Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Håkansson, Joakim
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Juhlin, Oskar
    University of Gothenburg, Sweden.
    Hovannisyan, Armen
    University of Gothenburg, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Bogestål, Yalda
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Olmarker, Kjell
    University of Gothenburg, Sweden.
    Changes in ion-channels in the dorsal root ganglion after exposure to autologous nucleus pulposus and TNF. A rat experimental study2024In: Journal of Orthopaedics, ISSN 0972-978X, E-ISSN 2589-9082, Vol. 47, p. 23-27Article in journal (Refereed)
    Abstract [en]

    Purpose: It is known that contact of nucleus pulposus with the dorsal root ganglion may induce changes in nerve conduction and pain behavior. It has also been suggested that the behavioristic changes are caused by changes in voltage-gated ion channels, which in turn have been upregulated by TNF. Such upregulations have previously been shown for NaV 1.8 and NaV 1.9. In this investigation, we expanded the number of studied ion channels after the application of nucleus pulposus or TNF. Methods: Following removal of the left L4-5 fact joint, a disc puncture was performed and the dorsal root ganglion was exposed to nucleus pulposus (n = 5) and TNF (n = 5). Operated rats without disc puncture served as sham (n = 5) and 5 non-operated (naïve) rats were included. After 24 h, the DRGs were harvested and analyzed by quantitative PCR on validated pre-spotted primer plates displaying genes for 90 voltage-gated ion channels. Results: It was evident that the changes in operated animals were separate from the naïve rats. It was also apparent that gene expression changes in rats with nucleus pulposus or TNF application showed similar trends and were also separated from sham-operated animals. Conclusion: The application of nucleus pulposus and TNF onto the DRG in rats induces comparable changes in gene expression of several ion channels. Since the changes induced by TNF and NP are similar, one might also suspect that TNF mediates the NP-induced changes. However, such a mechanism needs further investigation. © 2023 The Authors

  • 2.
    Rosendahl, Jennifer
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Zarna, Chiara
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. Gothenburg University, Sweden.
    Chinga-Carrasco, Gary
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Gene-Expression Analysis of Human Fibroblasts Affected by 3D-Printed Carboxylated Nanocellulose Constructs2023In: Bioengineering, E-ISSN 2306-5354, Vol. 10, no 1, article id 121Article in journal (Refereed)
    Abstract [en]

    Three-dimensional (3D) printing has emerged as a highly valuable tool to manufacture porous constructs. This has major advantages in, for example, tissue engineering, in which 3D scaffolds provide a microenvironment with adequate porosity for cell growth and migration as a simulation of tissue regeneration. In this study, we assessed the suitability of three cellulose nanofibrils (CNF) that were obtained through 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated oxidation. The CNFs were obtained by applying three levels of carboxylation, i.e., 2.5, 3.8, and 6.0 mmol sodium hypochlorite (NaClO) per gram of cellulose. The CNFs exhibited different nanofibrillation levels, affecting the corresponding viscosity and 3D printability of the CNF gels (0.6 wt%). The scaffolds were manufactured by micro-extrusion and the nanomechanical properties were assessed with nanoindentation. Importantly, fibroblasts were grown on the scaffolds and the expression levels of the marker genes, which are relevant for wound healing and proliferation, were assessed in order to reveal the effect of the 3D-scaffold microenvironment of the cells. © 2023 by the authors.

  • 3.
    Chinga Carrasco, Gary
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Pasquier, Eva
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Solberg, Amalie
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Leirset, Ingebjørg
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Stevanic Srndovic, Jasna
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Carboxylated nanocellulose for wound healing applications – Increase of washing efficiency after chemical pre-treatment and stability of homogenized gels over 10 months2023In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 314, article id 120923Article in journal (Refereed)
    Abstract [en]

    To commercialize a biomedical product as a medical device, reproducibility of production and time-stability are important parameters. Studies of reproducibility are lacking in the literature. Additionally, chemical pre-treatments of wood fibres to produce highly fibrillated cellulose nanofibrils (CNF) seem to be demanding in terms of production efficiency, being a bottleneck for industrial upscaling. In this study, we evaluated the effect of pH on the dewatering time and washing steps of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO)-mediated oxidized wood fibres when applying 3.8 mmol NaClO/g cellulose. The results indicate that the method does not affect the carboxylation of the nanocelluloses, and levels of approximately 1390 μmol/g were obtained with good reproducibility. The washing time of a Low-pH sample was reduced to 1/5 of the time required for washing a Control sample. Additionally, the stability of the CNF samples was assessed over 10 months and changes were quantified, the most pronounced were the increase of potential residual fibre aggregates, reduction of viscosity and increase of carboxylic acid content. The cytotoxicity and skin irritation potential were not affected by the detected differences between the Control and Low-pH samples. Importantly, the antibacterial effect of the carboxylated CNFs against S. aureus and P. aeruginosa was confirmed. © 2023 The Authors

  • 4.
    Pasquier, Eva
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Solberg, Amalie
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Ståhlberg, Anders
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Chinga Carrasco, Gary
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Polysaccharides and Structural Proteins as Components in Three-Dimensional Scaffolds for Breast Cancer Tissue Models: A Review2023In: Bioengineering, E-ISSN 2306-5354, Vol. 10, no 6, article id 682Article in journal (Refereed)
    Abstract [en]

    Breast cancer is the most common cancer among women, and even though treatments are available, efficiency varies with the patients. In vitro 2D models are commonly used to develop new treatments. However, 2D models overestimate drug efficiency, which increases the failure rate in later phase III clinical trials. New model systems that allow extensive and efficient drug screening are thus required. Three-dimensional printed hydrogels containing active components for cancer cell growth are interesting candidates for the preparation of next generation cancer cell models. Macromolecules, obtained from marine- and land-based resources, can form biopolymers (polysaccharides such as alginate, chitosan, hyaluronic acid, and cellulose) and bioactive components (structural proteins such as collagen, gelatin, and silk fibroin) in hydrogels with adequate physical properties in terms of porosity, rheology, and mechanical strength. Hence, in this study attention is given to biofabrication methods and to the modification with biological macromolecules to become bioactive and, thus, optimize 3D printed structures that better mimic the cancer cell microenvironment. Ink formulations combining polysaccharides for tuning the mechanical properties and bioactive polymers for controlling cell adhesion is key to optimizing the growth of the cancer cells. © 2023 by the authors.

  • 5.
    Österberg, Klas
    et al.
    University of Gothenburg, Sweden.
    Bogestål, Yalda
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Jenndahl, Lachmi
    VERIGRAFT AB, Sweden.
    Gustafsson-Hedberg, Tobias
    VERIGRAFT AB, Sweden.
    Synnergren, Jane
    University of Gothenburg, Sweden; University of Skövde, Sweden.
    Holmgren, Gustav
    University of Skövde, Sweden.
    Bom, Eva
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Krona, Annika
    RISE Research Institutes of Sweden, Bioeconomy and Health, Agriculture and Food.
    Eriksson, Jonna
    TATAA Biocenter AB, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Crisostomo, Veronica
    Jesús Usón Minimally Invasive Surgery Centre, Spain; CIBER de Enfermedades Cardiovasculares, Spain; RICORS-TERAV Network, Spain.
    Sanchez-Margallo, Francisco
    Jesús Usón Minimally Invasive Surgery Centre, Spain; CIBER de Enfermedades Cardiovasculares, Spain; RICORS-TERAV Network, Spain.
    Baez-Diaz, Claudia
    Jesús Usón Minimally Invasive Surgery Centre, Spain; CIBER de Enfermedades Cardiovasculares, Spain; RICORS-TERAV Network, Spain.
    Strehl, Raimund
    VERIGRAFT AB, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Personalized tissue-engineered veins - long term safety, functionality and cellular transcriptome analysis in large animals2023In: Biomaterials Science, ISSN 2047-4830, E-ISSN 2047-4849, Vol. 11, no 11, p. 3860-3877Article in journal (Refereed)
    Abstract [en]

    Tissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection. In this study, P-TEVs were transplanted to vena cava in pig, and the analysis of three veins after six months, six veins after 12 months and one vein after 14 months showed that all P-TEVs were fully patent, and the tissue was well recellularized and revascularized. To confirm that the ATMP product had the expected characteristics one year after transplantation, gene expression profiling of cells from P-TEV and native vena cava were analyzed and compared by qPCR and sequencing. The qPCR and bioinformatics analysis confirmed that the cells from the P-TEV were highly similar to the native cells, and we therefore conclude that P-TEV is functional and safe in large animals and have high potential for use as a clinical transplant graft.

  • 6.
    Chinga-Carrasco, Gary
    et al.
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology.
    Catalán, Julia
    Finnish Institute of Occupational Health, Finland; University of Zaragoza, Spain.
    Nanocelluloses – Nanotoxicology, Safety Aspects and 3D Bioprinting2022In: Advances in Experimental Medicine and Biology, ISSN 0065-2598, E-ISSN 2214-8019, Vol. 1357, p. 155-177Article in journal (Refereed)
    Abstract [en]

    Nanocelluloses have good rheological properties that facilitate the extrusion of nanocellulose gels in micro-extrusion systems. It is considered a highly relevant characteristic that makes it possible to use nanocellulose as an ink component for 3D bioprinting purposes. The nanocelluloses assessed in this book chapter include wood nanocellulose (WNC), bacterial nanocellulose (BNC), and tunicate nanocellulose (TNC), which are often assumed to be non-toxic. Depending on various chemical and mechanical processes, both cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) can be obtained from the three mentioned nanocelluloses (WNC, BNC, and TNC). Pre/post-treatment processes (chemical and mechanical) cause modifications regarding surface chemistry and nano-morphology. Hence, it is essential to understand whether physicochemical properties may affect the toxicological profile of nanocelluloses. In this book chapter, we provide an overview of nanotoxicology and safety aspects associated with nanocelluloses. Relevant regulatory requirements are considered. We also discuss hazard assessment strategies based on tiered approaches for safety testing, which can be applied in the early stages of the innovation process. Ensuring the safe development of nanocellulose-based 3D bioprinting products will enable full market use of these sustainable resources throughout their life cycle.

  • 7.
    Svanström, Andreas
    et al.
    University of Gothenburg, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Salerno, Simona
    University of Gothenburg, Sweden.
    Jonasson, Emma
    University of Gothenburg, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Product Realisation Methodology. University of Gothenburg, Sweden.
    Ståhlberg, Anders
    University of Gothenburg, Sweden.
    Landberg, Göran
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    The Effect of Hypoxic and Normoxic Culturing Conditions in Different Breast Cancer 3D Model Systems2021In: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 9, article id 711977Article in journal (Refereed)
    Abstract [en]

    The field of 3D cell cultures is currently emerging, and material development is essential in striving toward mimicking the microenvironment of a native tissue. By using the response of reporter cells to a 3D environment, a comparison between materials can be assessed, allowing optimization of material composition and microenvironment. Of particular interest, the response can be different in a normoxic and hypoxic culturing conditions, which in turn may alter the conclusion regarding a successful recreation of the microenvironment. This study aimed at determining the role of such environments to the conclusion of a better resembling cell culture model to native tissue. Here, the breast cancer cell line MCF7 was cultured in normoxic and hypoxic conditions on patient-derived scaffolds and compared at mRNA and protein levels to cells cultured on 3D printed scaffolds, Matrigel, and conventional 2D plastics. Specifically, a wide range of mRNA targets (40), identified as being regulated upon hypoxia and traditional markers for cell traits (cancer stem cells, epithelial–mesenchymal transition, pluripotency, proliferation, and differentiation), were used together with a selection of corresponding protein targets. 3D cultured cells were vastly different to 2D cultured cells in gene expression and protein levels on the majority of the selected targets in both normoxic and hypoxic culturing conditions. By comparing Matrigel and 3DPS-cultured cells to cells cultured on patient-derived scffolds, differences were also noted along all categories of mRNA targets while specifically for the GLUT3 protein. Overall, cells cultured on patient-derived scaffolds closely resembled cells cultured on 3D printed scaffolds, contrasting 2D and Matrigel-cultured cells, regardless of a normoxic or hypoxic culturing condition. Thus, these data support the use of either a normoxic or hypoxic culturing condition in assays using native tissues as a blueprint to optimize material composition. Copyright © 2021 Svanström, Rosendahl, Salerno, Jonasson, Håkansson, Ståhlberg and Landberg.

  • 8.
    Svanström, Andreas
    et al.
    University of Gothenburg, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Salerno, Simona
    University of Gothenburg, Sweden.
    Leiva, Maria
    University of Gothenburg, Sweden.
    Gregersson, Pernilla
    University of Gothenburg, Sweden.
    Berglin, Mattias
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Bogestål, Yalda
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Lausmaa, Jukka
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Oko, Asaf
    RISE Research Institutes of Sweden.
    Chinga-Carrasco, Gary
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Standoft, Simon
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ståhlberg, Anders
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles. University of Gothenburg, Sweden.
    Landberg, Göran
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery2021In: Biomedical Materials, ISSN 1748-6041, E-ISSN 1748-605X, Vol. 16, no 4, article id 045046Article in journal (Refereed)
    Abstract [en]

    The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designing in vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting of a 3D grid containing periostin and hydroxyapatite. Breast cancer cell lines (MCF7 and MDA-MB-231) produced similar phenotypes and gene expression levels of cancer stem cell, epithelial-mesenchymal transition, differentiation and proliferation markers when cultured on 3DPS and PDS, contrasting conventional 2D cultures. Importantly, cells cultured on 3DPS and PDS showed scaffold-specific responses to cytotoxic drugs (doxorubicin and 5-fluorouracil) that were different from 2D cultured cells. In conclusion, the data presented support the use of a tunable alginate-based 3DPS as a tumor model in breast cancer drug discovery. © 2021 The Author(s).

  • 9.
    Rosendahl, Jennifer
    et al.
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Svanström, Andreas
    University of Gothenburg, Sweden.
    Berglin, Mattias
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Bogestål, Yalda
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Stenlund, Patrik
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Standoft, Simon
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ståhlberg, Anders
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Landberg, Göran
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Chinga-Carrasco, Gary
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design. University of Gothenburg, Sweden.
    Håkansson, Joakim
    University of Gothenburg, Sweden.
    3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System2021In: Bioengineering, E-ISSN 2306-5354, Vol. 8, no 7, article id 97Article in journal (Refereed)
    Abstract [en]

    Current conventional cancer drug screening models based on two-dimensional (2D) cell culture have several flaws and there is a large need of more in vivo mimicking preclinical drug screening platforms. The microenvironment is crucial for the cells to adapt relevant in vivo characteristics and here we introduce a new cell culture system based on three-dimensional (3D) printed scaffolds using cellulose nanofibrils (CNF) pre-treated with 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO) as the structural material component. Breast cancer cell lines, MCF7 and MDA-MB-231, were cultured in 3D TEMPO-CNF scaffolds and were shown by scanning electron microscopy (SEM) and histochemistry to grow in multiple layers as a heterogenous cell population with different morphologies, contrasting 2D cultured mono-layered cells with a morphologically homogenous cell population. Gene expression analysis demonstrated that 3D TEMPO-CNF scaffolds induced elevation of the stemness marker CD44 and the migration markers VIM and SNAI1 in MCF7 cells relative to 2D control. T47D cells confirmed the increased level of the stemness marker CD44 and migration marker VIM which was further supported by increased capacity of holoclone formation for 3D cultured cells. Therefore, TEMPO-CNF was shown to represent a promising material for 3D cell culture model systems for cancer cell applications such as drug screening.

  • 10.
    Ujigo, Satoshi
    et al.
    University of Gothenburg, Sweden; National Hospital Organization Higashihiroshima Medical Center, Japan.
    Jonsson, Daniel
    University of Gothenburg, Sweden.
    Bogestål, Yalda
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Brive, Lena
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Olmarker, Kjell
    University of Gothenburg, Sweden.
    Structural Analysis of Experimentally Induced Disc Herniation-Like Changes in the Rat.2020In: Spine Surgery and Related Research, ISSN 2432-261X, Vol. 4, no 2, p. 117-123Article in journal (Refereed)
    Abstract [en]

    Introduction: A disc herniation has traditionally been considered as disc tissue that has slipped out from an intervertebral disc. However, it was recently suggested that the disc herniation mass is a product of bioactive substances from the disc and that the disc hernia would more likely be scar tissue than herniated disc material. In this study, we aimed to analyze the structural components of experimentally induced disc herniations and compare with scar tissue and nucleus pulposus, in the rat. Methods: Twenty-eight rats had their L4-5 discs punctured. After three weeks, the nodule that had been formed over the puncture site, scar tissue from the spine musculature, and normal nucleus pulposus were harvested and processed for further analysis. Results: Proteomics analysis demonstrated that the formed nodule was more similar to scar tissue than to nucleus pulposus. Gene expression analysis showed that there was no resemblance between any tissues when looking at inflammatory genes but that, there was a clear resemblance between the nodule and scar tissue when analyzing extracellular matrix-related genes. Analysis of the GAG and polysaccharide size distribution revealed that only the nodule and scar tissue contained the shorter versions, potentially short chain hyaluronic acid that is known to induce inflammatory responses. The hematoxylin and eosin stained sections of the nodule, disc tissue, and scar tissue indicated that the morphology of the nodule and scar tissue was very similar. Conclusions: The nodule formed after experimental disc puncture, and that resembles a disc hernia, has a more structural resemblance to scar tissue than disc tissue. The nodule is, therefore, more likely to be induced by disc-derived bioactive substances than being formed by herniated disc material.

  • 11.
    Landberg, Göran
    et al.
    University of Gothenburg, Sweden.
    Fitzpatrick, Paul
    University of Gothenburg, Sweden.
    Isakson, Pauline
    University of Gothenburg, Sweden.
    Jonasson, Emma
    University of Gothenburg, Sweden.
    Karlsson, Joakim
    University of Gothenburg, Sweden.
    Larsson, Erik
    University of Gothenburg, Sweden.
    Svanström, Andreas
    University of Gothenburg, Sweden.
    Rafnsdottir, Svanheidur
    University of Gothenburg, Sweden.
    Persson, Emma
    University of Gothenburg, Sweden.
    Gustafsson, Annna
    University of Gothenburg, Sweden.
    Andersson, Daniel
    University of Gothenburg, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ranji, Parmida
    University of Gothenburg, Sweden.
    Gregersson, Pernilla
    University of Gothenburg, Sweden.
    Magnusson, Ylva
    University of Gothenburg, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ståhlberg, Anders
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment2020In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 235, article id 119705Article in journal (Refereed)
    Abstract [en]

    Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines. This PDS culture system induced a series of orchestrated changes in differentiation, epithelial-mesenchymal transition, stemness and proliferation of the cancer cell population, where an increased cancer stem cell pool was confirmed using functional assays. Furthermore, global gene expression profiling showed that PDS cultures were similar to xenograft cultures. Mass spectrometry analyses of cell-free PDSs identified subgroups based on their protein composition that were linked to clinical properties, including tumor grade. Finally, we observed that an induction of epithelial-mesenchymal transition-related genes in cancer cells growing on the PDSs were significantly associated with clinical disease recurrences in breast cancer patients. Patient-derived scaffolds thus mimics in vivo-like growth conditions and uncovers unique information about the malignancy-inducing properties of tumor microenvironment. © 2019 The Authors

  • 12.
    Landberg, G.
    et al.
    University of Gothenburg, Sweden.
    Jonasson, E.
    University of Gothenburg, Sweden.
    Gustafsson, A.
    University of Gothenburg, Sweden.
    Fitzpatrick, P.
    University of Gothenburg, Sweden.
    Isakson, P.
    University of Gothenburg, Sweden.
    Karlsson, J.
    University of Gothenburg, Sweden.
    Larsson, E.
    University of Gothenburg, Sweden.
    Svanström, A.
    University of Gothenburg, Sweden.
    Rafnsdottir, S.
    University of Gothenburg, Sweden.
    Persson, E.
    University of Gothenburg, Sweden.
    Andersson, D.
    University of Gothenburg, Sweden.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ranji, P.
    University of Gothenburg, Sweden.
    Gregersson, P.
    University of Gothenburg, Sweden.
    Magnusson, Y.
    University of Gothenburg, Sweden.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Materials and Production, Chemistry, Biomaterials and Textiles.
    Ståhlberg, A.
    University of Gothenburg, Sweden; Sahlgrenska University Hospital, Sweden.
    Characterization of cell-free breast cancer patient-derived scaffolds using liquid chromatography-mass spectrometry/mass spectrometry data and RNA sequencing data2020In: Data in Brief, E-ISSN 2352-3409, Vol. 31, article id 105860Article in journal (Refereed)
    Abstract [en]

    Patient-derived scaffolds (PDSs) generated from primary breast cancer tumors can be used to model the tumor microenvironment in vitro. Patient-derived scaffolds are generated by repeated detergent washing, removing all cells. Here, we analyzed the protein composition of 15 decellularized PDSs using liquid chromatography-mass spectrometry/mass spectrometry. One hundred forty-three proteins were detected and their relative abundance was calculated using a reference sample generated from all PDSs. We performed heatmap analysis of all the detected proteins to display their expression patterns across different PDSs together with pathway enrichment analysis to reveal which processes that were connected to PDS protein composition. This protein dataset together with clinical information is useful to investigators studying the microenvironment of breast cancers. Further, after repopulating PDSs with either MCF7 or MDA-MB-231 cells, we quantified their gene expression profiles using RNA sequencing. These data were also compared to cells cultured in conventional 2D conditions, as well as to cells cultured as xenografts in immune-deficient mice. We investigated the overlap of genes regulated between these different culture conditions and performed pathway enrichment analysis of genes regulated by both PDS and xenograft cultures compared to 2D in both cell lines to describe common processes associated with both culture conditions. Apart from our described analyses of these systems, these data are useful when comparing different experimental model systems. Downstream data analyses and interpretations can be found in the research article “Patient-derived scaffolds uncover breast cancer promoting properties of the microenvironment” [1]. © 2020 The Authors

  • 13.
    Granskog, Viktor
    et al.
    KTH Royal Institute of Technology, Sweden.
    García-Gallego, Sandra
    KTH Royal Institute of Technology, Sweden.
    von Kieseritzky, Johanna
    Karolinska Institutet, Sweden.
    Rosendahl, Jennifer
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Chemistry and Materials.
    Stenlund, Patrik
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Chemistry and Materials.
    Zhang, Yuning
    KTH Royal Institute of Technology, Sweden.
    Petronis, Sarunas
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Chemistry and Materials.
    Lyvén, Benny
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Chemistry and Materials.
    Arner, Marianne
    Karolinska Institutet, Sweden.
    Håkansson, Joakim
    RISE - Research Institutes of Sweden (2017-2019), Bioscience and Materials, Chemistry and Materials.
    Malkoch, Michael
    KTH Royal Institute of Technology, Sweden.
    High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 26, article id 1800372Article in journal (Refereed)
    Abstract [en]

    The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self-etch primers. Validation of the adhesive strength is conducted on wet bone substrates and accomplished via fiber-reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bond strength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K-wires and match metal plates and screw implants.

    Download full text (pdf)
    fulltext
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf