Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 451
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbasi, R.
    et al.
    Abdou, Y.
    Abu-Zayyad, T.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Altmann, D.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. B.
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. H.
    Bell, M.
    Benabderrahmane, M. L.
    BenZvi, S.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bose, D.
    Boser, S.
    Botner, O.
    Brayeur, L.
    Brown, A. M.
    Buitink, S.
    Caballero-Mora, K. S.
    Carson, M.
    Casier, M.
    Chirkin, D.
    Christy, B.
    Clevermann, F.
    Cohen, S.
    Colnard, C.
    Cowen, D. F.
    Silva, A. H. C.
    D'Agostino, M. V.
    Danninger, M.
    Daughhetee, J.
    Davis, J. C.
    DeClercq, C.
    Degner, T.
    Descamps, F.
    Desiati, P.
    de Vries-Uiterweerd, G.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dierckxsens, M.
    Dreyer, J.
    Dumm, J. P.
    Dunkman, M.
    Eisch, J.
    Ellsworth, R. W.
    Engdegard, O.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Fischer-Wasels, T.
    Flis, S.
    Franckowiak, A.
    Franke, R.
    Gaisser, T. K.
    Gallagher, J.
    Gerhardt, L.
    Gladstone, L.
    Glusenkamp, T.
    Goldschmidt, A.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Griesel, T.
    Gross, A.
    Grullon, S.
    Gurtner, M.
    Ha, C.
    Ismail, A. H.
    Hallgren, A.
    Halzen, F.
    Han, K.
    Hanson, K.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, B.
    Homeier, A.
    Hoshina, K.
    Huelsnitz, W.
    Hulss, J. P.
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Japaridze, S.
    Johansson, H.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kiryluk, J.
    Kislat, F.
    Klein, S. R.
    Kohne, J. H.
    Kohnen, G.
    Kolanoski, H.
    Kopke, L.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kowarik, T.
    Krasberg, M.
    Kroll, G.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Laihem, K.
    Landsman, H.
    Larson, M. J.
    Lauer, R.
    Lunemann, J.
    Madsen, J.
    Marotta, A.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Meagher, K.
    Merck, M.
    Meszaros, P.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Milke, N.
    Miller, J.
    Montaruli, T.
    Morse, R.
    Movit, S. M.
    Nahnhauer, R.
    Nam, J. W.
    Naumann, U.
    Nowicki, S. C.
    Nygren, D. R.
    Odrowski, S.
    Olivas, A.
    Olivo, M.
    O'Murchadha, A.
    Panknin, S.
    Paul, L.
    de los Heros, C. P.
    Piegsa, A.
    Pieloth, D.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Rawlins, K.
    Redl, P.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Richman, M.
    Riedel, B.
    Rizzo, A.
    Rodrigues, J. P.
    Rothmaier, F.
    Rott, C.
    Ruhe, T.
    Rutledge, D.
    Ruzybayev, B.
    Ryckbosch, D.
    Sander, H. G.
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Schmidt, T.
    Schoneberg, S.
    Schonwald, A.
    Schukraft, A.
    Schulte, L.
    Schultes, A.
    Schulz, O.
    Schunck, M.
    Seckel, D.
    Semburg, B.
    Seo, S. H.
    Sestayo, Y.
    Seunarine, S.
    Silvestri, A.
    Smith, M. W. E.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stezelberger, T.
    Stokstad, R. G.
    Stossl, A.
    Strahler, E. A.
    Strom, R.
    Stuer, M.
    Sullivan, G. W.
    Taavola, H.
    Taboada, I.
    Tamburro, A.
    Ter-Antonyan, S.
    Tilav, S.
    Toale, P. A.
    Toscano, S.
    Tosi, D.
    van Eijndhoven, N.
    Van Overloop, A.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Walck, C.
    Waldenmaier, T.
    Wallraff, M.
    Walter, M.
    Wasserman, R.
    Weaver, C.
    Wendt, C.
    Westerhoff, S.
    Whitehorn, N.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wischnewski, R.
    Wissing, H.
    Wolf, M.
    Wood, T. R.
    Woschnagg, K.
    Xu, C.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Zoll, M.
    IceCube, Collaboration
    An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts2012Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 484Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  • 2. Abbasi, R.
    et al.
    Abdou, Y.
    Abu-Zayyad, T.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Altmann, D.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. Bazo
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. -H
    Bell, M.
    Benabderrahmane, M. L.
    BenZvi, S.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bose, D.
    Boeser, S.
    Botner, Olga
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Brayeur, L.
    Brown, A. M.
    Buitink, S.
    Caballero-Mora, K. S.
    Carson, M.
    Casier, M.
    Chirkin, D.
    Christy, B.
    Clevermann, F.
    Cohen, S.
    Colnard, C.
    Cowen, D. F.
    Silva, A. H. Cruz
    D'Agostino, M. V.
    Danninger, M.
    Daughhetee, J.
    Davis, J. C.
    DeClercq, C.
    Degner, T.
    Descamps, F.
    Desiati, P.
    de Vries-Uiterweerd, G.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dierckxsens, M.
    Dreyer, J.
    Dumm, J. P.
    Dunkman, M.
    Eisch, J.
    Ellsworth, R. W.
    Engdegård, Olle
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Fischer-Wasels, T.
    Flis, S.
    Franckowiak, A.
    Franke, R.
    Gaisser, T. K.
    Gallagher, J.
    Gerhardt, L.
    Gladstone, L.
    Gluesenkamp, T.
    Goldschmidt, A.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Griesel, T.
    Gross, A.
    Grullon, S.
    Gurtner, M.
    Ha, C.
    Ismail, A. Haj
    Hallgren, Allan
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Halzen, F.
    Han, K.
    Hanson, K.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, B.
    Homeier, A.
    Hoshina, K.
    Huelsnitz, W.
    Huelss, J. -P
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Japaridze, S.
    Johansson, H.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kiryluk, J.
    Kislat, F.
    Klein, S. R.
    Koehne, J. -H
    Kohnen, G.
    Kolanoski, H.
    Koepke, L.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kowarik, T.
    Krasberg, M.
    Kroll, G.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Laihem, K.
    Landsman, H.
    Larson, M. J.
    Lauer, R.
    Luenemann, J.
    Madsen, J.
    Marotta, A.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Meagher, K.
    Merck, M.
    Meszaros, P.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Milke, N.
    Miller, J.
    Montaruli, T.
    Morse, R.
    Movit, S. M.
    Nahnhauer, R.
    Nam, J. W.
    Naumann, U.
    Nowicki, S. C.
    Nygren, D. R.
    Odrowski, S.
    Olivas, A.
    Olivo, M.
    O'Murchadha, A.
    Panknin, S.
    Paul, L.
    Pérez de los Heros, Carlos
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Piegsa, A.
    Pieloth, D.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Rawlins, K.
    Redl, P.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Richman, M.
    Riedel, B.
    Rizzo, A.
    Rodrigues, J. P.
    Rothmaier, F.
    Rott, C.
    Ruhe, T.
    Rutledge, D.
    Ruzybayev, B.
    Ryckbosch, D.
    Sander, H. -G
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Schmidt, T.
    Schoeneberg, S.
    Schoenwald, A.
    Schukraft, A.
    Schulte, L.
    Schultes, A.
    Schulz, O.
    Schunck, M.
    Seckel, D.
    Semburg, B.
    Seo, S. H.
    Sestayo, Y.
    Seunarine, S.
    Silvestri, A.
    Smith, M. W. E.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stezelberger, T.
    Stokstad, R. G.
    Stoessl, A.
    Strahler, E. A.
    Ström, Rickard
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Stueer, M.
    Sullivan, G. W.
    Taavola, Henric
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
    Taboada, I.
    Tamburro, A.
    Ter-Antonyan, S.
    Tilav, S.
    Toale, P. A.
    Toscano, S.
    Tosi, D.
    van Eijndhoven, N.
    Van Overloop, A.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Walck, C.
    Waldenmaier, T.
    Wallraff, M.
    Walter, M.
    Wasserman, R.
    Weaver, Ch.
    Wendt, C.
    Westerhoff, S.
    Whitehorn, N.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wischnewski, R.
    Wissing, H.
    Wolf, M.
    Wood, T. R.
    Woschnagg, K.
    Xu, C.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Zoll, M.
    An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts2012Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 484, nr 7394, 351-354 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  • 3. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, O.
    Chaplin, V.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Silva, E. D. E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Foschini, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Gibby, L.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grondin, M. H.
    Grove, J. E.
    Grupe, D.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hoversten, E. A.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knodlseder, J.
    Kocevski, D.
    Kouveliotou, C.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Meszaros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Raino, S.
    Ramirez-Ruiz, E.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. W.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. S.
    Scargle, J. D.
    Schalk, T. L.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Toma, K.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Wu, X. F.
    Yamazaki, R.
    Ylinen, T.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Ziegler, M.
    A limit on the variation of the speed of light arising from quantum gravity effects2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, nr 7271, 331-334 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  • 4. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Çelik, Ö.
    Chaplin, V.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Do Couto E Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Foschini, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Gibby, L.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Grupe, D.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hoversten, E. A.
    Hughes, R. E.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knödlseder, J.
    Kocevski, D.
    Kouveliotou, C.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Mészáros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Rainò, S.
    Ramirez-Ruiz, E.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Schalk, T. L.
    Sgrò, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Toma, K.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Wu, X. F.
    Yamazaki, R.
    Ylinen, T.
    Ziegler, M.
    the Fermi LAT Collaboration,
    A limit on the variation of the speed of light arising from quantum gravity effects2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, nr 7271, 331-334 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.

  • 5. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ziegler, M.
    Conrad, Jan
    Mc Glynn, Sinéad
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ylinen, Tomi
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Moretti, Elena
    University and INFN of Trieste.
    A limit on the variation of the speed of light arising from quantum gravity effects2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, nr 7271, 331-334 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  • 6. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sikora, M.
    Ylinen, Tomi
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    et al,
    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 2792010Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 463, nr 7283, 919-923 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight(1). The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii.

  • 7. Abramowski, A.
    et al.
    Aharonian, F.
    Benkhali, F. Ait
    Akhperjanian, A. G.
    Anguener, E. O.
    Backes, M.
    Balzer, A.
    Becherini, Y.
    Tjus, J. Becker
    Berge, D.
    Bernhard, S.
    Bernloehr, K.
    Birsin, E.
    Blackwell, R.
    Boettcher, M.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Bregeon, J.
    Brun, F.
    Brun, P.
    Bryan, M.
    Bulik, T.
    Carr, J.
    Casanova, S.
    Chakraborty, N.
    Chalme-Calvet, R.
    Chaves, R. C. G.
    Chen, A.
    Chretien, M.
    Colafrancesco, S.
    Cologna, G.
    Conrad, Jan
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Couturier, C.
    Cui, Y.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    deWilt, P.
    Djannati-Ata, A.
    Domainko, W.
    Donath, A.
    Drury, L. O'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Dyrda, M.
    Edwards, T.
    Egberts, K.
    Eger, P.
    Ernenwein, J-P.
    Espigat, P.
    Farnier, Christian
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fernandez, D.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gabici, S.
    Gajdus, M.
    Gallant, Y. A.
    Garrigoux, T.
    Giavitto, G.
    Giebels, B.
    Glicenstein, J. F.
    Gottschall, D.
    Goyal, A.
    Grondin, M-H.
    Grudzinska, M.
    Hadasch, D.
    Haeffner, S.
    Hahn, J.
    Hawkes, J.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hervet, O.
    Hillert, A.
    Hinton, J. A.
    Hofmann, W.
    Hofverberg, P.
    Hoischen, C.
    Holler, M.
    Horns, D.
    Ivascenko, A.
    Jacholkowska, A.
    Jamrozy, M.
    Janiak, M.
    Jankowsky, F.
    Jung-Richardt, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kerszberg, D.
    Khelifi, B.
    Kieffer, M.
    Klepser, S.
    Klochkov, D.
    Kluzniak, W.
    Kolitzus, D.
    Komin, Nu.
    Kosack, K.
    Krakau, S.
    Krayzel, F.
    Krueger, P. P.
    Laffon, H.
    Lamanna, G.
    Lau, J.
    Lefaucheur, J.
    Lefranc, V.
    Lemiere, A.
    Lemoine-Goumard, M.
    Lenain, J-P.
    Lohse, T.
    Lopatin, A.
    Lu, C-C.
    Lui, R.
    Marandon, V.
    Marcowith, A.
    Mariaud, C.
    Marx, R.
    Maurin, G.
    Maxted, N.
    Mayer, M.
    Meintjes, P. J.
    Menzler, U.
    Meyer, Manuel
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Mitchell, A. M. W.
    Moderski, R.
    Mohamed, M.
    Morå, Knut
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Moulin, E.
    Murach, T.
    de Naurois, M.
    Niemiec, J.
    Oakes, L.
    Odaka, H.
    Oettl, S.
    Ohm, S.
    Opitz, B.
    Ostrowski, M.
    Oya, I.
    Panter, M.
    Parsons, R. D.
    Arribas, M. Paz
    Pekeur, N. W.
    Pelletier, G.
    Petrucci, P-O.
    Peyaud, B.
    Pita, S.
    Poon, H.
    Prokoph, H.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raab, S.
    Reichardt, I.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Romoli, C.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Sahakian, V.
    Salek, D.
    Sanchez, D. A.
    Santangelo, A.
    Sasaki, M.
    Schlickeiser, R.
    Schuessler, F.
    Schulz, A.
    Schwanke, U.
    Schwemmer, S.
    Seyffert, A. S.
    Simoni, R.
    Sol, H.
    Spanier, F.
    Spengler, Gerrit
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Spies, F.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Tavernet, J-P.
    Tavernier, T.
    Taylor, A. M.
    Terrier, R.
    Tluczykont, M.
    Trichard, C.
    Tuffs, R.
    Valerius, K.
    van der Walt, J.
    van Eldik, C.
    van Soelen, B.
    Vasileiadis, G.
    Veh, J.
    Venter, C.
    Viana, A.
    Vincent, P.
    Vink, J.
    Voisin, F.
    Voelk, H. J.
    Vuillaume, T.
    Wagner, S. J.
    Wagner, P.
    Wagner, Roger M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Weidinger, M.
    Weitzel, Q.
    White, R.
    Wierzcholska, A.
    Willmann, P.
    Woernlein, A.
    Wouters, D.
    Yang, R.
    Zabalza, V.
    Zaborov, D.
    Zacharias, M.
    Zdziarski, A. A.
    Zech, A.
    Zefi, F.
    Zywucka, N.
    Acceleration of petaelectronvolt protons in the Galactic Centre2016Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 531, nr 7595, 476-+ s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Galactic cosmic rays reach energies of at least a few petaelectronvolts(1) (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies(2). Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent gamma-ray observations(3). However, none of the currently known accelerators-not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays-has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of.-rays extending without a cut-off or a spectral break to tens of teraelectronvolts(4). Here we report deep.-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts(5) and an outflow from the Galactic Centre(6). Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  • 8.
    Abramowski, A.
    et al.
    University of Hamburg, Germany.
    Aharonian, F.
    Max Planck Institute for Nuclear Physics, Germany ; Dublin Institute for Advanced Studies, Ireland ; National Academy of Sciences of the Republic of Armenia, Armenia.
    Benkhali, F. Ait
    Max Planck Institute for Nuclear Physics, Germany.
    Akhperjanian, A. G.
    National Academy of Sciences of the Republic of Armenia, Armenia ; Yerevan Physics Institute, Armenia.
    Anguener, E. O.
    Humboldt University of Berlin, Germany.
    Backes, M.
    University of Namibia, Namibia.
    Balzer, A.
    University of Amsterdam, The Netherlands.
    Becherini, Yvonne
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE).
    Tjus, J. Becker
    Ruhr University Bochum, Germany.
    Berge, D.
    University of Amsterdam, The Netherlands.
    Bernhard, S.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Bernloehr, K.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Birsin, E.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Blackwell, R.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Boettcher, M.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Boisson, C.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Bolmont, J.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Bordas, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Bregeon, J.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Brun, F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Brun, P.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Bryan, M.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Bulik, T.
    Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Carr, J.
    Aix Marseille Univ, CNRS, IN2P3, CPPM,UMR 7346, F-13288 Marseille, France..
    Casanova, S.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Chakraborty, N.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Chalme-Calvet, R.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Chaves, R. C. G.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Chen, A.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Chretien, M.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Colafrancesco, S.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Cologna, G.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Conrad, J.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Couturier, C.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Cui, Y.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Davids, I. D.
    Univ Namibia, Dept Phys, Private Bag 13301, Windhoek, Namibia.;North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Degrange, B.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Deil, C.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    deWilt, P.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Djannati-Ata, A.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Domainko, W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Donath, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Drury, L. O 'C.
    Dubus, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Dutson, K.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Dyks, J.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Dyrda, M.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Edwards, T.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Egberts, K.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany..
    Eger, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Ernenwein, J-P
    Espigat, P.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Farnier, C.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Fegan, S.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Feinstein, F.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Fernandes, M. V.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Fernandez, D.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Fiasson, A.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Fontaine, G.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Foerster, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Fuessling, M.
    DESY, D-15738 Zeuthen, Germany..
    Gabici, S.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Gajdus, M.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Gallant, Y. A.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Garrigoux, T.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Giavitto, G.
    DESY, D-15738 Zeuthen, Germany..
    Giebels, B.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Glicenstein, J. F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Gottschall, D.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Goyal, A.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Grondin, M-H
    Grudzinska, M.
    Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Hadasch, D.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Haeffner, S.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Hahn, J.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hawkes, J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Heinzelmann, G.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Henri, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Hermann, G.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hervet, O.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Hillert, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hinton, J. A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Hofmann, W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hofverberg, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hoischen, C.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany..
    Holler, M.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Horns, D.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Ivascenko, A.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Jacholkowska, A.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Jamrozy, M.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Janiak, M.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Jankowsky, F.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Jung-Richardt, I.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Kastendieck, M. A.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Katarzynski, K.
    Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Ctr Astron, Grudziadzka 5, PL-87100 Torun, Poland..
    Katz, U.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Kerszberg, D.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Khelifi, B.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Kieffer, M.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Klepser, S.
    DESY, D-15738 Zeuthen, Germany..
    Klochkov, D.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Kluzniak, W.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Kolitzus, D.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Komin, Nu.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Kosack, K.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Krakau, S.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Krayzel, F.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Krueger, P. P.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Laffon, H.
    Univ Bordeaux, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France..
    Lamanna, G.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Lau, J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Lefaucheur, J.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Lefranc, V.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Lemiere, A.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Lemoine-Goumard, M.
    Univ Bordeaux, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France..
    Lenain, J-P
    Lohse, T.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Lopatin, A.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Lu, C-C
    Lui, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Marandon, V.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Marcowith, A.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Mariaud, C.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Marx, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Maurin, G.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Maxted, N.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Mayer, M.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Meintjes, P. J.
    Univ Orange Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa..
    Menzler, U.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Meyer, M.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Mitchell, A. M. W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Moderski, R.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Mohamed, M.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Mora, K.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Moulin, E.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Murach, T.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    de Naurois, M.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Niemiec, J.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Oakes, L.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Odaka, H.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Oettl, S.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Ohm, S.
    DESY, D-15738 Zeuthen, Germany..
    Opitz, B.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Ostrowski, M.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Oya, I.
    DESY, D-15738 Zeuthen, Germany..
    Panter, M.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Parsons, R. D.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Arribas, M. Paz
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Pekeur, N. W.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Pelletier, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Petrucci, P-O
    Peyaud, B.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Pita, S.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Poon, H.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Prokoph, Heike
    Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för fysik och elektroteknik (IFE).
    Puehlhofer, G.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Punch, Michael
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Quirrenbach, A.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Raab, S.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Reichardt, I.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Reimer, A.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Reimer, O.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Renaud, M.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    de los Reyes, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Rieger, F.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;ITA Univ Heidelberg, Heidelberg, Germany..
    Romoli, C.
    Dublin Inst Adv Studies, 31 Fitzwilliam Pl, Dublin 2, Ireland..
    Rosier-Lees, S.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Rowell, G.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Rudak, B.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Rulten, C. B.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Sahakian, V.
    Natl Acad Sci Republ Armenia, Marshall Baghramian Ave 24, Yerevan 0019, Armenia.;Yerevan Phys Inst, 2 Alikhanian Bros St, Yerevan 375036, Armenia..
    Salek, D.
    Univ Amsterdam, Inst High Energy Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Sanchez, D. A.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Santangelo, A.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Sasaki, M.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Schlickeiser, R.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Schuessler, F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Schulz, A.
    DESY, D-15738 Zeuthen, Germany..
    Schwanke, U.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Schwemmer, S.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Seyffert, A. S.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Simoni, R.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Sol, H.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Spanier, F.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Spengler, G.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Spies, F.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Stawarz, L.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Steenkamp, R.
    Univ Namibia, Dept Phys, Private Bag 13301, Windhoek, Namibia..
    Stegmann, C.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany.;DESY, D-15738 Zeuthen, Germany..
    Stinzing, F.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Stycz, K.
    DESY, D-15738 Zeuthen, Germany..
    Sushch, I.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Tavernet, J-P
    Tavernier, T.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Taylor, A. M.
    Dublin Inst Adv Studies, 31 Fitzwilliam Pl, Dublin 2, Ireland..
    Terrier, R.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Tluczykont, M.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Trichard, C.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Tuffs, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Valerius, K.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    van der Walt, J.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    van Eldik, C.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    van Soelen, B.
    Univ Orange Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa..
    Vasileiadis, G.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Veh, J.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Venter, C.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Viana, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Vincent, P.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Vink, J.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Voisin, F.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Voelk, H. J.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Vuillaume, T.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Wagner, S. J.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Wagner, P.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Wagner, R. M.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Weidinger, M.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Weitzel, Q.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    White, R.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Wierzcholska, A.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland.;Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Willmann, P.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Woernlein, A.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Wouters, D.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Yang, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Zabalza, V.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Zaborov, D.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Zacharias, M.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Zdziarski, A. A.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Zech, A.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Zefi, F.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Zywucka, N.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Acceleration of petaelectronvolt protons in the Galactic Centre2016Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 531, nr 7595, 476-479 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Galactic cosmic rays reach energies of at least a few petaelectronvolts(1) (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies(2). Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent gamma-ray observations(3). However, none of the currently known accelerators-not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays-has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of.-rays extending without a cut-off or a spectral break to tens of teraelectronvolts(4). Here we report deep.-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts(5) and an outflow from the Galactic Centre(6). Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  • 9. Adriani, O.
    et al.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bonechi, L.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carlson, P.
    Casolino, M.
    Castellini, G.
    De Pascale, M. P.
    De Rosa, G.
    De Simone, N.
    Di Felice, V.
    Galper, A. M.
    Grishantseva, L.
    Hofverberg, P.
    Koldashov, S. V.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Leonov, A.
    Malvezzi, V.
    Marcelli, L.
    Menn, W.
    Mikhailov, V. V.
    Mocchiutti, E.
    Orsi, S.
    Osteria, G.
    Papini, P.
    Pearce, M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).
    Picozza, P.
    Ricci, M.
    Ricciarini, S. B.
    Simon, M.
    Sparvoli, R.
    Spillantini, P.
    Stozhkov, Y. I.
    Vacchi, A.
    Vannuccini, E.
    Vasilyev, G.
    Voronov, S. A.
    Yurkin, Y. T.
    Zampa, G.
    Zampa, N.
    Zverev, V. G.
    An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 458, nr 7238, 607-609 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

  • 10. Adriani, O.
    et al.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bonechi, L.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carlson, Per
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Casolino, M.
    Castellini, G.
    De Pascale, M. P.
    De Rosa, G.
    De Simone, N.
    Di Felice, V.
    Galper, A. M.
    Grishantseva, L.
    Hofverberg, Petter
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Koldashov, S. V.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Leonov, A.
    Malvezzi, V.
    Marcelli, L.
    Menn, W.
    Mikhailov, V. V.
    Mocchiutti, E.
    Orsi, Silvio
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Osteria, G.
    Papini, P.
    Pearce, Mark
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Picozza, P.
    Ricci, M.
    Ricciarini, S. B.
    Simon, M.
    Sparvoli, R.
    Spillantini, P.
    Stozhkov, Y. I.
    Vacchi, A.
    Vannuccini, E.
    Vasilyev, G.
    Voronov, S. A.
    Yurkin, Y. T.
    Zampa, G.
    Zampa, N.
    Zverev, V. G.
    An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 458, nr 7238, 607-609 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

  • 11.
    Ahlberg, Per
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Clack, Jennifer
    Luksevics, Ervins
    Blom, Henning
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Zupins, Ivars
    Ventastega curonica and the origin of tetrapod morphology2008Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 453, nr 7199, 1199-1204 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The gap in our understanding of the evolutionary transition from fish to tetrapod is beginning to close thanks to the discovery of new intermediate forms such as Tiktaalik roseae. Here we narrow it further by presenting the skull, exceptionally preserved braincase, shoulder girdle and partial pelvis of Ventastega curonica from the Late Devonian of Latvia, a transitional intermediate form between the 'elpistostegids' Panderichthys and Tiktaalik and the Devonian tetrapods (limbed vertebrates) Acanthostega and Ichthyostega. Ventastega is the most primitive Devonian tetrapod represented by extensive remains, and casts light on a part of the phylogeny otherwise only represented by fragmentary taxa: it illuminates the origin of principal tetrapod structures and the extent of morphological diversity among the transitional forms

  • 12.
    Ahlberg, Per E.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Birth of the jawed vertebrates2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 457, 1094-1095 s.Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The discovery of embryos in certain fossil fishes not only shows that internal fertilization and live birth evolved early in vertebrate history, but also raises questions about the origin of jawed vertebrates.

  • 13. Ahlberg, Per E.
    Coelacanth fins and evolution1992Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 358, 459- s.Artikel i tidskrift (Refereegranskat)
  • 14.
    Ahlberg, Per E
    Natural History Museum of London.
    Elginerpeton pancheni and the earliest tetrapod clade1995Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 373, 420-425 s.Artikel i tidskrift (Refereegranskat)
  • 15.
    Ahlberg, Per E.
    Oxford University.
    Fossil fishes from Gogo1989Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 337, 511-512 s.Artikel i tidskrift (Övrigt vetenskapligt)
  • 16.
    Ahlberg, Per E.
    Oxford University.
    Four legs to stand on for Devonian vertebrates1989Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 342, 738- s.Artikel i tidskrift (Övrigt vetenskapligt)
  • 17.
    Ahlberg, Per E.
    Natural History Museum of London.
    How to keep a head in order1997Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 385, 489-490 s.Artikel i tidskrift (Övrigt vetenskapligt)
  • 18.
    Ahlberg, Per E.
    Natural History Museum of London .
    Something fishy in the family tree1999Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 397, 564-565 s.Artikel i tidskrift (Övrigt vetenskapligt)
  • 19.
    Ahlberg, Per E.
    Oxford University.
    Tetrapod or near-tetrapod fossils from the Upper Devonian of Scotland1991Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 354, 298-301 s.Artikel i tidskrift (Refereegranskat)
  • 20.
    Ahlberg, Per E.
    Oxford University.
    Therapsids and trasformation series1993Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 361, 596- s.Artikel i tidskrift (Refereegranskat)
  • 21.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London .
    Johanson, Z.
    a complete primitive rhizodont from Australia1998Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 394, 569-572 s.Artikel i tidskrift (Refereegranskat)
  • 22.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London.
    Clack, J. A.
    Luksevics, E.
    Rapid braincase evolution between panderichthys and the earliest tetrapods1996Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 381, 61-64 s.Artikel i tidskrift (Refereegranskat)
  • 23.
    Ahlberg, Per E.
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Clack, Jennifer A.
    Palaeontology: A firm step from water to land2006Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 440, nr 7085, 747-749 s.Artikel i tidskrift (Refereegranskat)
  • 24.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London .
    Johanson, Z.
    Osteolepiforms and the ancestry of tetrapods1998Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, nr 395, 792-794 s.Artikel i tidskrift (Refereegranskat)
  • 25.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London.
    Milner, A. R.
    The origin and early diversification of tetrapods1994Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 368, 507-514 s.Artikel i tidskrift (Refereegranskat)
  • 26. Ahlberg, Per Erik
    Glimpsing the hidden majority1990Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 344, 23- s.Artikel i tidskrift (Övrigt vetenskapligt)
  • 27.
    Ahlberg, Per Erik
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för fysiologi och utvecklingsbiologi, Evolutionär organismbiologi.
    Trinajstic, Kate
    Johanson, Zerina
    Long, John
    Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires2009Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 460, nr 7257, 888-889 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent finds(1,2) demonstrate that internal fertilization and   viviparity (live birth) were more widespread in the Placodermi, an   extinct group of armoured fishes, than was previously realized.   Placoderms represent the sister group of the crown group jawed   vertebrates (Gnathostomata)(3,4), making their mode(s) of reproduction   potentially informative about primitive gnathostome conditions. An   ossified pelvic fin basipterygium discovered in the arthrodire   Incisoscutum ritchiei was hypothesized to be identical in males and   females, with males presumed to have an additional cartilaginous   element or series forming a clasper. Here we report the discovery of a   completely ossified pelvic clasper in Incisoscutum ritchiei (WAM   03.3.28) which shows that this interpretation was incorrect: the   basipterygium described previously(1) is in fact unique to females. The   male clasper is a slender rod attached to a square basal plate that   articulates directly with the pelvis. It carries a small cap of dermal   bone covered in denticles and small hooks that may be homologous with   the much larger dermal component of the ptyctodont clasper.

  • 28. Ahmadi, M.
    et al.
    Alves, B. X. R.
    Baker, C. J. .
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Cohen, S.
    Collister, R.
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Ohnson, M. A. J.
    Ones, S. A. J.
    Jonsell, Svante
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Kurchaninov, L.
    Madsen, N.
    Mathers, M.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J. .
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    Stracka, S.
    Stutter, G.
    So, C.
    Tharp, T. D.
    Thompson, J. E.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Observation of the 1S-2S transition in trapped antihydrogen2017Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 541, nr 7638, 506-510 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hansch1 to a precision of a few parts in 10(15). Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen(2-4). The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 x 10(-10).

  • 29. Ahmadi, M.
    et al.
    Alves, B. X. R.
    Baker, C. J.
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Cohen, S.
    Collister, R.
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Johnson, M. A.
    Jones, S. A.
    Jonsell, Svante
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Kurchaninov, L.
    Madsen, N.
    Mathers, M.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    Stracka, S.
    Stutter, G.
    So, C.
    Tharp, T. D.
    Thompson, J. E.
    Thompson, R. I.
    Van der Werf, D. P.
    Wurtele, J. S.
    Observation of the hyperfine spectrum of antihydrogen2017Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 548, nr 7665, 66-+ s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers(1-3) and the measurement(4) of the zero-field ground-state splitting at the level of seven parts in 10(13) are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron(5-8), inspired Schwinger's relativistic theory of quantum electrodynamics(9,10) and gave rise to the hydrogen maser(11), which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen(12)-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms(13,14) provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter(12,15). Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 +/- 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10(4). This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  • 30. Ahmadi, M.
    et al.
    Baquero-Ruiz, M.
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Charman, A. E.
    Eriksson, S.
    Evans, L. T.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Jones, S. A.
    Jonsell, Svante
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Kurchaninov, L.
    Madsen, N.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    So, C.
    Tharp, T. D.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Zhmoginov, A. I.
    An improved limit on the charge of antihydrogen from stochastic acceleration2016Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 529, nr 7586, 373-+ s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms(1-4) of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of vertical bar Q vertical bar < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement(5) of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known(6) to be no greater than about 10(-21)e for a diverse range of species including H-2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation(7) demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge(8), then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement(8),(9).

  • 31. Alfoeldi, Jessica
    et al.
    Di Palma, Federica
    Grabherr, Manfred
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Williams, Christina
    Kong, Lesheng
    Mauceli, Evan
    Russell, Pamela
    Lowe, Craig B.
    Glor, Richard E.
    Jaffe, Jacob D.
    Ray, David A.
    Boissinot, Stephane
    Shedlock, Andrew M.
    Botka, Christopher
    Castoe, Todd A.
    Colbourne, John K.
    Fujita, Matthew K.
    Moreno, Ricardo Godinez
    ten Hallers, Boudewijn F.
    Haussler, David
    Heger, Andreas
    Heiman, David
    Janes, Daniel E.
    Johnson, Jeremy
    de Jong, Pieter J.
    Koriabine, Maxim Y.
    Lara, Marcia
    Novick, Peter A.
    Organ, Chris L.
    Peach, Sally E.
    Poe, Steven
    Pollock, David D.
    de Queiroz, Kevin
    Sanger, Thomas
    Searle, Steve
    Smith, Jeremy D.
    Smith, Zachary
    Swofford, Ross
    Turner-Maier, Jason
    Wade, Juli
    Young, Sarah
    Zadissa, Amonida
    Edwards, Scott V.
    Glenn, Travis C.
    Schneider, Christopher J.
    Losos, Jonathan B.
    Lander, Eric S.
    Breen, Matthew
    Ponting, Chris P.
    Lindblad-Toh, Kerstin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    The genome of the green anole lizard and a comparative analysis with birds and mammals2011Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 477, nr 7366, 587-591 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments(1). Among amniotes, genome sequences are available for mammals and birds(2-4), but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes(2). Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds(5). We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.

  • 32. Allen, Hana Lango
    et al.
    Estrada, Karol
    Lettre, Guillaume
    Berndt, Sonja I.
    Weedon, Michael N.
    Rivadeneira, Fernando
    Willer, Cristen J.
    Jackson, Anne U.
    Vedantam, Sailaja
    Raychaudhuri, Soumya
    Ferreira, Teresa
    Wood, Andrew R.
    Weyant, Robert J.
    Segre, Ayellet V.
    Speliotes, Elizabeth K.
    Wheeler, Eleanor
    Soranzo, Nicole
    Park, Ju-Hyun
    Yang, Jian
    Gudbjartsson, Daniel
    Heard-Costa, Nancy L.
    Randall, Joshua C.
    Qi, Lu
    Smith, Albert Vernon
    Maegi, Reedik
    Pastinen, Tomi
    Liang, Liming
    Heid, Iris M.
    Luan, Jian'an
    Thorleifsson, Gudmar
    Winkler, Thomas W.
    Goddard, Michael E.
    Lo, Ken Sin
    Palmer, Cameron
    Workalemahu, Tsegaselassie
    Aulchenko, Yurii S.
    Johansson, Åsa
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Zillikens, M. Carola
    Feitosa, Mary F.
    Esko, Tonu
    Johnson, Toby
    Ketkar, Shamika
    Kraft, Peter
    Mangino, Massimo
    Prokopenko, Inga
    Absher, Devin
    Albrecht, Eva
    Ernst, Florian
    Glazer, Nicole L.
    Hayward, Caroline
    Hottenga, Jouke-Jan
    Jacobs, Kevin B.
    Knowles, Joshua W.
    Kutalik, Zoltan
    Monda, Keri L.
    Polasek, Ozren
    Preuss, Michael
    Rayner, Nigel W.
    Robertson, Neil R.
    Steinthorsdottir, Valgerdur
    Tyrer, Jonathan P.
    Voight, Benjamin F.
    Wiklund, Fredrik
    Xu, Jianfeng
    Zhao, Jing Hua
    Nyholt, Dale R.
    Pellikka, Niina
    Perola, Markus
    Perry, John R. B.
    Surakka, Ida
    Tammesoo, Mari-Liis
    Altmaier, Elizabeth L.
    Amin, Najaf
    Aspelund, Thor
    Bhangale, Tushar
    Boucher, Gabrielle
    Chasman, Daniel I.
    Chen, Constance
    Coin, Lachlan
    Cooper, Matthew N.
    Dixon, Anna L.
    Gibson, Quince
    Grundberg, Elin
    Hao, Ke
    Junttila, M. Juhani
    Kaplan, Lee M.
    Kettunen, Johannes
    Koenig, Inke R.
    Kwan, Tony
    Lawrence, Robert W.
    Levinson, Douglas F.
    Lorentzon, Mattias
    McKnight, Barbara
    Morris, Andrew P.
    Mueller, Martina
    Ngwa, Julius Suh
    Purcell, Shaun
    Rafelt, Suzanne
    Salem, Rany M.
    Salvi, Erika
    Sanna, Serena
    Shi, Jianxin
    Sovio, Ulla
    Thompson, John R.
    Turchin, Michael C.
    Vandenput, Liesbeth
    Verlaan, Dominique J.
    Vitart, Veronique
    White, Charles C.
    Ziegler, Andreas
    Almgren, Peter
    Balmforth, Anthony J.
    Campbell, Harry
    Citterio, Lorena
    De Grandi, Alessandro
    Dominiczak, Anna
    Duan, Jubao
    Elliott, Paul
    Elosua, Roberto
    Eriksson, Johan G.
    Freimer, Nelson B.
    Geus, Eco J. C.
    Glorioso, Nicola
    Haiqing, Shen
    Hartikainen, Anna-Liisa
    Havulinna, Aki S.
    Hicks, Andrew A.
    Hui, Jennie
    Igl, Wilmar
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Illig, Thomas
    Jula, Antti
    Kajantie, Eero
    Kilpelaeinen, Tuomas O.
    Koiranen, Markku
    Kolcic, Ivana
    Koskinen, Seppo
    Kovacs, Peter
    Laitinen, Jaana
    Liu, Jianjun
    Lokki, Marja-Liisa
    Marusic, Ana
    Maschio, Andrea
    Meitinger, Thomas
    Mulas, Antonella
    Pare, Guillaume
    Parker, Alex N.
    Peden, John F.
    Petersmann, Astrid
    Pichler, Irene
    Pietilainen, Kirsi H.
    Pouta, Anneli
    Riddertrale, Martin
    Rotter, Jerome I.
    Sambrook, Jennifer G.
    Sanders, Alan R.
    Schmidt, Carsten Oliver
    Sinisalo, Juha
    Smit, Jan H.
    Stringham, Heather M.
    Walters, G. Bragi
    Widen, Elisabeth
    Wild, Sarah H.
    Willemsen, Gonneke
    Zagato, Laura
    Zgaga, Lina
    Zitting, Paavo
    Alavere, Helene
    Farrall, Martin
    McArdle, Wendy L.
    Nelis, Mari
    Peters, Marjolein J.
    Ripatti, Samuli
    vVan Meurs, Joyce B. J.
    Aben, Katja K.
    Ardlie, Kristin G.
    Beckmann, Jacques S.
    Beilby, John P.
    Bergman, Richard N.
    Bergmann, Sven
    Collins, Francis S.
    Cusi, Daniele
    den Heijer, Martin
    Eiriksdottir, Gudny
    Gejman, Pablo V.
    Hall, Alistair S.
    Hamsten, Anders
    Huikuri, Heikki V.
    Iribarren, Carlos
    Kahonen, Mika
    Kaprio, Jaakko
    Kathiresan, Sekar
    Kiemeney, Lambertus
    Kocher, Thomas
    Launer, Lenore J.
    Lehtimaki, Terho
    Melander, Olle
    Mosley, Tom H., Jr.
    Musk, Arthur W.
    Nieminen, Markku S.
    O'Donnell, Christopher J.
    Ohlsson, Claes
    Oostra, Ben
    Palmer, Lyle J.
    Raitakari, Olli
    Ridker, Paul M.
    Rioux, John D.
    Rissanen, Aila
    Rivolta, Carlo
    Schunkert, Heribert
    Shuldiner, Alan R.
    Siscovick, David S.
    Stumvoll, Michael
    Toenjes, Anke
    Tuomilehto, Jaakko
    van Ommen, Gert-Jan
    Viikari, Jorma
    Heath, Andrew C.
    Martin, Nicholas G.
    Montgomery, Grant W.
    Province, Michael A.
    Kayser, Manfred
    Arnold, Alice M.
    Atwood, Larry D.
    Boerwinkle, Eric
    Chanock, Stephen J.
    Deloukas, Panos
    Gieger, Christian
    Gronberg, Henrik
    Hall, Per
    Hattersley, Andrew T.
    Hengstenberg, Christian
    Hoffman, Wolfgang
    Lathrop, G. Mark
    Salomaa, Veikko
    Schreiber, Stefan
    Uda, Manuela
    Waterworth, Dawn
    Wright, Alan F.
    Assimes, Themistocles L.
    Barroso, Ines
    Hofman, Albert
    Mohlke, Karen L.
    Boomsma, Dorret I.
    Caulfield, Mark J.
    Cupples, L. Adrienne
    Erdmann, Jeanette
    Fox, Caroline S.
    Gudnason, Vilmundur
    Gyllensten, Ulf
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för genetik och patologi.
    Harris, Tamara B.
    Hayes, Richard B.
    Jarvelin, Marjo-Ritta
    Mooser, Vincent
    Munroe, Patricia B.
    Ouwehand, Willem H.
    Penninx, Brenda W.
    Pramstaller, Peter P.
    Quertermous, Thomas
    Rudan, Igor
    Samani, Nilesh J.
    Spector, Timothy D.
    Voelzke, Henry
    Watkins, Hugh
    Wilson, James F.
    Groop, Leif C.
    Haritunians, Talin
    Hu, Frank B.
    Kaplan, Robert C.
    Metspalu, Andres
    North, Kari E.
    Schlessinger, David
    Wareham, Nicholas J.
    Hunter, David J.
    O'Connell, Jeffrey R.
    Strachan, David P.
    Schadt, H. -Erich
    Thorsteinsdottir, Unnur
    Peltonen, Leena
    Uitterlinden, Andre G.
    Visscher, Peter M.
    Chatterjee, Nilanjan
    Loos, Ruth J. F.
    Boehnke, Michael
    McCarthy, Mark I.
    Ingelsson, Erik
    Lindgren, Cecilia M.
    Abecasis, Goncalo R.
    Stefansson, Kari
    Frayling, Timothy M.
    Hirschhorn, Joel N.
    Hundreds of variants clustered in genomic loci and biological pathways affect human height2010Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 467, nr 7317, 832-838 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

  • 33.
    Allentoft, Morten E.
    et al.
    University of Copenhagen, Denmark.
    Pokutta, Dalia
    Gothenburg University, Sweden.
    Willerslev, Eske
    University of Copenhagen, Denmark.
    Bronze Age population dynamics and its impact on modern Eurasian genetic structure2015Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 522, 167-172 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Bronze Age of Eurasia (around 3000–1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

  • 34.
    Alm, Frithiof
    SIK – Svenska institutet för konserveringsforskning.
    Effect of Acetic Acid on the Oxidation of Ascorbic Acid in Fruits and Vegetables1952Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 169, nr 4309, 934- s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    IT has been established by earlier investigators that acetic acid has a destructive effect on the ascorbic acid in raw cabbage. This effect is somewhat surprising, since the lower the pH in the medium, the more stable is the ascorbic acid and, therefore, one would expect the acetic acid to have a preservative effect on the ascorbic acid in cabbage. However, in experiments carried out in the early months of 1951, we found that, in many fruits and vegetables, the ascorbic acid is to a remarkable degree oxidized into dehydroascorbic acid if slices are sprinkled with 5 per cent acetic acid and allowed to stand for two hours. This oxidation does not take place if water is used instead of acetic acid. Other lower fatty acids have a similar effect. The action of lactic acid is very slow and that of citric and tartaric acid practically negligible. © 1952 Nature Publishing Group.

  • 35. Almeida, Joao
    et al.
    Schobesberger, Siegfried
    Kuerten, Andreas
    Ortega, Ismael K.
    Kupiainen-Maatta, Oona
    Praplan, Arnaud P.
    Adamov, Alexey
    Amorim, Antonio
    Bianchi, Federico
    Breitenlechner, Martin
    David, Andre
    Dommen, Josef
    Donahue, Neil M.
    Downard, Andrew
    Dunne, Eimear
    Duplissy, Jonathan
    Ehrhart, Sebastian
    Flagan, Richard C.
    Franchin, Alessandro
    Guida, Roberto
    Hakala, Jani
    Hansel, Armin
    Heinritzi, Martin
    Henschel, Henning
    Jokinen, Tuija
    Junninen, Heikki
    Kajos, Maija
    Kangasluoma, Juha
    Keskinen, Helmi
    Kupc, Agnieszka
    Kurten, Theo
    Kvashin, Alexander N.
    Laaksonen, Ari
    Lehtipalo, Katrianne
    Leiminger, Markus
    Leppa, Johannes
    Loukonen, Ville
    Makhmutov, Vladimir
    Mathot, Serge
    McGrath, Matthew J.
    Nieminen, Tuomo
    Olenius, Tinja
    Onnela, Antti
    Petaja, Tuukka
    Riccobono, Francesco
    Riipinen, Ilona
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för tillämpad miljövetenskap (ITM).
    Rissanen, Matti
    Rondo, Linda
    Ruuskanen, Taina
    Santos, Filipe D.
    Sarnela, Nina
    Schallhart, Simon
    Schnitzhofer, Ralf
    Seinfeld, John H.
    Simon, Mario
    Sipila, Mikko
    Stozhkov, Yuri
    Stratmann, Frank
    Tome, Antonio
    Troestl, Jasmin
    Tsagkogeorgas, Georgios
    Vaattovaara, Petri
    Viisanen, Yrjo
    Virtanen, Annele
    Vrtala, Aron
    Wagner, Paul E.
    Weingartner, Ernest
    Wex, Heike
    Williamson, Christina
    Wimmer, Daniela
    Ye, Penglin
    Yli-Juuti, Taina
    Carslaw, Kenneth S.
    Kulmala, Markku
    Curtius, Joachim
    Baltensperger, Urs
    Worsnop, Douglas R.
    Vehkamaki, Hanna
    Kirkby, Jasper
    Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere2013Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 502, nr 7471, 359-+ s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  • 36. Amemiya, Chris T.
    et al.
    Alfoeldi, Jessica
    Lee, Alison P.
    Fan, Shaohua
    Philippe, Herve
    MacCallum, Iain
    Braasch, Ingo
    Manousaki, Tereza
    Schneider, Igor
    Rohner, Nicolas
    Organ, Chris
    Chalopin, Domitille
    Smith, Jeramiah J.
    Robinson, Mark
    Dorrington, Rosemary A.
    Gerdol, Marco
    Aken, Bronwen
    Biscotti, Maria Assunta
    Barucca, Marco
    Baurain, Denis
    Berlin, Aaron M.
    Blatch, Gregory L.
    Buonocore, Francesco
    Burmester, Thorsten
    Campbell, Michael S.
    Canapa, Adriana
    Cannon, John P.
    Christoffels, Alan
    De Moro, Gianluca
    Edkins, Adrienne L.
    Fan, Lin
    Fausto, Anna Maria
    Feiner, Nathalie
    Forconi, Mariko
    Gamieldien, Junaid
    Gnerre, Sante
    Gnirke, Andreas
    Goldstone, Jared V.
    Haerty, Wilfried
    Hahn, Mark E.
    Hesse, Uljana
    Hoffmann, Steve
    Johnson, Jeremy
    Karchner, Sibel I.
    Kuraku, Shigehiro
    Lara, Marcia
    Levin, Joshua Z.
    Litman, Gary W.
    Mauceli, Evan
    Miyake, Tsutomu
    Mueller, M. Gail
    Nelson, David R.
    Nitsche, Anne
    Olmo, Ettore
    Ota, Tatsuya
    Pallavicini, Alberto
    Panji, Sumir
    Picone, Barbara
    Ponting, Chris P.
    Prohaska, Sonja J.
    Przybylski, Dariusz
    Saha, Nil Ratan
    Ravi, Vydianathan
    Ribeiro, Filipe J.
    Sauka-Spengler, Tatjana
    Scapigliati, Giuseppe
    Searle, Stephen M. J.
    Sharpe, Ted
    Simakov, Oleg
    Stadler, Peter F.
    Stegeman, John J.
    Sumiyama, Kenta
    Tabbaa, Diana
    Tafer, Hakim
    Turner-Maier, Jason
    van Heusden, Peter
    White, Simon
    Williams, Louise
    Yandell, Mark
    Brinkmann, Henner
    Volff, Jean-Nicolas
    Tabin, Clifford J.
    Shubin, Neil
    Schartl, Manfred
    Jaffe, David B.
    Postlethwait, John H.
    Venkatesh, Byrappa
    Di Palma, Federica
    Lander, Eric S.
    Meyer, Axel
    Lindblad-Toh, Kerstin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    The African coelacanth genome provides insights into tetrapod evolution2013Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 496, nr 7445, 311-316 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

  • 37. Amole, C.
    et al.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Capra, A.
    Cesar, C. L.
    Charlton, M.
    Deller, A.
    Donnan, P. H.
    Eriksson, S.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Humphries, A. J.
    Isaac, C. A.
    Jonsell, Svante
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Kurchaninov, L.
    Little, A.
    Madsen, N.
    McKenna, J. T. K.
    Menary, S.
    Napoli, S. C.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sarid, E.
    Shields, C. R.
    Silveira, D. M.
    Stracka, S.
    So, C.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Resonant quantum transitions in trapped antihydrogen atoms2012Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 483, nr 7390, 439-U86 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured(1) and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and-by comparison with measurements on its antimatter counterpart, antihydrogen-the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state(2,3) of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped(4-6) in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  • 38. Andersen, K. K
    et al.
    and NGRIP members,
    High-resolution record of Northern hemisphere climate extending into the last interglacial period2004Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 431, 147-151 s.Artikel i tidskrift (Refereegranskat)
  • 39. Andersson, Lisa S.
    et al.
    Larhammar, Martin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Memic, Fatima
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Wootz, Hanna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Schwochow, Doreen
    Rubin, Carl-Johan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Patra, Kalicharan
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Arnason, Thorvaldur
    Wellbring, Lisbeth
    Hjälm, Göran
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Imsland, Freyja
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Petersen, Jessica L.
    McCue, Molly E.
    Mickelson, James R.
    Cothran, Gus
    Ahituv, Nadav
    Roepstorff, Lars
    Mikko, Sofia
    Vallstedt, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Lindgren, Gabriella
    Andersson, Leif
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
    Kullander, Klas
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Genetisk utvecklingsbiologi.
    Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice2012Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 488, nr 7413, 642-646 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement(1). These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles(2). Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.

  • 40.
    Andersson, Siv GE
    et al.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Zomorodipour, A
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Andersson, Jan O
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Sicheritz-Ponten, T
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Alsmark, UCM
    Uppsala universitet.
    Podowski, RM
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Näslund, A Kristina
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Eriksson, Ann-Sofie
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    Winkler, HH
    Kurland, Charles G
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Molekylärbiologi.
    The genome sequence of Rickettsia prowazekii and the origin of mitochondria1998Ingår i: Nature, ISSN 0028-0836, Vol. 396, nr 6707, 133-140 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.

  • 41. Andresen, G. B.
    et al.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Deller, A.
    Eriksson, S.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Humphries, A. J.
    Hydomako, R.
    Jenkins, M. J.
    Jonsell, Svante
    Stockholms universitet, Naturvetenskapliga fakulteten, Fysikum.
    Jorgensen, L. V.
    Kurchaninov, L.
    Madsen, N.
    Menary, S.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Robicheaux, F.
    Sarid, E.
    Nasr, S. Seif el
    Silveira, D. M.
    So, C.
    Storey, J. W.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Yamazaki, Y.
    Trapped antihydrogen2010Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 468, nr 7324, 673-676 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2, 3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter5. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 107 antiprotons and 7 × 108 positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

  • 42. Andrés, E.
    et al.
    Askebjer, P.
    Bai, X.
    Barouch, G.
    Barwick, S. W.
    Bay, R. C.
    Becker, K. -H
    Bergström, L.
    Bertrand, D.
    Bierenbaum, D.
    Biron, A.
    Booth, J.
    Botner, O.
    Bouchta, A.
    Boyce, M. M.
    Carius, Staffan
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Chen, A.
    Chirkin, D.
    Conrad, J.
    Cooley, J.
    Costa, C. G. S.
    Cowen, D. F.
    Dailing, J.
    Dalberg, E.
    DeYoung, T.
    Desiati, P.
    Dewulf, J. -P
    Doksus, P.
    Edsjö, J.
    Ekström, P.
    Erlandsson, B.
    Feser, T.
    Gaug, M.
    Goldschmidt, A.
    Goobar, A.
    Gray, L.
    Haase, H.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hardtke, R.
    He, Y. D.
    Hellwig, M.
    Heukenkamp, H.
    Hill, G. C.
    Hulth, P. O.
    Hundertmark, S.
    Jacobsen, J.
    Kandhadai, V.
    Karle, A.
    Kim, J.
    Koci, B.
    Köpke, L.
    Kowalski, M.
    Leich, H.
    Leuthold, M.
    Lindahl, P.
    Högskolan i Kalmar, Naturvetenskapliga institutionen.
    Liubarsky, I.
    Loaiza, P.
    Lowder, D. M.
    Ludvig, J.
    Madsen, J.
    Marciniewski, P.
    Matis, H. S.
    Mihalyi, A.
    Mikolajski, T.
    Miller, T. C.
    Minaeva, Y.
    Miočinović, P.
    Mock, P. C.
    Morse, R.
    Neunhöffer, T.
    Newcomer, F. M.
    Niessen, P.
    Nygren, D. R.
    Ögelman, H.
    Pérez De Los Heros, C.
    Porrata, R.
    Price, P. B.
    Rawlins, K.
    Reed, C.
    Rhode, W.
    Richards, A.
    Richter, S.
    Martino, J. R.
    Romenesko, P.
    Ross, D.
    Rubinstein, H.
    Sander, H. -G
    Scheider, T.
    Schmidt, T.
    Schneider, D.
    Schneider, E.
    Schwarz, R.
    Silvestri, A.
    Solarz, M.
    Spiczak, G. M.
    Spiering, C.
    Starinsky, N.
    Steele, D.
    Steffen, P.
    Stokstad, R. G.
    Streicher, O.
    Sun, Q.
    Taboada, I.
    Thollander, L.
    Thon, T.
    Tilav, S.
    Usechak, N.
    Vander Donckt, M.
    Walck, C.
    Weinheimer, C.
    Wiebusch, C. H.
    Wischnewski, R.
    Wissing, H.
    Woschnagg, K.
    Wu, W.
    Yodh, G.
    Young, S.
    Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice2001Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 410, nr 6827, 441-443 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.

  • 43. Aplin, Lucy M.
    et al.
    Farine, Damien R.
    Morand-Ferron, Julie
    Cockburn, Andrew
    Thornton, Alex
    Sheldon, Ben C.
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik.
    Experimentally induced innovations lead to persistent culture via conformity in wild birds2015Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 518, nr 7540, 538-541 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning'. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations'''. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans''. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.

  • 44. Arnegard, Matthew E.
    et al.
    McGee, Matthew D.
    Matthews, Blake
    Marchinko, Kerry B.
    Conte, Gina L.
    Kabir, Sahriar
    Bedford, Nicole
    Bergek, Sara
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Zooekologi.
    Chan, Yingguang Frank
    Jones, Felicity C.
    Kingsley, David M.
    Peichel, Catherine L.
    Schluter, Dolph
    Genetics of ecological divergence during speciation2014Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 511, nr 7509, 307-311 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Although this process is a major generator of biodiversity, its genetic basis is still poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces the growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but depend on the ecological context.

  • 45. Arner, Peter
    et al.
    Bernard, Samuel
    Salehpour, Mehran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Possnert, Göran
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi.
    Liebl, Jakob
    Steier, Peter
    Buchholz, Bruce A.
    Eriksson, Mats
    Arner, Erik
    Hauner, Hans
    Skurk, Thomas
    Ryden, Mikael
    Frayn, Keith N.
    Spalding, Kirsty L.
    Dynamics of human adipose lipid turnover in health and metabolic disease2011Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 478, nr 7367, 110-113 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes(1). Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.

  • 46.
    Axelsson, Erik
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Ratnakumar, Abhirami
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Arendt, Maja Louise
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Maqbool, Khurram
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Webster, Matthew T.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    Perloski, Michele
    Liberg, Olof
    Arnemo, Jon M.
    Hedhammar, Ake
    Lindblad-Toh, Kerstin
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
    The genomic signature of dog domestication reveals adaptation to a starch-rich diet2013Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 495, nr 7441, 360-364 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The domestication of dogs. was an important episode in the development of human civilization. The precise timing and location of this event is debated(1-5) and little is known about the genetic changes that accompanied the transformation of ancient wolves into domestic dogs. Here we conduct whole-genome resequencimg of dogs and wolves to identify 3.8 million genetic variants used to identify 36 genomic regions that probably represent targets for selection during dog domestication. Nineteen of these regions contain genes important in brain function, eight of which belong to nervous system development pathways and potentially underlie behavioural changes central to dog domestication(6). Ten genes with key roles in starch digestion and fat metabolism also show signals of selection. We identify candidate mutations in key genes and provide functional support for an increased starch digestion in dogs relative to wolves. Our results indicate that novel adaptations allowing the early ancestors of modern dogs to thrive on a diet rich in starch, relative to the carnivorous diet of wolves, constituted a crucial step in the early domestication of dogs.

  • 47.
    Azim, Eiman
    et al.
    Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, USA.
    Jiang, Juan
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi.
    Alstermark, Bror
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Fysiologi.
    Jessell, Thomas M
    Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, USA.
    Skilled reaching relies on a V2a propriospinal internal copy circuit2014Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 508, nr 7496, 357-363 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The precision of skilled forelimb movement has long been presumed to rely on rapid feedback corrections triggered by internally directed copies of outgoing motor commands, but the functional relevance of inferred internal copy circuits has remained unclear. One class of spinal interneurons implicated in the control of mammalian forelimb movement, cervical propriospinal neurons (PNs), has the potential to convey an internal copy of premotor signals through dual innervation of forelimb-innervating motor neurons and precerebellar neurons of the lateral reticular nucleus. Here we examine whether the PN internal copy pathway functions in the control of goal-directed reaching. In mice, PNs include a genetically accessible subpopulation of cervical V2a interneurons, and their targeted ablation perturbs reaching while leaving intact other elements of forelimb movement. Moreover, optogenetic activation of the PN internal copy branch recruits a rapid cerebellar feedback loop that modulates forelimb motor neuron activity and severely disrupts reaching kinematics. Our findings implicate V2a PNs as the focus of an internal copy pathway assigned to the rapid updating of motor output during reaching behaviour.

  • 48. Aziz, Emad F.
    et al.
    Ottosson, Niklas
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Fysiska institutionen.
    Faubel, Manfred
    Hertel, Ingolf V.
    Winter, Bernd
    Interaction between liquid water and hydroxide revealed by core-hole de-excitation2008Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 455, nr 7209, 89-91 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hydroxide ion plays an important role in many chemical and biochemical processes in aqueous solution(1). But ourmolecular- level understanding of its unusual and fast transport in water, and of the solvation patterns that allow fast transport, is far from complete. One proposal seeks to explain the properties and behaviour of the hydroxide ion by essentially regarding it as a water molecule that is missing a proton(2), and by inferring transport mechanisms and hydration structures from those of the excess proton. A competing proposal invokes instead unique and interchanging hydroxide hydration complexes, particularly the hypercoordinated OH-(H2O)(4) species and tri- coordinated OH-(H2O)(3) that can form a transient hydrogen bond between the H atom of the OH- and a neighbouring water molecule(3-5). Here we report measurements of core- level photoelectron emission and intermolecular Coulombic decay(6-8) for an aqueous hydroxide solution, which show that the hydrated hydroxide ion is capable of transiently donating a hydrogen bond to surrounding watermolecules. In agreement with recent experimental studies of hydroxide solutions(9-12), our finding thus supports the notion that the hydration structure of the hydroxide ion cannot be inferred from that of the hydrated excess proton.

  • 49. Babaev, Egor
    et al.
    Sudbo, A.
    Ashcroft, N. W.
    A superconductor to superfluid phase transition in liquid metallic hydrogen2004Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 431, nr 7009, 666-668 s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although hydrogen is the simplest of atoms, it does not form the simplest of solids or liquids. Quantum effects in these phases are considerable (a consequence of the light proton mass) and they have a demonstrable and often puzzling influence on many physical properties(1), including spatial order. To date, the structure of dense hydrogen remains experimentally elusive(2). Recent studies of the melting curve of hydrogen(3,4) indicate that at high (but experimentally accessible) pressures, compressed hydrogen will adopt a liquid state, even at low temperatures. In reaching this phase, hydrogen is also projected to pass through an insulator-to-metal transition. This raises the possibility of new state of matter: a near ground-state liquid metal, and its ordered states in the quantum domain. Ordered quantum fluids are traditionally categorized as superconductors or superfluids; these respective systems feature dissipationless electrical currents or mass flow. Here we report a topological analysis of the projected phase of liquid metallic hydrogen, finding that it may represent a new type of ordered quantum fluid. Specifically, we show that liquid metallic hydrogen cannot be categorized exclusively as a superconductor or superfluid. We predict that, in the presence of a magnetic field, liquid metallic hydrogen will exhibit several phase transitions to ordered states, ranging from superconductors to superfluids.

  • 50.
    Bader, Erik
    et al.
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Stem Cell Res, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Epidemiol 2, D-85764 Neuherberg, Germany..
    Migliorini, Adriana
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Stem Cell Res, D-85764 Neuherberg, Germany..
    Gegg, Moritz
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Stem Cell Res, D-85764 Neuherberg, Germany..
    Moruzzi, Noah
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany.;Karolinska Univ Hosp, Dept Mol Med & Surg, SE-17176 Stockholm, Sweden..
    Gerdes, Jantje
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany..
    Roscioni, Sara S.
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany..
    Bakhti, Mostafa
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany..
    Brandl, Elisabeth
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany..
    Irmler, Martin
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Expt Genet, D-85764 Neuherberg, Germany..
    Beckers, Johannes
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Expt Genet, D-85764 Neuherberg, Germany.;Tech Univ Munich, Ismaninger Str 22, D-81675 Munich, Germany..
    Aichler, Michaela
    Helmholtz Zentrum Munchen, Res Unit Analyt Pathol, D-85764 Neuherberg, Germany..
    Feuchtinger, Annette
    Helmholtz Zentrum Munchen, Res Unit Analyt Pathol, D-85764 Neuherberg, Germany..
    Leitzinger, Christin
    Helmholtz Zentrum Munchen, Inst Mol Toxicol & Pharmacol, D-85764 Neuherberg, Germany..
    Zischka, Hans
    Helmholtz Zentrum Munchen, Inst Mol Toxicol & Pharmacol, D-85764 Neuherberg, Germany..
    Wang-Sattler, Rui
    Helmholtz Zentrum Munchen, Inst Epidemiol 2, D-85764 Neuherberg, Germany..
    Jastroch, Martin
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Diabet & Obes, D-85764 Neuherberg, Germany..
    Tschoep, Matthias
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Diabet & Obes, D-85764 Neuherberg, Germany..
    Machicao, Fausto
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Univ Tubingen, Helmholtz Zentrum Munchen, Inst Diabet Res & Metab Dis, D-72076 Tubingen, Germany..
    Staiger, Harald
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Univ Tubingen, Helmholtz Zentrum Munchen, Inst Diabet Res & Metab Dis, D-72076 Tubingen, Germany.;Univ Tubingen, Div Endocrinol Diabetol Vasc Dis Nephrol & Clin C, Dept Internal Med, D-72076 Tubingen, Germany..
    Haering, Hans-Ulrich
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Univ Tubingen, Helmholtz Zentrum Munchen, Inst Diabet Res & Metab Dis, D-72076 Tubingen, Germany.;Univ Tubingen, Div Endocrinol Diabetol Vasc Dis Nephrol & Clin C, Dept Internal Med, D-72076 Tubingen, Germany..
    Chmelova, Helena
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Tech Univ Dresden, Univ Clin Carl Gustav Carus, Helmholtz Zentrum Munchen, PLID, D-01307 Dresden, Germany.;Tech Univ Dresden, Fac Med, DFG Ctr Regenerat Therapies Dresden CRTD, D-01307 Dresden, Germany..
    Chouinard, Julie A.
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Tech Univ Dresden, Univ Clin Carl Gustav Carus, Helmholtz Zentrum Munchen, PLID, D-01307 Dresden, Germany.;Tech Univ Dresden, Fac Med, DFG Ctr Regenerat Therapies Dresden CRTD, D-01307 Dresden, Germany..
    Oskolkov, Nikolay
    Lund Univ, Ctr Diabet, Diabet & Endocrinol, S-20502 Malmo, Sweden..
    Korsgren, Olle
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Klinisk immunologi.
    Speier, Stephan
    German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Tech Univ Dresden, Univ Clin Carl Gustav Carus, Helmholtz Zentrum Munchen, PLID, D-01307 Dresden, Germany.;Tech Univ Dresden, Fac Med, DFG Ctr Regenerat Therapies Dresden CRTD, D-01307 Dresden, Germany..
    Lickert, Heiko
    Helmholtz Zentrum Munchen, Inst Diabet & Regenerat Res, D-85764 Neuherberg, Germany.;Helmholtz Zentrum Munchen, Inst Stem Cell Res, D-85764 Neuherberg, Germany.;German Ctr Diabet Res DZD, D-85764 Neuherberg, Germany.;Tech Univ Munich, Ismaninger Str 22, D-81675 Munich, Germany..
    Identification of proliferative and mature beta-cells in the islets of Langerhans2016Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 535, nr 7612, 430-+ s.Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of beta-cells. Pancreatic beta-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential(1-5); understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene(6), acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature beta-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs(7-9). We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger beta-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for beta-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional beta-cell heterogeneity and induce beta-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional beta-cell mass in diabetic patients.

1234567 1 - 50 av 451
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf