform enables interface tailoring at the molecular scale with possibility for further reaction and covalent modifications. This is demonstrated by the preparation of transparent wood biocomposites. The biocomposites exhibit controlled wood–polymer interfacial adhesion with high optical transmittance. The favorable interaction mechanisms at the cell wall level result in mechanically strong biocomposites.

    Download full text (pdf)
    fulltext
  • 16.
    Jungstedt, Erik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Mechanical properties of transparent high strength biocomposites from delignified wood veneer2020In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840Article in journal (Refereed)
    Abstract [en]

    Transparent wood (TW) based on delignified birch veneer and thermoplastic poly(methyl methacrylate) (PMMA) is investigated by uniaxial tensile tests and full-field strain analyses based on digital image correlation techniques. TW is considered as a composite of unidirectional fibers (wood veneer) in a matrix (PMMA). Four in-plane elastic constants along the material axes are reported to enable the usage of continuum mechanics and lamination theory. Longitudinal composite strength is as high as 270 MPa at a reinforcement content of only 25 vol%. The failure behavior is interpreted based on strain field development. Strong reinforcement effects were observed from delignified birch veneer. Despite the fragility of delignified veneers, this constituent provides unexpectedly high reinforcement due to the high cellulose content and favorable stress transfer mechanisms.

    Download full text (pdf)
    fulltext
  • 17.
    Chen, Hui
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yan, Max
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Refractive index of delignified wood for transparent biocomposites2020In: RSC Advances, E-ISSN 2046-2069, Vol. 10, p. 40719-40724Article in journal (Refereed)
    Abstract [en]

    Refractive index (RI) determination for delignified wood templates is vital for transparent wood composite fabrication. Reported RIs in the literature are based on either single plant fibers or wood powder, measured by the immersion liquid method (ILM) combined with mathematical fitting. However, wood structure complexity and the physical background of the fitting were not considered. In this work, RIs of delignified wood templates were measured by the ILM combined with a light transmission model developed from the Fresnel reflection/refraction theory for composite materials. The RIs of delignified balsa wood are 1.536 ± 0.006 and 1.525 ± 0.008 at the wavelength of 589 nm for light propagating perpendicular and parallel to the wood fiber direction, respectively. For delignified birch wood, corresponding values are 1.537 ± 0.005 and 1.529 ± 0.006, respectively. The RI data for delignified wood scaffolds are important for tailoring optical properties of transparent wood biocomposites, and also vital in optical properties investigations by theoretical modelling of complex light propagation in transparent wood and related composites. The developed light transmission model in combination with the immersion liquid method can be used to determine the RI of complex porous or layered solid materials and composites.

    Download full text (pdf)
    fulltext
  • 18.
    Chen, Hui
    et al.
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
    Montanari, Céline
    Wallenberg Wood Science Center;Department of Fiber and Polymer Technology;KTH Royal Institute of Technology;Stockholm;Sweden.
    Yan, Max
    Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Popov, Sergei
    Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Li, Yuanyuan
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
    Sychugov, Ilya
    Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden.
    Berglund, Lars A
    Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
    Refractive index of delignified wood for transparent biocomposites2020In: RSC Advances, E-ISSN 2046-2069, Vol. 10, no 67, p. 40719-40724Article in journal (Refereed)
    Abstract [en]

    Refractive index (RI) determination for delignified wood templates is vital for transparent wood composite fabrication. Reported RIs in the literature are based on either single plant fibers or wood powder, measured by the immersion liquid method (ILM) combined with mathematical fitting. However, wood structure complexity and the physical background of the fitting were not considered. In this work, RIs of delignified wood templates were measured by the ILM combined with a light transmission model developed from the Fresnel reflection/refraction theory for composite materials. The RIs of delignified balsa wood are 1.536 ± 0.006 and 1.525 ± 0.008 at the wavelength of 589 nm for light propagating perpendicular and parallel to the wood fiber direction, respectively. For delignified birch wood, corresponding values are 1.537 ± 0.005 and 1.529 ± 0.006, respectively. The RI data for delignified wood scaffolds are important for tailoring optical properties of transparent wood biocomposites, and also vital in optical properties investigations by theoretical modelling of complex light propagation in transparent wood and related composites. The developed light transmission model in combination with the immersion liquid method can be used to determine the RI of complex porous or layered solid materials and composites.

    Download full text (pdf)
    fulltext
  • 19.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Multifunctional transparent wood for thermal energy storage applications2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 20.
    Montanari, Céline
    et al.
    Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden.
    Li, Yuanyuan
    Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden.
    Chen, Hui
    Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden.
    Yan, Max
    Department of Applied Physics, KTH Royal Institute of Technology, Kista, Sweden.
    Berglund, Lars A.
    Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden.
    Transparent wood for thermal energy storage and reversible optical transmittance2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 22, p. 20465-20472Article in journal (Refereed)
    Abstract [en]

    Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized, also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (∼76 J g–1) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.

    Download full text (pdf)
    fulltext
  • 21.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Chen, Hui
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Yan, Max
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 22, p. 20465-20472Article in journal (Refereed)
    Abstract [en]

    Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized; also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (similar to 76 J g(-1)) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.

    Download full text (pdf)
    fulltext
  • 22.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid processing of functional nanocellulose hybrids for gas barrier, flame retardant and energy storage materialsManuscript (preprint) (Other academic)
  • 23.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid Processing of Functional Hybrids via Reversible Self-Assembly of NanocellulosesManuscript (preprint) (Other academic)
  • 24.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Görür, Yunus Can
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Toward commercial Li-ion graphite anodes with enhanced mechanical and electrochemical properties using binders from chemically modified cellulose fibersManuscript (preprint) (Other academic)
  • 25.
    Montanari, Celine
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Chen, Hui
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lidfeldt, Matilda
    Gunnarsson, Josefin
    Olsen, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent WoodManuscript (preprint) (Other academic)
    Download full text (pdf)
    fulltext
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf