Change search
Refine search result
1234567 1 - 50 of 480
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Aartsen, M. G.
    et al.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Hill, G. C.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Kyriacou, A.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Robertson, S.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Wallace, A.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Whelan, B. J.
    Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia..
    Ackermann, M.
    DESY, D-17738 Zeuthen, Germany..
    Bernardini, E.
    DESY, D-17738 Zeuthen, Germany..
    Blot, S.
    DESY, D-17738 Zeuthen, Germany..
    Bradascio, F.
    DESY, D-17738 Zeuthen, Germany..
    Bretz, H. -P
    Brostean-Kaiser, J.
    DESY, D-17738 Zeuthen, Germany..
    Franckowiak, A.
    DESY, D-17738 Zeuthen, Germany..
    Jacobi, E.
    DESY, D-17738 Zeuthen, Germany..
    Karg, T.
    DESY, D-17738 Zeuthen, Germany..
    Kintscher, T.
    DESY, D-17738 Zeuthen, Germany..
    Kunwar, S.
    DESY, D-17738 Zeuthen, Germany..
    Nahnhauer, R.
    DESY, D-17738 Zeuthen, Germany..
    Satalecka, K.
    DESY, D-17738 Zeuthen, Germany..
    Spiering, C.
    DESY, D-17738 Zeuthen, Germany..
    Stachurska, J.
    DESY, D-17738 Zeuthen, Germany..
    Stasik, A.
    DESY, D-17738 Zeuthen, Germany..
    Strotjohann, N. L.
    DESY, D-17738 Zeuthen, Germany..
    Terliuk, A.
    DESY, D-17738 Zeuthen, Germany..
    Usner, M.
    DESY, D-17738 Zeuthen, Germany..
    van Santen, J.
    DESY, D-17738 Zeuthen, Germany..
    Adams, J.
    Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand..
    Bagherpour, H.
    Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand..
    Aguilar, J. A.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Ansseau, I.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Heereman, D.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Meagher, K.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Meures, T.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    O'Murchadha, A.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Pinat, E.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Raab, C.
    Univ Libre Bruxelles, Sci Fac, B-1050 Brussels, Belgium..
    Ahlers, M.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Koskinen, D. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Larson, M. J.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Medici, M.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Rameez, M.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark..
    Ahrens, M.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Bohm, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Dumm, J. P.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Finley, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Flis, S.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Hultqvist, K.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Walck, C.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Zoll, M.
    Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.;Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden..
    Al Samarai, I.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Bron, S.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Carver, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Christov, A.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Montaruli, T.
    Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland..
    Altmann, D.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Anton, G.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Gluesenkamp, T.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Katz, U.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Kittler, T.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Tselengidou, M.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany..
    Andeen, K.
    Marquette Univ, Dept Phys, Milwaukee, WI 53201 USA..
    Plum, M.
    Marquette Univ, Dept Phys, Milwaukee, WI 53201 USA..
    Anderson, T.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    DeLaunay, J. J.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Dunkman, M.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Eller, P.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Huang, F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Keivani, A.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Lanfranchi, J. L.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Pankova, D. V.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Tesic, G.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Turley, C. F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Weiss, M. J.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA..
    Arguelles, C.
    MIT, Dept Phys, Cambridge, MA 02139 USA..
    Axani, S.
    MIT, Dept Phys, Cambridge, MA 02139 USA..
    Collin, G. H.
    MIT, Dept Phys, Cambridge, MA 02139 USA..
    Conrad, J. M.
    MIT, Dept Phys, Cambridge, MA 02139 USA..
    Moulai, M.
    MIT, Dept Phys, Cambridge, MA 02139 USA..
    Auffenberg, J.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Brenzke, M.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Glauch, T.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Haack, C.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Kalaczynski, P.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Koschinsky, J. P.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Leuermann, M.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Rdel, L.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Reimann, R.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Rongen, M.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Saelzer, T.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Schoenen, S.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Schumacher, L.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Stettner, J.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Vehring, M.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Vogel, E.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Wallraff, M.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Waza, A.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Wiebusch, C. H.
    Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany..
    Bai, X.
    South Dakota Sch Mines & Technol, Phys Dept, Rapid City, SD 57701 USA..
    Barron, J. P.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Giang, W.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Grant, D.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Kopper, C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Moore, R. W.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Nowicki, S. C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Herrera, S. E. Sanchez
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Sarkar, S.
    Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.;Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada.;Univ Oxford, Dept Phys, Oxford OX1 3NP, England..
    Wandler, F. D.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Weaver, C.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Wood, T. R.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Woolsey, E.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Yanez, J. P.
    Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada..
    Barwick, S. W.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Yodh, G.
    Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA..
    Baum, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Boeser, S.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    di Lorenzo, V.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Eberhardt, B.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Ehrhardt, T.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Koepke, L.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Krueckl, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Momente, G.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Peiffer, P.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Sandroos, J.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Steuer, A.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Wiebe, K.
    Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany..
    Bay, R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Filimonov, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Price, P. B.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Woschnagg, K.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA..
    Beatty, J. J.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Tjus, J. Becker
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Bos, F.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Eichmann, B.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Kroll, M.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Schoeneberg, S.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Tenholt, F.
    Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany..
    Becker, K. -H
    Bindig, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Helbing, K.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hickford, S.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Hoffmann, R.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Lauber, F.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Naumann, U.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Pollmann, A. Obertacke
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    Soldin, D.
    Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany..
    BenZvi, S.
    Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA..
    Cross, R.
    Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA..
    Berley, D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Blaufuss, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Cheung, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Felde, J.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Friedman, E.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hellauer, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Hoffman, K. D.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Maunu, R.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Olivas, A.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Schmidt, T.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Song, M.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Sullivan, G. W.
    Univ Maryland, Dept Phys, College Pk, MD 20742 USA..
    Besson, D. Z.
    Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA..
    Binder, G.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Klein, S. R.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Miarecki, S.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Palczewski, T.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Tatar, J.
    Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.;Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Boerner, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Fuchs, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Huennefeld, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Meier, M.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Menne, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Pieloth, D.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Rhode, W.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Ruhe, T.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Sandrock, A.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Schlunder, P.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Soedingrekso, J.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Werthebach, J.
    TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany..
    Bose, D.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Dujmovic, H.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    In, S.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Jeong, M.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Kang, W.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Kim, J.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Rott, C.
    Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea..
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Burgman, Alexander
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    de los Heros, Carlos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Unger, Eva
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Bourbeau, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Braun, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Casey, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Chirkin, D.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Day, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Desiati, P.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Diaz-Velez, J. C.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Fahey, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Ghorbani, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Griffith, Z.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Halzen, F.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hanson, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hokanson-Fasig, B.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Hoshina, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.;Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan..
    Jero, K.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Karle, A.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kauer, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kelley, J. L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Kheirandish, A.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Liu, Q. R.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Luszczak, W.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Mancina, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    McNally, F.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Merino, G.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Schneider, A.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tobin, M. N.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Tosi, D.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Ty, B.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Vandenbroucke, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wandkowsky, N.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wendt, C.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Westerhoff, S.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wille, L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wolf, M.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Wood, J.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Xu, D. L.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Yuan, T.
    Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.;Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA..
    Brayeur, L.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Casier, M.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    De Clercq, C.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    de Vries, K. D.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    de Wasseige, G.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Kunnen, J.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Lunemann, J.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Maggi, G.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Toscano, S.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    van Eijndhoven, N.
    Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium..
    Clark, K.
    SNOLAB, Lively P3Y 1N2, ON, Canada..
    Classen, L.
    Westfal Wilhelms Univ Munster, Inst Kernphys, D-48149 Munster, Germany..
    Kappes, A.
    Westfal Wilhelms Univ Munster, Inst Kernphys, D-48149 Munster, Germany..
    Coenders, S.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Huber, M.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Krings, K.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Rea, I. C.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Resconi, E.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Turcati, A.
    Tech Univ Munich, Phys Dept, D-85748 Garching, Germany..
    Cowen, D. F.
    Penn State Univ, Dept Phys, University Pk, PA 16802 USA.;Penn State Univ, Dept Phys & Astron, University Pk, PA 16802 USA..
    de Andre, J. P. A. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    DeYoung, T.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Hignight, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Lennarz, D.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Mahn, K. B. M.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Micallef, J.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Neer, G.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Rysewyk, D.
    Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA..
    Dembinski, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Evenson, P. A.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Gaisser, T. K.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Gonzalez, J. G.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Koirala, R.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Pandya, H.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Seckel, D.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Stanev, T.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    Tilav, S.
    Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.;Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA..
    De Ridder, S.
    Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium..
    Labare, M.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Ryckbosch, D.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Van Driessche, W.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Vanheule, S.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Vraeghe, M.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    de With, M.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Hebecker, D.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Kolanoski, H.
    Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Fazely, A. R.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Ter-Antonyan, S.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Xu, X. W.
    Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA..
    Gallagher, J.
    Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.;Univ Mons, B-7000 Mons, Belgium..
    Gerhardt, L.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Goldschmidt, A.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Nygren, D. R.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Przybylski, G. T.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Stezelberger, T.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Stokstad, R. G.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Ishihara, A.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Kim, M.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Kuwabara, T.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Lu, L.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Mase, K.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Relich, M.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Stossl, A.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Yoshida, S.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan.;Chiba Univ, Inst Global Prominent Res, Chiba 2638522, Japan..
    Japaridze, G. S.
    Clark Atlanta Univ, Ctr Theoret Studies Phys Syst, Atlanta, GA 30314 USA..
    Jones, B. J. P.
    Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA..
    Kiryluk, J.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Lesiak-Bzdak, M.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Niederhausen, H.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Xu, Y.
    SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA..
    Kohnen, G.
    Kopper, S.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Nakarmi, P.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Pepper, J. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Toale, P. A.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Williams, D. R.
    Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA..
    Kowalski, M.
    DESY, D-17738 Zeuthen, Germany.;Humboldt Univ, Inst Ohys, D-12489 Berlin, Germany..
    Kurahashi, N.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Relethford, B.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Richman, M.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Wills, L.
    Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA..
    Madsen, J.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Seunarine, S.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Spiczak, G. M.
    Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA..
    Maruyama, R.
    Yale Univ, Dept Phys, New Haven, CT 06520 USA..
    Rawlins, K.
    Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA..
    Sutherland, M.
    Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.;Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA..
    Taboada, I.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Tung, C. F.
    Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.;Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA..
    Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 551, no 7682, p. 596-600Article in journal (Refereed)
    Abstract [en]

    Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams fromaccelerators(1,2). Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model(3), consistent with the expectations for charged-and neutral-current interactions. We do not observe a large increase in the crosssection with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions(4) or the production of leptoquarks(5). This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.

  • 2. Abbasi, R.
    et al.
    Abdou, Y.
    Abu-Zayyad, T.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Altmann, D.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. B.
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. H.
    Bell, M.
    Benabderrahmane, M. L.
    BenZvi, S.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bose, D.
    Boser, S.
    Botner, O.
    Brayeur, L.
    Brown, A. M.
    Buitink, S.
    Caballero-Mora, K. S.
    Carson, M.
    Casier, M.
    Chirkin, D.
    Christy, B.
    Clevermann, F.
    Cohen, S.
    Colnard, C.
    Cowen, D. F.
    Silva, A. H. C.
    D'Agostino, M. V.
    Danninger, M.
    Daughhetee, J.
    Davis, J. C.
    DeClercq, C.
    Degner, T.
    Descamps, F.
    Desiati, P.
    de Vries-Uiterweerd, G.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dierckxsens, M.
    Dreyer, J.
    Dumm, J. P.
    Dunkman, M.
    Eisch, J.
    Ellsworth, R. W.
    Engdegard, O.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Fischer-Wasels, T.
    Flis, S.
    Franckowiak, A.
    Franke, R.
    Gaisser, T. K.
    Gallagher, J.
    Gerhardt, L.
    Gladstone, L.
    Glusenkamp, T.
    Goldschmidt, A.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Griesel, T.
    Gross, A.
    Grullon, S.
    Gurtner, M.
    Ha, C.
    Ismail, A. H.
    Hallgren, A.
    Halzen, F.
    Han, K.
    Hanson, K.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, B.
    Homeier, A.
    Hoshina, K.
    Huelsnitz, W.
    Hulss, J. P.
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Japaridze, S.
    Johansson, H.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kiryluk, J.
    Kislat, F.
    Klein, S. R.
    Kohne, J. H.
    Kohnen, G.
    Kolanoski, H.
    Kopke, L.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kowarik, T.
    Krasberg, M.
    Kroll, G.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Laihem, K.
    Landsman, H.
    Larson, M. J.
    Lauer, R.
    Lunemann, J.
    Madsen, J.
    Marotta, A.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Meagher, K.
    Merck, M.
    Meszaros, P.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Milke, N.
    Miller, J.
    Montaruli, T.
    Morse, R.
    Movit, S. M.
    Nahnhauer, R.
    Nam, J. W.
    Naumann, U.
    Nowicki, S. C.
    Nygren, D. R.
    Odrowski, S.
    Olivas, A.
    Olivo, M.
    O'Murchadha, A.
    Panknin, S.
    Paul, L.
    de los Heros, C. P.
    Piegsa, A.
    Pieloth, D.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Rawlins, K.
    Redl, P.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Richman, M.
    Riedel, B.
    Rizzo, A.
    Rodrigues, J. P.
    Rothmaier, F.
    Rott, C.
    Ruhe, T.
    Rutledge, D.
    Ruzybayev, B.
    Ryckbosch, D.
    Sander, H. G.
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Schmidt, T.
    Schoneberg, S.
    Schonwald, A.
    Schukraft, A.
    Schulte, L.
    Schultes, A.
    Schulz, O.
    Schunck, M.
    Seckel, D.
    Semburg, B.
    Seo, S. H.
    Sestayo, Y.
    Seunarine, S.
    Silvestri, A.
    Smith, M. W. E.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stezelberger, T.
    Stokstad, R. G.
    Stossl, A.
    Strahler, E. A.
    Strom, R.
    Stuer, M.
    Sullivan, G. W.
    Taavola, H.
    Taboada, I.
    Tamburro, A.
    Ter-Antonyan, S.
    Tilav, S.
    Toale, P. A.
    Toscano, S.
    Tosi, D.
    van Eijndhoven, N.
    Van Overloop, A.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Walck, C.
    Waldenmaier, T.
    Wallraff, M.
    Walter, M.
    Wasserman, R.
    Weaver, C.
    Wendt, C.
    Westerhoff, S.
    Whitehorn, N.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wischnewski, R.
    Wissing, H.
    Wolf, M.
    Wood, T. R.
    Woschnagg, K.
    Xu, C.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Zoll, M.
    IceCube, Collaboration
    An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts2012In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 484Article in journal (Refereed)
    Abstract [en]

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  • 3. Abbasi, R.
    et al.
    Abdou, Y.
    Abu-Zayyad, T.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Altmann, D.
    Andeen, K.
    Auffenberg, J.
    Bai, X.
    Baker, M.
    Barwick, S. W.
    Bay, R.
    Alba, J. L. Bazo
    Beattie, K.
    Beatty, J. J.
    Bechet, S.
    Becker, J. K.
    Becker, K. -H
    Bell, M.
    Benabderrahmane, M. L.
    BenZvi, S.
    Berdermann, J.
    Berghaus, P.
    Berley, D.
    Bernardini, E.
    Bertrand, D.
    Besson, D. Z.
    Bindig, D.
    Bissok, M.
    Blaufuss, E.
    Blumenthal, J.
    Boersma, D. J.
    Bohm, C.
    Bose, D.
    Boeser, S.
    Botner, Olga
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Brayeur, L.
    Brown, A. M.
    Buitink, S.
    Caballero-Mora, K. S.
    Carson, M.
    Casier, M.
    Chirkin, D.
    Christy, B.
    Clevermann, F.
    Cohen, S.
    Colnard, C.
    Cowen, D. F.
    Silva, A. H. Cruz
    D'Agostino, M. V.
    Danninger, M.
    Daughhetee, J.
    Davis, J. C.
    DeClercq, C.
    Degner, T.
    Descamps, F.
    Desiati, P.
    de Vries-Uiterweerd, G.
    DeYoung, T.
    Diaz-Velez, J. C.
    Dierckxsens, M.
    Dreyer, J.
    Dumm, J. P.
    Dunkman, M.
    Eisch, J.
    Ellsworth, R. W.
    Engdegård, Olle
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Euler, S.
    Evenson, P. A.
    Fadiran, O.
    Fazely, A. R.
    Fedynitch, A.
    Feintzeig, J.
    Feusels, T.
    Filimonov, K.
    Finley, C.
    Fischer-Wasels, T.
    Flis, S.
    Franckowiak, A.
    Franke, R.
    Gaisser, T. K.
    Gallagher, J.
    Gerhardt, L.
    Gladstone, L.
    Gluesenkamp, T.
    Goldschmidt, A.
    Goodman, J. A.
    Gora, D.
    Grant, D.
    Griesel, T.
    Gross, A.
    Grullon, S.
    Gurtner, M.
    Ha, C.
    Ismail, A. Haj
    Hallgren, Allan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Halzen, F.
    Han, K.
    Hanson, K.
    Heereman, D.
    Heinen, D.
    Helbing, K.
    Hellauer, R.
    Hickford, S.
    Hill, G. C.
    Hoffman, K. D.
    Hoffmann, B.
    Homeier, A.
    Hoshina, K.
    Huelsnitz, W.
    Huelss, J. -P
    Hulth, P. O.
    Hultqvist, K.
    Hussain, S.
    Ishihara, A.
    Jacobi, E.
    Jacobsen, J.
    Japaridze, S.
    Johansson, H.
    Kappes, A.
    Karg, T.
    Karle, A.
    Kiryluk, J.
    Kislat, F.
    Klein, S. R.
    Koehne, J. -H
    Kohnen, G.
    Kolanoski, H.
    Koepke, L.
    Kopper, S.
    Koskinen, D. J.
    Kowalski, M.
    Kowarik, T.
    Krasberg, M.
    Kroll, G.
    Kunnen, J.
    Kurahashi, N.
    Kuwabara, T.
    Labare, M.
    Laihem, K.
    Landsman, H.
    Larson, M. J.
    Lauer, R.
    Luenemann, J.
    Madsen, J.
    Marotta, A.
    Maruyama, R.
    Mase, K.
    Matis, H. S.
    Meagher, K.
    Merck, M.
    Meszaros, P.
    Meures, T.
    Miarecki, S.
    Middell, E.
    Milke, N.
    Miller, J.
    Montaruli, T.
    Morse, R.
    Movit, S. M.
    Nahnhauer, R.
    Nam, J. W.
    Naumann, U.
    Nowicki, S. C.
    Nygren, D. R.
    Odrowski, S.
    Olivas, A.
    Olivo, M.
    O'Murchadha, A.
    Panknin, S.
    Paul, L.
    Pérez de los Heros, Carlos
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Piegsa, A.
    Pieloth, D.
    Posselt, J.
    Price, P. B.
    Przybylski, G. T.
    Rawlins, K.
    Redl, P.
    Resconi, E.
    Rhode, W.
    Ribordy, M.
    Richman, M.
    Riedel, B.
    Rizzo, A.
    Rodrigues, J. P.
    Rothmaier, F.
    Rott, C.
    Ruhe, T.
    Rutledge, D.
    Ruzybayev, B.
    Ryckbosch, D.
    Sander, H. -G
    Santander, M.
    Sarkar, S.
    Schatto, K.
    Schmidt, T.
    Schoeneberg, S.
    Schoenwald, A.
    Schukraft, A.
    Schulte, L.
    Schultes, A.
    Schulz, O.
    Schunck, M.
    Seckel, D.
    Semburg, B.
    Seo, S. H.
    Sestayo, Y.
    Seunarine, S.
    Silvestri, A.
    Smith, M. W. E.
    Spiczak, G. M.
    Spiering, C.
    Stamatikos, M.
    Stanev, T.
    Stezelberger, T.
    Stokstad, R. G.
    Stoessl, A.
    Strahler, E. A.
    Ström, Rickard
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Stueer, M.
    Sullivan, G. W.
    Taavola, Henric
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
    Taboada, I.
    Tamburro, A.
    Ter-Antonyan, S.
    Tilav, S.
    Toale, P. A.
    Toscano, S.
    Tosi, D.
    van Eijndhoven, N.
    Van Overloop, A.
    van Santen, J.
    Vehring, M.
    Voge, M.
    Walck, C.
    Waldenmaier, T.
    Wallraff, M.
    Walter, M.
    Wasserman, R.
    Weaver, Ch.
    Wendt, C.
    Westerhoff, S.
    Whitehorn, N.
    Wiebe, K.
    Wiebusch, C. H.
    Williams, D. R.
    Wischnewski, R.
    Wissing, H.
    Wolf, M.
    Wood, T. R.
    Woschnagg, K.
    Xu, C.
    Xu, D. L.
    Xu, X. W.
    Yanez, J. P.
    Yodh, G.
    Yoshida, S.
    Zarzhitsky, P.
    Zoll, M.
    An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts2012In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 484, no 7394, p. 351-354Article in journal (Refereed)
    Abstract [en]

    Very energetic astrophysical events are required to accelerate cosmic rays to above 10(18) electronvolts. GRBs (c-ray bursts) have been proposed as possible candidate sources(1-3). In the GRB 'fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and gamma-rays(4). Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux(5-7). Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions(4,8-10). This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10(18) electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  • 4. Abdi-Jalebi, Mojtaba
    et al.
    Andaji-Garmaroudi, Zahra
    Cacovich, Stefania
    Stavrakas, Camille
    Philippe, Bertrand
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Richter, Johannes M.
    Alsari, Mejd
    Booker, Edward P.
    Hutter, Eline M.
    Pearson, Andrew J.
    Lilliu, Samuele
    Savenije, Tom J.
    Rensmo, Håkan
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and Condensed Matter Physics.
    Divitini, Giorgio
    Ducati, Caterina
    Friend, Richard H.
    Stranks, Samuel D.
    Maximizing and stabilizing luminescence from halide perovskites with potassium passivation2018In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 555, p. 497-501Article in journal (Refereed)
    Abstract [en]

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

  • 5. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, O.
    Chaplin, V.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Silva, E. D. E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Foschini, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Gibby, L.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grondin, M. H.
    Grove, J. E.
    Grupe, D.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hoversten, E. A.
    Hughes, R. E.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knodlseder, J.
    Kocevski, D.
    Kouveliotou, C.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Meszaros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Raino, S.
    Ramirez-Ruiz, E.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F. W.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. S.
    Scargle, J. D.
    Schalk, T. L.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Toma, K.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Wu, X. F.
    Yamazaki, R.
    Ylinen, T.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ziegler, M.
    A limit on the variation of the speed of light arising from quantum gravity effects2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, no 7271, p. 331-334Article in journal (Refereed)
    Abstract [en]

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  • 6. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Axelsson, M.
    Stockholm University, Faculty of Science, Department of Astronomy.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Briggs, M. S.
    Brigida, M.
    Bruel, P.
    Burgess, J. M.
    Burnett, T. H.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Çelik, Ö.
    Chaplin, V.
    Charles, E.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Connaughton, V.
    Conrad, J.
    Stockholm University, Faculty of Science, Department of Physics.
    Cutini, S.
    Dermer, C. D.
    de Angelis, A.
    de Palma, F.
    Digel, S. W.
    Dingus, B. L.
    Do Couto E Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Finke, J.
    Fishman, G.
    Focke, W. B.
    Foschini, L.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Gibby, L.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Granot, J.
    Greiner, J.
    Grenier, I. A.
    Grondin, M.-H.
    Grove, J. E.
    Grupe, D.
    Guillemot, L.
    Guiriec, S.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hoversten, E. A.
    Hughes, R. E.
    Jóhannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Kippen, R. M.
    Knödlseder, J.
    Kocevski, D.
    Kouveliotou, C.
    Kuehn, F.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Mészáros, P.
    Meurer, C.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Porter, T. A.
    Preece, R.
    Rainò, S.
    Ramirez-Ruiz, E.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Roth, M.
    Ryde, F.
    Sadrozinski, H. F.-W.
    Sanchez, D.
    Sander, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Schalk, T. L.
    Sgrò, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stamatikos, M.
    Stecker, F. W.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Toma, K.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Uehara, T.
    Usher, T. L.
    van der Horst, A. J.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    von Kienlin, A.
    Waite, A. P.
    Wang, P.
    Wilson-Hodge, C.
    Winer, B. L.
    Wood, K. S.
    Wu, X. F.
    Yamazaki, R.
    Ylinen, T.
    Ziegler, M.
    the Fermi LAT Collaboration,
    A limit on the variation of the speed of light arising from quantum gravity effects2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, no 7271, p. 331-334Article in journal (Refereed)
    Abstract [en]

    A cornerstone of Einstein’s special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, lPlanck~1.62×10-33cm or EPlanck = MPlanckc2~1.22×1019GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. Here we report the detection of emission up to ~31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2EPlanck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of lPlanck/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.

  • 7. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Asano, K.
    Atwood, W. B.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Conrad, Jan
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Moretti, Elena
    University and INFN of Trieste.
    A limit on the variation of the speed of light arising from quantum gravity effects2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 462, no 7271, p. 331-334Article in journal (Refereed)
    Abstract [en]

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  • 8. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Axelsson, Magnus
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sikora, M.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al,
    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 2792010In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 463, no 7283, p. 919-923Article in journal (Refereed)
    Abstract [en]

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight(1). The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma (gamma)-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10(5) gravitational radii.

  • 9.
    Abellán, C.
    et al.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Acín, A.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain / ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
    Alarcón, A.
    Millennium Institute for Research in Optics, Universidad de Concepción, Universidad de Concepción, Concepción, Chile / Departamento de Ingeniería Eléctrica, Universidad de Concepción, Concepción, Chile.
    Alibart, O.
    Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI), Nice, France.
    Andersen, C. K.
    Department of Physics, ETH Zurich,, Zurich, Switzerland.
    Andreoli, F.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Beckert, A.
    Department of Physics, ETH Zurich,, Zurich, Switzerland.
    Beduini, F. A.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Bendersky, A.
    Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Investigación en Ciencias de la Comunicación (ICC), CONICET, Buenos Aires, Argentina.
    Bentivegna, M.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Bierhorst, P.
    National Institute of Standards and Technology, Boulder, CO, USA.
    Burchardt, D.
    Ludwig-Maximilians-Universität, Munich, Germany.
    Cabello, A.
    Departamento de Física Aplicada II, Universidad de Sevilla, Seville, Spain.
    Cariñe, J.
    Millennium Institute for Research in Optics, Universidad de Concepción, Universidad de Concepción, Concepción, Chile.
    Carrasco, S.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Carvacho, G.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Cavalcanti, D.
    Chaves, R.
    Cortés-Vega, J.
    Cuevas, A.
    Delgado, A.
    de Riedmatten, H.
    Eichler, C.
    Farrera, P.
    Fuenzalida, J.
    García-Matos, M.
    Garthoff, R.
    Gasparinetti, S.
    Gerrits, T.
    Ghafari Jouneghani, F.
    Glancy, S.
    Gómez, E. S.
    González, P.
    Guan, J. -Y.
    Handsteiner, J.
    Heinsoo, J.
    Heintze, G.
    Hirschmann, A.
    Jiménez, O.
    Kaiser, F.
    Knill, E.
    Knoll, L. T.
    Krinner, S.
    Kurpiers, P.
    Larotonda, M. A.
    Larsson, Jan-Åke
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Lenhard, A.
    Li, H.
    Li, M. -H.
    Lima, G.
    Liu, B.
    Liu, Y.
    López Grande, I. H.
    Lunghi, T.
    Ma, X.
    Magaña-Loaiza, O. S.
    Magnard, P.
    Magnoni, A.
    Martí­-Prieto, M.
    Martínez, D.
    Mataloni, P.
    Mattar, A.
    Mazzera, M.
    Mirin, R. P.
    Mitchell, M. W.
    Nam, S.
    Oppliger, M.
    Pan, J. -W.
    Patel, R. B.
    Pryde, G. J.
    Rauch, D.
    Redeker, K.
    Rieländer, D.
    Ringbauer, M.
    Roberson, T.
    Rosenfeld, W.
    Salathé, Y.
    Santodonato, L.
    Sauder, G.
    Scheidl, T.
    Schmiegelow, C. T.
    Sciarrino, F.
    Seri, A.
    Shalm, L. K.
    Shi, S. -C
    Slussarenko, S.
    Stevens, M. J.
    Tanzilli, S.
    Toledo, F.
    Tura, J.
    Ursin, R.
    Vergyris, P.
    Verma, V. B.
    Walter, T.
    Wallraff, A.
    Wang, Z.
    Weinfurter, H.
    Weston, M. M.
    White, A. G.
    Wu, C.
    Xavier, Guilherme B.
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    You, L.
    Yuan, X.
    Zeilinger, A.
    Zhang, Q.
    Zhang, W.
    Zhong, J.
    Challenging Local Realism with Human Choices2018In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 557, p. 212-216Article in journal (Refereed)
    Abstract [en]

    A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism , in which the properties of the physical world are independent of our observation of them and no signal travels faster than light. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings. Although technology can satisfy the first two of these requirements, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human ‘free will’ could be used rigorously to ensure unpredictability in Bell tests. Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology. The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons, single atoms, atomic ensembles and superconducting devices. Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bi-partite and tri-partite 12 scenarios. Project outcomes include closing the ‘freedom-of-choice loophole’ (the possibility that the setting choices are influenced by ‘hidden variables’ to correlate with the particle properties), the utilization of video-game methods for rapid collection of human-generated randomness, and the use of networking techniques for global participation in experimental science.

  • 10. Abramowski, A.
    et al.
    Aharonian, F.
    Benkhali, F. Ait
    Akhperjanian, A. G.
    Anguener, E. O.
    Backes, M.
    Balzer, A.
    Becherini, Y.
    Tjus, J. Becker
    Berge, D.
    Bernhard, S.
    Bernloehr, K.
    Birsin, E.
    Blackwell, R.
    Boettcher, M.
    Boisson, C.
    Bolmont, J.
    Bordas, P.
    Bregeon, J.
    Brun, F.
    Brun, P.
    Bryan, M.
    Bulik, T.
    Carr, J.
    Casanova, S.
    Chakraborty, N.
    Chalme-Calvet, R.
    Chaves, R. C. G.
    Chen, A.
    Chretien, M.
    Colafrancesco, S.
    Cologna, G.
    Conrad, Jan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Couturier, C.
    Cui, Y.
    Davids, I. D.
    Degrange, B.
    Deil, C.
    deWilt, P.
    Djannati-Ata, A.
    Domainko, W.
    Donath, A.
    Drury, L. O'C.
    Dubus, G.
    Dutson, K.
    Dyks, J.
    Dyrda, M.
    Edwards, T.
    Egberts, K.
    Eger, P.
    Ernenwein, J-P.
    Espigat, P.
    Farnier, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fegan, S.
    Feinstein, F.
    Fernandes, M. V.
    Fernandez, D.
    Fiasson, A.
    Fontaine, G.
    Foerster, A.
    Fuessling, M.
    Gabici, S.
    Gajdus, M.
    Gallant, Y. A.
    Garrigoux, T.
    Giavitto, G.
    Giebels, B.
    Glicenstein, J. F.
    Gottschall, D.
    Goyal, A.
    Grondin, M-H.
    Grudzinska, M.
    Hadasch, D.
    Haeffner, S.
    Hahn, J.
    Hawkes, J.
    Heinzelmann, G.
    Henri, G.
    Hermann, G.
    Hervet, O.
    Hillert, A.
    Hinton, J. A.
    Hofmann, W.
    Hofverberg, P.
    Hoischen, C.
    Holler, M.
    Horns, D.
    Ivascenko, A.
    Jacholkowska, A.
    Jamrozy, M.
    Janiak, M.
    Jankowsky, F.
    Jung-Richardt, I.
    Kastendieck, M. A.
    Katarzynski, K.
    Katz, U.
    Kerszberg, D.
    Khelifi, B.
    Kieffer, M.
    Klepser, S.
    Klochkov, D.
    Kluzniak, W.
    Kolitzus, D.
    Komin, Nu.
    Kosack, K.
    Krakau, S.
    Krayzel, F.
    Krueger, P. P.
    Laffon, H.
    Lamanna, G.
    Lau, J.
    Lefaucheur, J.
    Lefranc, V.
    Lemiere, A.
    Lemoine-Goumard, M.
    Lenain, J-P.
    Lohse, T.
    Lopatin, A.
    Lu, C-C.
    Lui, R.
    Marandon, V.
    Marcowith, A.
    Mariaud, C.
    Marx, R.
    Maurin, G.
    Maxted, N.
    Mayer, M.
    Meintjes, P. J.
    Menzler, U.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Mitchell, A. M. W.
    Moderski, R.
    Mohamed, M.
    Morå, Knut
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Moulin, E.
    Murach, T.
    de Naurois, M.
    Niemiec, J.
    Oakes, L.
    Odaka, H.
    Oettl, S.
    Ohm, S.
    Opitz, B.
    Ostrowski, M.
    Oya, I.
    Panter, M.
    Parsons, R. D.
    Arribas, M. Paz
    Pekeur, N. W.
    Pelletier, G.
    Petrucci, P-O.
    Peyaud, B.
    Pita, S.
    Poon, H.
    Prokoph, H.
    Puehlhofer, G.
    Punch, M.
    Quirrenbach, A.
    Raab, S.
    Reichardt, I.
    Reimer, A.
    Reimer, O.
    Renaud, M.
    de los Reyes, R.
    Rieger, F.
    Romoli, C.
    Rosier-Lees, S.
    Rowell, G.
    Rudak, B.
    Rulten, C. B.
    Sahakian, V.
    Salek, D.
    Sanchez, D. A.
    Santangelo, A.
    Sasaki, M.
    Schlickeiser, R.
    Schuessler, F.
    Schulz, A.
    Schwanke, U.
    Schwemmer, S.
    Seyffert, A. S.
    Simoni, R.
    Sol, H.
    Spanier, F.
    Spengler, Gerrit
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Spies, F.
    Stawarz, L.
    Steenkamp, R.
    Stegmann, C.
    Stinzing, F.
    Stycz, K.
    Sushch, I.
    Tavernet, J-P.
    Tavernier, T.
    Taylor, A. M.
    Terrier, R.
    Tluczykont, M.
    Trichard, C.
    Tuffs, R.
    Valerius, K.
    van der Walt, J.
    van Eldik, C.
    van Soelen, B.
    Vasileiadis, G.
    Veh, J.
    Venter, C.
    Viana, A.
    Vincent, P.
    Vink, J.
    Voisin, F.
    Voelk, H. J.
    Vuillaume, T.
    Wagner, S. J.
    Wagner, P.
    Wagner, Roger M.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Weidinger, M.
    Weitzel, Q.
    White, R.
    Wierzcholska, A.
    Willmann, P.
    Woernlein, A.
    Wouters, D.
    Yang, R.
    Zabalza, V.
    Zaborov, D.
    Zacharias, M.
    Zdziarski, A. A.
    Zech, A.
    Zefi, F.
    Zywucka, N.
    Acceleration of petaelectronvolt protons in the Galactic Centre2016In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 531, no 7595, p. 476-+Article in journal (Refereed)
    Abstract [en]

    Galactic cosmic rays reach energies of at least a few petaelectronvolts(1) (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies(2). Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent gamma-ray observations(3). However, none of the currently known accelerators-not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays-has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of.-rays extending without a cut-off or a spectral break to tens of teraelectronvolts(4). Here we report deep.-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts(5) and an outflow from the Galactic Centre(6). Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  • 11.
    Abramowski, A.
    et al.
    University of Hamburg, Germany.
    Aharonian, F.
    Max Planck Institute for Nuclear Physics, Germany ; Dublin Institute for Advanced Studies, Ireland ; National Academy of Sciences of the Republic of Armenia, Armenia.
    Benkhali, F. Ait
    Max Planck Institute for Nuclear Physics, Germany.
    Akhperjanian, A. G.
    National Academy of Sciences of the Republic of Armenia, Armenia ; Yerevan Physics Institute, Armenia.
    Anguener, E. O.
    Humboldt University of Berlin, Germany.
    Backes, M.
    University of Namibia, Namibia.
    Balzer, A.
    University of Amsterdam, The Netherlands.
    Becherini, Yvonne
    Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering.
    Tjus, J. Becker
    Ruhr University Bochum, Germany.
    Berge, D.
    University of Amsterdam, The Netherlands.
    Bernhard, S.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Bernloehr, K.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Birsin, E.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Blackwell, R.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Boettcher, M.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Boisson, C.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Bolmont, J.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Bordas, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Bregeon, J.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Brun, F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Brun, P.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Bryan, M.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Bulik, T.
    Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Carr, J.
    Aix Marseille Univ, CNRS, IN2P3, CPPM,UMR 7346, F-13288 Marseille, France..
    Casanova, S.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Chakraborty, N.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Chalme-Calvet, R.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Chaves, R. C. G.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Chen, A.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Chretien, M.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Colafrancesco, S.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Cologna, G.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Conrad, J.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Couturier, C.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Cui, Y.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Davids, I. D.
    Univ Namibia, Dept Phys, Private Bag 13301, Windhoek, Namibia.;North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Degrange, B.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Deil, C.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    deWilt, P.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Djannati-Ata, A.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Domainko, W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Donath, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Drury, L. O 'C.
    Dubus, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Dutson, K.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Dyks, J.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Dyrda, M.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Edwards, T.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Egberts, K.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany..
    Eger, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Ernenwein, J-P
    Espigat, P.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Farnier, C.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Fegan, S.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Feinstein, F.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Fernandes, M. V.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Fernandez, D.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Fiasson, A.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Fontaine, G.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Foerster, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Fuessling, M.
    DESY, D-15738 Zeuthen, Germany..
    Gabici, S.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Gajdus, M.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Gallant, Y. A.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Garrigoux, T.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Giavitto, G.
    DESY, D-15738 Zeuthen, Germany..
    Giebels, B.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Glicenstein, J. F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Gottschall, D.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Goyal, A.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Grondin, M-H
    Grudzinska, M.
    Univ Warsaw, Astron Observ, Al Ujazdowskie 4, PL-00478 Warsaw, Poland..
    Hadasch, D.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Haeffner, S.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Hahn, J.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hawkes, J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Heinzelmann, G.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Henri, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Hermann, G.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hervet, O.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Hillert, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hinton, J. A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Hofmann, W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hofverberg, P.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Hoischen, C.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany..
    Holler, M.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Horns, D.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Ivascenko, A.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Jacholkowska, A.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Jamrozy, M.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Janiak, M.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Jankowsky, F.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Jung-Richardt, I.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Kastendieck, M. A.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Katarzynski, K.
    Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Ctr Astron, Grudziadzka 5, PL-87100 Torun, Poland..
    Katz, U.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Kerszberg, D.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Khelifi, B.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Kieffer, M.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Klepser, S.
    DESY, D-15738 Zeuthen, Germany..
    Klochkov, D.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Kluzniak, W.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Kolitzus, D.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Komin, Nu.
    Univ Witwatersrand, Sch Phys, 1 Jan Smuts Ave, ZA-2050 Johannesburg, South Africa..
    Kosack, K.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Krakau, S.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Krayzel, F.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Krueger, P. P.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Laffon, H.
    Univ Bordeaux, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France..
    Lamanna, G.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Lau, J.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Lefaucheur, J.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Lefranc, V.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Lemiere, A.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Lemoine-Goumard, M.
    Univ Bordeaux, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France..
    Lenain, J-P
    Lohse, T.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Lopatin, A.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Lu, C-C
    Lui, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Marandon, V.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Marcowith, A.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Mariaud, C.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Marx, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Maurin, G.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Maxted, N.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Mayer, M.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Meintjes, P. J.
    Univ Orange Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa..
    Menzler, U.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Meyer, M.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Mitchell, A. M. W.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Moderski, R.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Mohamed, M.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Mora, K.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Moulin, E.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Murach, T.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    de Naurois, M.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Niemiec, J.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland..
    Oakes, L.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Odaka, H.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Oettl, S.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Ohm, S.
    DESY, D-15738 Zeuthen, Germany..
    Opitz, B.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Ostrowski, M.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Oya, I.
    DESY, D-15738 Zeuthen, Germany..
    Panter, M.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Parsons, R. D.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Arribas, M. Paz
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Pekeur, N. W.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Pelletier, G.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Petrucci, P-O
    Peyaud, B.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Pita, S.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Poon, H.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Prokoph, Heike
    Linnaeus University, Faculty of Technology, Department of Physics and Electrical Engineering.
    Puehlhofer, G.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Punch, Michael
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Quirrenbach, A.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Raab, S.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Reichardt, I.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Reimer, A.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Reimer, O.
    Leopold Franzens Univ Innsbruck, Inst Astro Teilchenphys, A-6020 Innsbruck, Austria..
    Renaud, M.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    de los Reyes, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Rieger, F.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany.;ITA Univ Heidelberg, Heidelberg, Germany..
    Romoli, C.
    Dublin Inst Adv Studies, 31 Fitzwilliam Pl, Dublin 2, Ireland..
    Rosier-Lees, S.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Rowell, G.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Rudak, B.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Rulten, C. B.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Sahakian, V.
    Natl Acad Sci Republ Armenia, Marshall Baghramian Ave 24, Yerevan 0019, Armenia.;Yerevan Phys Inst, 2 Alikhanian Bros St, Yerevan 375036, Armenia..
    Salek, D.
    Univ Amsterdam, Inst High Energy Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Sanchez, D. A.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Santangelo, A.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Sasaki, M.
    Univ Tubingen, Inst Astron & Astrophys, Sand 1, D-72076 Tubingen, Germany..
    Schlickeiser, R.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Schuessler, F.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Schulz, A.
    DESY, D-15738 Zeuthen, Germany..
    Schwanke, U.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Schwemmer, S.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Seyffert, A. S.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Simoni, R.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Sol, H.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Spanier, F.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Spengler, G.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Spies, F.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Stawarz, L.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Steenkamp, R.
    Univ Namibia, Dept Phys, Private Bag 13301, Windhoek, Namibia..
    Stegmann, C.
    Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Golm, Germany.;DESY, D-15738 Zeuthen, Germany..
    Stinzing, F.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Stycz, K.
    DESY, D-15738 Zeuthen, Germany..
    Sushch, I.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Tavernet, J-P
    Tavernier, T.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Taylor, A. M.
    Dublin Inst Adv Studies, 31 Fitzwilliam Pl, Dublin 2, Ireland..
    Terrier, R.
    Univ Paris Diderot, APC, AstroParticule & Cosmol, CNRS,IN2P3,CEA,Irfu,Observ Paris,Sorbonne Paris C, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France..
    Tluczykont, M.
    Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany..
    Trichard, C.
    Univ Savoie Mt Blanc, Lab Annecy le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France..
    Tuffs, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Valerius, K.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    van der Walt, J.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    van Eldik, C.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    van Soelen, B.
    Univ Orange Free State, Dept Phys, POB 339, ZA-9300 Bloemfontein, South Africa..
    Vasileiadis, G.
    Univ Montpellier 2, Lab Universe & Particules Montpellier, CNRS, IN2P3, CC 72,Pl Eugene Bataillon, F-34095 Montpellier 5, France..
    Veh, J.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Venter, C.
    North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa..
    Viana, A.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Vincent, P.
    Univ Paris 07, LPNHE, Univ Paris 06, CNRS,IN2P3, 4 Pl Jussieu, F-75252 Paris 5, France..
    Vink, J.
    Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands..
    Voisin, F.
    Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia..
    Voelk, H. J.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Vuillaume, T.
    Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France.;CNRS, IPAG, F-38000 Grenoble, France..
    Wagner, S. J.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Wagner, P.
    Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany..
    Wagner, R. M.
    Stockholm Univ, Albanova Univ Ctr, Dept Phys, Oskar Klein Ctr, SE-10691 Stockholm, Sweden..
    Weidinger, M.
    Ruhr Univ Bochum, Inst Theoret Phys, Lehrstuhl Weltraum & Astrophys 4, D-44780 Bochum, Germany..
    Weitzel, Q.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    White, R.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Wierzcholska, A.
    Inst Fizyki Jadrowej PAN, Ul Radzikowskiego 152, PL-31342 Krakow, Poland.;Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Willmann, P.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Woernlein, A.
    Univ Erlangen Nurnberg, Phys Inst, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Wouters, D.
    CEA Saclay, DSM, Irfu, F-91191 Gif Sur Yvette, France..
    Yang, R.
    Max Planck Inst Kernphys, POB 103980, D-69029 Heidelberg, Germany..
    Zabalza, V.
    Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, UK.
    Zaborov, D.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Zacharias, M.
    Heidelberg Univ, Landessternwarte, D-69117 Heidelberg, Germany..
    Zdziarski, A. A.
    Nicolaus Copernicus Astron Ctr, Ul Bartycka 18, PL-00716 Warsaw, Poland..
    Zech, A.
    Univ Paris Diderot, LUTH, Observ Paris, CNRS, 5 Pl Jules Janssen, F-92190 Meudon, France..
    Zefi, F.
    Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Zywucka, N.
    Uniwersytet Jagiellonski, Obserwatorium Astron, Ul Orla 171, PL-30244 Krakow, Poland..
    Acceleration of petaelectronvolt protons in the Galactic Centre2016In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 531, no 7595, p. 476-479Article in journal (Refereed)
    Abstract [en]

    Galactic cosmic rays reach energies of at least a few petaelectronvolts(1) (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies(2). Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent gamma-ray observations(3). However, none of the currently known accelerators-not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays-has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of.-rays extending without a cut-off or a spectral break to tens of teraelectronvolts(4). Here we report deep.-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts(5) and an outflow from the Galactic Centre(6). Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  • 12. Adriani, O.
    et al.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bonechi, L.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carlson, P.
    Casolino, M.
    Castellini, G.
    De Pascale, M. P.
    De Rosa, G.
    De Simone, N.
    Di Felice, V.
    Galper, A. M.
    Grishantseva, L.
    Hofverberg, P.
    Koldashov, S. V.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Leonov, A.
    Malvezzi, V.
    Marcelli, L.
    Menn, W.
    Mikhailov, V. V.
    Mocchiutti, E.
    Orsi, S.
    Osteria, G.
    Papini, P.
    Pearce, M.
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Picozza, P.
    Ricci, M.
    Ricciarini, S. B.
    Simon, M.
    Sparvoli, R.
    Spillantini, P.
    Stozhkov, Y. I.
    Vacchi, A.
    Vannuccini, E.
    Vasilyev, G.
    Voronov, S. A.
    Yurkin, Y. T.
    Zampa, G.
    Zampa, N.
    Zverev, V. G.
    An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 458, no 7238, p. 607-609Article in journal (Refereed)
    Abstract [en]

    Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

  • 13. Adriani, O.
    et al.
    Barbarino, G. C.
    Bazilevskaya, G. A.
    Bellotti, R.
    Boezio, M.
    Bogomolov, E. A.
    Bonechi, L.
    Bongi, M.
    Bonvicini, V.
    Bottai, S.
    Bruno, A.
    Cafagna, F.
    Campana, D.
    Carlson, Per
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Casolino, M.
    Castellini, G.
    De Pascale, M. P.
    De Rosa, G.
    De Simone, N.
    Di Felice, V.
    Galper, A. M.
    Grishantseva, L.
    Hofverberg, Petter
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Koldashov, S. V.
    Krutkov, S. Y.
    Kvashnin, A. N.
    Leonov, A.
    Malvezzi, V.
    Marcelli, L.
    Menn, W.
    Mikhailov, V. V.
    Mocchiutti, E.
    Orsi, Silvio
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Osteria, G.
    Papini, P.
    Pearce, Mark
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Picozza, P.
    Ricci, M.
    Ricciarini, S. B.
    Simon, M.
    Sparvoli, R.
    Spillantini, P.
    Stozhkov, Y. I.
    Vacchi, A.
    Vannuccini, E.
    Vasilyev, G.
    Voronov, S. A.
    Yurkin, Y. T.
    Zampa, G.
    Zampa, N.
    Zverev, V. G.
    An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 458, no 7238, p. 607-609Article in journal (Refereed)
    Abstract [en]

    Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium(1), which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars(2) and microquasars(3) or through dark matter annihilation(4), which would be 'primary sources'. Previous statistically limited measurements(5-7) of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply overmuch of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

  • 14. Aharonian, Felix
    et al.
    Akamatsu, Hiroki
    Akimoto, Fumie
    Allen, Steven W.
    Angelini, Lorella
    Audard, Marc
    Awaki, Hisamitsu
    Axelsson, Magnus
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bamba, Aya
    Bautz, Marshall W.
    Blandford, Roger
    Brenneman, Laura W.
    Brown, Gregory V.
    Bulbul, Esra
    Cackett, Edward M.
    Chernyakova, Maria
    Chiao, Meng P.
    Coppi, Paolo S.
    Costantini, Elisa
    De Plaa, Jelle
    den Herder, Jan-Willem
    Done, Chris
    Dotani, Tadayasu
    Ebisawa, Ken
    Eckart, Megan E.
    Enoto, Teruaki
    Ezoe, Yuichiro
    Fabian, Andrew C.
    Ferrigno, Carlo
    Foster, Adam R.
    Fujimoto, Ryuichi
    Fukazawa, Yasushi
    Furuzawa, Akihiro
    Galeazzi, Massimiliano
    Gallo, Luigi C.
    Gandhi, Poshak
    Giustini, Margherita
    Goldwurm, Andrea
    Gu, Liyi
    Guainazzi, Matteo
    Haba, Yoshito
    Hagino, Kouichi
    Hamaguchi, Kenji
    Harrus, Ilana M.
    Hatsukade, Isamu
    Hayashi, Katsuhiro
    Hayashi, Takayuki
    Hayashida, Kiyoshi
    Hiraga, Junko S.
    Hornschemeier, Ann
    Hoshino, Akio
    Hughes, John P.
    Ichinohe, Yuto
    Iizuka, Ryo
    Inoue, Hajime
    Inoue, Yoshiyuki
    Ishida, Manabu
    Ishikawa, Kumi
    Ishisaki, Yoshitaka
    Iwai, Masachika
    Kaastra, Jelle
    Kallman, Tim
    Kamae, Tsuneyoshi
    Kataoka, Jun
    Katsuda, Satoru
    Kawai, Nobuyuki
    Kelley, Richard L.
    Kilbourne, Caroline A.
    Kitaguchi, Takao
    Kitamoto, Shunji
    Kitayama, Tetsu
    Kohmura, Takayoshi
    Kokubun, Motohide
    Koyama, Katsuji
    Koyama, Shu
    Kretschmar, Peter
    Krimm, Hans A.
    Kubota, Aya
    Kunieda, Hideyo
    Laurent, Philippe
    Lee, Shiu-Hang
    Leutenegger, Maurice A.
    Limousine, Olivier
    Loewenstein, Michael
    Long, Knox S.
    Lumb, David
    Madejski, Greg
    Maeda, Yoshitomo
    Maier, Daniel
    Makishima, Kazuo
    Markevitch, Maxim
    Matsumoto, Hironori
    Matsushita, Kyoko
    McCammon, Dan
    McNamara, Brian R.
    Mehdipour, Missagh
    Miller, Eric D.
    Miller, Jon M.
    Mineshige, Shin
    Mitsuda, Kazuhisa
    Mitsuishi, Ikuyuki
    Miyazawa, Takuya
    Mizuno, Tsunefumi
    Mori, Hideyuki
    Mori, Koji
    Mukai, Koji
    Murakami, Hiroshi
    Mushotzky, Richard F.
    Nakagawa, Takao
    Nakajima, Hiroshi
    Nakamori, Takeshi
    Nakashima, Shinya
    Nakazawa, Kazuhiro
    Nobukawa, Kumiko K.
    Nobukawa, Masayoshi
    Noda, Hirofumi
    Odaka, Hirokazu
    Ohashi, Takaya
    Ohno, Masanori
    Okajima, Takashi
    Ota, Naomi
    Ozaki, Masanobu
    Paerels, Frits
    Paltani, StPhane
    Petre, Robert
    Pinto, Ciro
    Porter, Frederick S.
    Pottschmidt, Katja
    Reynolds, Christopher S.
    Safi-Harb, Samar
    Saito, Shinya
    Sakai, Kazuhiro
    Sasaki, Toru
    Sato, Goro
    Sato, Kosuke
    Sato, Rie
    Sawada, Makoto
    Schartel, Norbert
    Serlemitsos, Peter J.
    Seta, Hiromi
    Shidatsu, Megumi
    Simionescu, Aurora
    Smith, Randall K.
    Soong, Yang
    Stawarz, Lukasz
    Sugawara, Yasuharu
    Sugita, Satoshi
    Szymkowiak, Andrew
    Tajima, Hiroyasu
    Takahashi, Hiromitsu
    Takahashi, Tadayuki
    Takeda, Shin'ichiro
    Takei, Yoh
    Tamagawa, Toru
    Tamura, Takayuki
    Tanaka, Takaaki
    Tanaka, Yasuo
    Tanaka, Yasuyuki T.
    Tashiro, Makoto S.
    Tawara, Yuzuru
    Terada, Yukikatsu
    Terashima, Yuichi
    Tombesi, Francesco
    Tomida, Hiroshi
    Tsuboi, Yohko
    Tsujimoto, Masahiro
    Tsunemi, Hiroshi
    Tsuru, Takeshi Go
    Uchida, Hiroyuki
    Uchiyama, Hideki
    Uchiyama, Yasunobu
    Ueda, Shutaro
    Ueda, Yoshihiro
    Uno, Shin'ichiro
    Urry, C. Megan
    Ursino, Eugenio
    de Vries, Cor P.
    Watanabe, Shin
    Werner, Norbert
    Wik, Daniel R.
    Wilkins, Dan R.
    Williams, Brian J.
    Yamada, Shinya
    Yamaguchi, Hiroya
    Yamaoka, Kazutaka
    Yamasaki, Noriko Y.
    Yamauchi, Makoto
    Yamauchi, Shigeo
    Yaqoob, Tahir
    Yatsu, Yoichi
    Yonetoku, Daisuke
    Zhuravleva, Irina
    Zoghbi, Abderahmen
    Solar abundance ratios of the iron-peak elements in the Perseus cluster2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 551, no 7681, p. 478-+Article in journal (Refereed)
    Abstract [en]

    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae(1). Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode(2-6). Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun(7-11), suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations(12-14) disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near-and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment(5,15,16).

  • 15.
    Ahlberg, Per
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Clack, Jennifer
    Luksevics, Ervins
    Blom, Henning
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Zupins, Ivars
    Ventastega curonica and the origin of tetrapod morphology2008In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 453, no 7199, p. 1199-1204Article in journal (Refereed)
    Abstract [en]

    The gap in our understanding of the evolutionary transition from fish to tetrapod is beginning to close thanks to the discovery of new intermediate forms such as Tiktaalik roseae. Here we narrow it further by presenting the skull, exceptionally preserved braincase, shoulder girdle and partial pelvis of Ventastega curonica from the Late Devonian of Latvia, a transitional intermediate form between the 'elpistostegids' Panderichthys and Tiktaalik and the Devonian tetrapods (limbed vertebrates) Acanthostega and Ichthyostega. Ventastega is the most primitive Devonian tetrapod represented by extensive remains, and casts light on a part of the phylogeny otherwise only represented by fragmentary taxa: it illuminates the origin of principal tetrapod structures and the extent of morphological diversity among the transitional forms

  • 16.
    Ahlberg, Per E.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Birth of the jawed vertebrates2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 457, p. 1094-1095Article in journal (Other academic)
    Abstract [en]

    The discovery of embryos in certain fossil fishes not only shows that internal fertilization and live birth evolved early in vertebrate history, but also raises questions about the origin of jawed vertebrates.

  • 17. Ahlberg, Per E.
    Coelacanth fins and evolution1992In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 358, p. 459-Article in journal (Refereed)
  • 18.
    Ahlberg, Per E
    Natural History Museum of London.
    Elginerpeton pancheni and the earliest tetrapod clade1995In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 373, p. 420-425Article in journal (Refereed)
  • 19.
    Ahlberg, Per E.
    Oxford University.
    Fossil fishes from Gogo1989In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 337, p. 511-512Article in journal (Other academic)
  • 20.
    Ahlberg, Per E.
    Oxford University.
    Four legs to stand on for Devonian vertebrates1989In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 342, p. 738-Article in journal (Other academic)
  • 21.
    Ahlberg, Per E.
    Natural History Museum of London.
    How to keep a head in order1997In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 385, p. 489-490Article in journal (Other academic)
  • 22.
    Ahlberg, Per E.
    Natural History Museum of London .
    Something fishy in the family tree1999In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 397, p. 564-565Article in journal (Other academic)
  • 23.
    Ahlberg, Per E.
    Oxford University.
    Tetrapod or near-tetrapod fossils from the Upper Devonian of Scotland1991In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 354, p. 298-301Article in journal (Refereed)
  • 24.
    Ahlberg, Per E.
    Oxford University.
    Therapsids and trasformation series1993In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 361, p. 596-Article in journal (Refereed)
  • 25.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London .
    Johanson, Z.
    a complete primitive rhizodont from Australia1998In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 394, p. 569-572Article in journal (Refereed)
  • 26.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London.
    Clack, J. A.
    Luksevics, E.
    Rapid braincase evolution between panderichthys and the earliest tetrapods1996In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 381, p. 61-64Article in journal (Refereed)
  • 27.
    Ahlberg, Per E.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Clack, Jennifer A.
    Palaeontology: A firm step from water to land2006In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 440, no 7085, p. 747-749Article in journal (Refereed)
  • 28.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London .
    Johanson, Z.
    Osteolepiforms and the ancestry of tetrapods1998In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, no 395, p. 792-794Article in journal (Refereed)
  • 29.
    Ahlberg, Per E.
    et al.
    Natural History Museum of London.
    Milner, A. R.
    The origin and early diversification of tetrapods1994In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 368, p. 507-514Article in journal (Refereed)
  • 30. Ahlberg, Per Erik
    Glimpsing the hidden majority1990In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 344, p. 23-Article in journal (Other academic)
  • 31.
    Ahlberg, Per Erik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Evolutionary Organism Biology.
    Trinajstic, Kate
    Johanson, Zerina
    Long, John
    Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires2009In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 460, no 7257, p. 888-889Article in journal (Refereed)
    Abstract [en]

    Recent finds(1,2) demonstrate that internal fertilization and   viviparity (live birth) were more widespread in the Placodermi, an   extinct group of armoured fishes, than was previously realized.   Placoderms represent the sister group of the crown group jawed   vertebrates (Gnathostomata)(3,4), making their mode(s) of reproduction   potentially informative about primitive gnathostome conditions. An   ossified pelvic fin basipterygium discovered in the arthrodire   Incisoscutum ritchiei was hypothesized to be identical in males and   females, with males presumed to have an additional cartilaginous   element or series forming a clasper. Here we report the discovery of a   completely ossified pelvic clasper in Incisoscutum ritchiei (WAM   03.3.28) which shows that this interpretation was incorrect: the   basipterygium described previously(1) is in fact unique to females. The   male clasper is a slender rod attached to a square basal plate that   articulates directly with the pelvis. It carries a small cap of dermal   bone covered in denticles and small hooks that may be homologous with   the much larger dermal component of the ptyctodont clasper.

  • 32. Ahmadi, M.
    et al.
    Alves, B. X. R.
    Baker, C. J. .
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Cohen, S.
    Collister, R.
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Ohnson, M. A. J.
    Ones, S. A. J.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Kurchaninov, L.
    Madsen, N.
    Mathers, M.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J. .
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    Stracka, S.
    Stutter, G.
    So, C.
    Tharp, T. D.
    Thompson, J. E.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Observation of the 1S-2S transition in trapped antihydrogen2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 541, no 7638, p. 506-510Article in journal (Refereed)
    Abstract [en]

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hansch1 to a precision of a few parts in 10(15). Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen(2-4). The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 x 10(-10).

  • 33. Ahmadi, M.
    et al.
    Alves, B. X. R.
    Baker, C. J.
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Cohen, S.
    Collister, R.
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Johnson, M. A.
    Jones, S. A.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Kurchaninov, L.
    Madsen, N.
    Mathers, M.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    Stracka, S.
    Stutter, G.
    So, C.
    Tharp, T. D.
    Thompson, J. E.
    Thompson, R. I.
    Van der Werf, D. P.
    Wurtele, J. S.
    Observation of the hyperfine spectrum of antihydrogen2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 548, no 7665, p. 66-+Article in journal (Refereed)
    Abstract [en]

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers(1-3) and the measurement(4) of the zero-field ground-state splitting at the level of seven parts in 10(13) are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron(5-8), inspired Schwinger's relativistic theory of quantum electrodynamics(9,10) and gave rise to the hydrogen maser(11), which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen(12)-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms(13,14) provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter(12,15). Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 +/- 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10(4). This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  • 34. Ahmadi, M.
    et al.
    Alves, B. X. R.
    Baker, C. J.
    Bertsche, W.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Cohen, S.
    Collister, R.
    Eriksson, S.
    Evans, A.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Johnson, M. A.
    Jones, J. M.
    Jones, S. A.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Khramov, A.
    Knapp, P.
    Kurchaninov, L.
    Madsen, N.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Momose, T.
    Munich, J. J.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    Stutter, G.
    So, C.
    Tharp, T. D.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Characterization of the 1S-2S transition in antihydrogen2018In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 557, no 7703, p. 71-+Article in journal (Refereed)
    Abstract [en]

    In 1928, Dirac published an equation(1) that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron(2) (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter(3-7), including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed(8) in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 x 10(15) hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 x 10(-12)-two orders of magnitude more precise than the previous determination(8)-corresponding to an absolute energy sensitivity of 2 x 10(-20) GeV.

  • 35. Ahmadi, M.
    et al.
    Baquero-Ruiz, M.
    Bertsche, W.
    Butler, E.
    Capra, A.
    Carruth, C.
    Cesar, C. L.
    Charlton, M.
    Charman, A. E.
    Eriksson, S.
    Evans, L. T.
    Evetts, N.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Isaac, C. A.
    Ishida, A.
    Jones, S. A.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Kurchaninov, L.
    Madsen, N.
    Maxwell, D.
    McKenna, J. T. K.
    Menary, S.
    Michan, J. M.
    Momose, T.
    Munich, J. J.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sacramento, R. L.
    Sameed, M.
    Sarid, E.
    Silveira, D. M.
    So, C.
    Tharp, T. D.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Zhmoginov, A. I.
    An improved limit on the charge of antihydrogen from stochastic acceleration2016In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 529, no 7586, p. 373-+Article in journal (Refereed)
    Abstract [en]

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms(1-4) of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of vertical bar Q vertical bar < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement(5) of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known(6) to be no greater than about 10(-21)e for a diverse range of species including H-2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation(7) demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge(8), then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement(8),(9).

  • 36.
    Ahrens, Maryon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bohm, Christian
    Stockholm University, Faculty of Science, Department of Physics.
    Dumm, Jonathan P.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Finley, Chad
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Flis, Samuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hultqvist, Klas
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walck, Christian
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zoll, Marcel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 551, no 7682, p. 596-+Article in journal (Refereed)
    Abstract [en]

    Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino-nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams fromaccelerators(1,2). Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino-nucleon interaction cross-section for neutrino energies 6.3-980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model(3), consistent with the expectations for charged-and neutral-current interactions. We do not observe a large increase in the crosssection with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions(4) or the production of leptoquarks(5). This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.

  • 37. Alfoeldi, Jessica
    et al.
    Di Palma, Federica
    Grabherr, Manfred
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Williams, Christina
    Kong, Lesheng
    Mauceli, Evan
    Russell, Pamela
    Lowe, Craig B.
    Glor, Richard E.
    Jaffe, Jacob D.
    Ray, David A.
    Boissinot, Stephane
    Shedlock, Andrew M.
    Botka, Christopher
    Castoe, Todd A.
    Colbourne, John K.
    Fujita, Matthew K.
    Moreno, Ricardo Godinez
    ten Hallers, Boudewijn F.
    Haussler, David
    Heger, Andreas
    Heiman, David
    Janes, Daniel E.
    Johnson, Jeremy
    de Jong, Pieter J.
    Koriabine, Maxim Y.
    Lara, Marcia
    Novick, Peter A.
    Organ, Chris L.
    Peach, Sally E.
    Poe, Steven
    Pollock, David D.
    de Queiroz, Kevin
    Sanger, Thomas
    Searle, Steve
    Smith, Jeremy D.
    Smith, Zachary
    Swofford, Ross
    Turner-Maier, Jason
    Wade, Juli
    Young, Sarah
    Zadissa, Amonida
    Edwards, Scott V.
    Glenn, Travis C.
    Schneider, Christopher J.
    Losos, Jonathan B.
    Lander, Eric S.
    Breen, Matthew
    Ponting, Chris P.
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The genome of the green anole lizard and a comparative analysis with birds and mammals2011In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 477, no 7366, p. 587-591Article in journal (Refereed)
    Abstract [en]

    The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments(1). Among amniotes, genome sequences are available for mammals and birds(2-4), but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes(2). Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds(5). We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.

  • 38. Allen, Hana Lango
    et al.
    Estrada, Karol
    Lettre, Guillaume
    Berndt, Sonja I.
    Weedon, Michael N.
    Rivadeneira, Fernando
    Willer, Cristen J.
    Jackson, Anne U.
    Vedantam, Sailaja
    Raychaudhuri, Soumya
    Ferreira, Teresa
    Wood, Andrew R.
    Weyant, Robert J.
    Segre, Ayellet V.
    Speliotes, Elizabeth K.
    Wheeler, Eleanor
    Soranzo, Nicole
    Park, Ju-Hyun
    Yang, Jian
    Gudbjartsson, Daniel
    Heard-Costa, Nancy L.
    Randall, Joshua C.
    Qi, Lu
    Smith, Albert Vernon
    Maegi, Reedik
    Pastinen, Tomi
    Liang, Liming
    Heid, Iris M.
    Luan, Jian'an
    Thorleifsson, Gudmar
    Winkler, Thomas W.
    Goddard, Michael E.
    Lo, Ken Sin
    Palmer, Cameron
    Workalemahu, Tsegaselassie
    Aulchenko, Yurii S.
    Johansson, Åsa
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Zillikens, M. Carola
    Feitosa, Mary F.
    Esko, Tonu
    Johnson, Toby
    Ketkar, Shamika
    Kraft, Peter
    Mangino, Massimo
    Prokopenko, Inga
    Absher, Devin
    Albrecht, Eva
    Ernst, Florian
    Glazer, Nicole L.
    Hayward, Caroline
    Hottenga, Jouke-Jan
    Jacobs, Kevin B.
    Knowles, Joshua W.
    Kutalik, Zoltan
    Monda, Keri L.
    Polasek, Ozren
    Preuss, Michael
    Rayner, Nigel W.
    Robertson, Neil R.
    Steinthorsdottir, Valgerdur
    Tyrer, Jonathan P.
    Voight, Benjamin F.
    Wiklund, Fredrik
    Xu, Jianfeng
    Zhao, Jing Hua
    Nyholt, Dale R.
    Pellikka, Niina
    Perola, Markus
    Perry, John R. B.
    Surakka, Ida
    Tammesoo, Mari-Liis
    Altmaier, Elizabeth L.
    Amin, Najaf
    Aspelund, Thor
    Bhangale, Tushar
    Boucher, Gabrielle
    Chasman, Daniel I.
    Chen, Constance
    Coin, Lachlan
    Cooper, Matthew N.
    Dixon, Anna L.
    Gibson, Quince
    Grundberg, Elin
    Hao, Ke
    Junttila, M. Juhani
    Kaplan, Lee M.
    Kettunen, Johannes
    Koenig, Inke R.
    Kwan, Tony
    Lawrence, Robert W.
    Levinson, Douglas F.
    Lorentzon, Mattias
    McKnight, Barbara
    Morris, Andrew P.
    Mueller, Martina
    Ngwa, Julius Suh
    Purcell, Shaun
    Rafelt, Suzanne
    Salem, Rany M.
    Salvi, Erika
    Sanna, Serena
    Shi, Jianxin
    Sovio, Ulla
    Thompson, John R.
    Turchin, Michael C.
    Vandenput, Liesbeth
    Verlaan, Dominique J.
    Vitart, Veronique
    White, Charles C.
    Ziegler, Andreas
    Almgren, Peter
    Balmforth, Anthony J.
    Campbell, Harry
    Citterio, Lorena
    De Grandi, Alessandro
    Dominiczak, Anna
    Duan, Jubao
    Elliott, Paul
    Elosua, Roberto
    Eriksson, Johan G.
    Freimer, Nelson B.
    Geus, Eco J. C.
    Glorioso, Nicola
    Haiqing, Shen
    Hartikainen, Anna-Liisa
    Havulinna, Aki S.
    Hicks, Andrew A.
    Hui, Jennie
    Igl, Wilmar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Illig, Thomas
    Jula, Antti
    Kajantie, Eero
    Kilpelaeinen, Tuomas O.
    Koiranen, Markku
    Kolcic, Ivana
    Koskinen, Seppo
    Kovacs, Peter
    Laitinen, Jaana
    Liu, Jianjun
    Lokki, Marja-Liisa
    Marusic, Ana
    Maschio, Andrea
    Meitinger, Thomas
    Mulas, Antonella
    Pare, Guillaume
    Parker, Alex N.
    Peden, John F.
    Petersmann, Astrid
    Pichler, Irene
    Pietilainen, Kirsi H.
    Pouta, Anneli
    Riddertrale, Martin
    Rotter, Jerome I.
    Sambrook, Jennifer G.
    Sanders, Alan R.
    Schmidt, Carsten Oliver
    Sinisalo, Juha
    Smit, Jan H.
    Stringham, Heather M.
    Walters, G. Bragi
    Widen, Elisabeth
    Wild, Sarah H.
    Willemsen, Gonneke
    Zagato, Laura
    Zgaga, Lina
    Zitting, Paavo
    Alavere, Helene
    Farrall, Martin
    McArdle, Wendy L.
    Nelis, Mari
    Peters, Marjolein J.
    Ripatti, Samuli
    vVan Meurs, Joyce B. J.
    Aben, Katja K.
    Ardlie, Kristin G.
    Beckmann, Jacques S.
    Beilby, John P.
    Bergman, Richard N.
    Bergmann, Sven
    Collins, Francis S.
    Cusi, Daniele
    den Heijer, Martin
    Eiriksdottir, Gudny
    Gejman, Pablo V.
    Hall, Alistair S.
    Hamsten, Anders
    Huikuri, Heikki V.
    Iribarren, Carlos
    Kahonen, Mika
    Kaprio, Jaakko
    Kathiresan, Sekar
    Kiemeney, Lambertus
    Kocher, Thomas
    Launer, Lenore J.
    Lehtimaki, Terho
    Melander, Olle
    Mosley, Tom H., Jr.
    Musk, Arthur W.
    Nieminen, Markku S.
    O'Donnell, Christopher J.
    Ohlsson, Claes
    Oostra, Ben
    Palmer, Lyle J.
    Raitakari, Olli
    Ridker, Paul M.
    Rioux, John D.
    Rissanen, Aila
    Rivolta, Carlo
    Schunkert, Heribert
    Shuldiner, Alan R.
    Siscovick, David S.
    Stumvoll, Michael
    Toenjes, Anke
    Tuomilehto, Jaakko
    van Ommen, Gert-Jan
    Viikari, Jorma
    Heath, Andrew C.
    Martin, Nicholas G.
    Montgomery, Grant W.
    Province, Michael A.
    Kayser, Manfred
    Arnold, Alice M.
    Atwood, Larry D.
    Boerwinkle, Eric
    Chanock, Stephen J.
    Deloukas, Panos
    Gieger, Christian
    Gronberg, Henrik
    Hall, Per
    Hattersley, Andrew T.
    Hengstenberg, Christian
    Hoffman, Wolfgang
    Lathrop, G. Mark
    Salomaa, Veikko
    Schreiber, Stefan
    Uda, Manuela
    Waterworth, Dawn
    Wright, Alan F.
    Assimes, Themistocles L.
    Barroso, Ines
    Hofman, Albert
    Mohlke, Karen L.
    Boomsma, Dorret I.
    Caulfield, Mark J.
    Cupples, L. Adrienne
    Erdmann, Jeanette
    Fox, Caroline S.
    Gudnason, Vilmundur
    Gyllensten, Ulf
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Harris, Tamara B.
    Hayes, Richard B.
    Jarvelin, Marjo-Ritta
    Mooser, Vincent
    Munroe, Patricia B.
    Ouwehand, Willem H.
    Penninx, Brenda W.
    Pramstaller, Peter P.
    Quertermous, Thomas
    Rudan, Igor
    Samani, Nilesh J.
    Spector, Timothy D.
    Voelzke, Henry
    Watkins, Hugh
    Wilson, James F.
    Groop, Leif C.
    Haritunians, Talin
    Hu, Frank B.
    Kaplan, Robert C.
    Metspalu, Andres
    North, Kari E.
    Schlessinger, David
    Wareham, Nicholas J.
    Hunter, David J.
    O'Connell, Jeffrey R.
    Strachan, David P.
    Schadt, H. -Erich
    Thorsteinsdottir, Unnur
    Peltonen, Leena
    Uitterlinden, Andre G.
    Visscher, Peter M.
    Chatterjee, Nilanjan
    Loos, Ruth J. F.
    Boehnke, Michael
    McCarthy, Mark I.
    Ingelsson, Erik
    Lindgren, Cecilia M.
    Abecasis, Goncalo R.
    Stefansson, Kari
    Frayling, Timothy M.
    Hirschhorn, Joel N.
    Hundreds of variants clustered in genomic loci and biological pathways affect human height2010In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 467, no 7317, p. 832-838Article in journal (Refereed)
    Abstract [en]

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

  • 39.
    Allentoft, Morten E.
    et al.
    University of Copenhagen, Denmark.
    Pokutta, Dalia
    Gothenburg University, Sweden.
    Willerslev, Eske
    University of Copenhagen, Denmark.
    Bronze Age population dynamics and its impact on modern Eurasian genetic structure2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 522, p. 167-172Article in journal (Refereed)
    Abstract [en]

    The Bronze Age of Eurasia (around 3000–1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

  • 40.
    Alm, Frithiof
    SIK – Svenska institutet för konserveringsforskning.
    Effect of Acetic Acid on the Oxidation of Ascorbic Acid in Fruits and Vegetables1952In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 169, no 4309, p. 934-Article in journal (Refereed)
    Abstract [en]

    IT has been established by earlier investigators that acetic acid has a destructive effect on the ascorbic acid in raw cabbage. This effect is somewhat surprising, since the lower the pH in the medium, the more stable is the ascorbic acid and, therefore, one would expect the acetic acid to have a preservative effect on the ascorbic acid in cabbage. However, in experiments carried out in the early months of 1951, we found that, in many fruits and vegetables, the ascorbic acid is to a remarkable degree oxidized into dehydroascorbic acid if slices are sprinkled with 5 per cent acetic acid and allowed to stand for two hours. This oxidation does not take place if water is used instead of acetic acid. Other lower fatty acids have a similar effect. The action of lactic acid is very slow and that of citric and tartaric acid practically negligible. © 1952 Nature Publishing Group.

  • 41. Almeida, Joao
    et al.
    Schobesberger, Siegfried
    Kuerten, Andreas
    Ortega, Ismael K.
    Kupiainen-Maatta, Oona
    Praplan, Arnaud P.
    Adamov, Alexey
    Amorim, Antonio
    Bianchi, Federico
    Breitenlechner, Martin
    David, Andre
    Dommen, Josef
    Donahue, Neil M.
    Downard, Andrew
    Dunne, Eimear
    Duplissy, Jonathan
    Ehrhart, Sebastian
    Flagan, Richard C.
    Franchin, Alessandro
    Guida, Roberto
    Hakala, Jani
    Hansel, Armin
    Heinritzi, Martin
    Henschel, Henning
    Jokinen, Tuija
    Junninen, Heikki
    Kajos, Maija
    Kangasluoma, Juha
    Keskinen, Helmi
    Kupc, Agnieszka
    Kurten, Theo
    Kvashin, Alexander N.
    Laaksonen, Ari
    Lehtipalo, Katrianne
    Leiminger, Markus
    Leppa, Johannes
    Loukonen, Ville
    Makhmutov, Vladimir
    Mathot, Serge
    McGrath, Matthew J.
    Nieminen, Tuomo
    Olenius, Tinja
    Onnela, Antti
    Petaja, Tuukka
    Riccobono, Francesco
    Riipinen, Ilona
    Stockholm University, Faculty of Science, Department of Applied Environmental Science (ITM).
    Rissanen, Matti
    Rondo, Linda
    Ruuskanen, Taina
    Santos, Filipe D.
    Sarnela, Nina
    Schallhart, Simon
    Schnitzhofer, Ralf
    Seinfeld, John H.
    Simon, Mario
    Sipila, Mikko
    Stozhkov, Yuri
    Stratmann, Frank
    Tome, Antonio
    Troestl, Jasmin
    Tsagkogeorgas, Georgios
    Vaattovaara, Petri
    Viisanen, Yrjo
    Virtanen, Annele
    Vrtala, Aron
    Wagner, Paul E.
    Weingartner, Ernest
    Wex, Heike
    Williamson, Christina
    Wimmer, Daniela
    Ye, Penglin
    Yli-Juuti, Taina
    Carslaw, Kenneth S.
    Kulmala, Markku
    Curtius, Joachim
    Baltensperger, Urs
    Worsnop, Douglas R.
    Vehkamaki, Hanna
    Kirkby, Jasper
    Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere2013In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 502, no 7471, p. 359-+Article in journal (Refereed)
    Abstract [en]

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  • 42. Amemiya, Chris T.
    et al.
    Alfoeldi, Jessica
    Lee, Alison P.
    Fan, Shaohua
    Philippe, Herve
    MacCallum, Iain
    Braasch, Ingo
    Manousaki, Tereza
    Schneider, Igor
    Rohner, Nicolas
    Organ, Chris
    Chalopin, Domitille
    Smith, Jeramiah J.
    Robinson, Mark
    Dorrington, Rosemary A.
    Gerdol, Marco
    Aken, Bronwen
    Biscotti, Maria Assunta
    Barucca, Marco
    Baurain, Denis
    Berlin, Aaron M.
    Blatch, Gregory L.
    Buonocore, Francesco
    Burmester, Thorsten
    Campbell, Michael S.
    Canapa, Adriana
    Cannon, John P.
    Christoffels, Alan
    De Moro, Gianluca
    Edkins, Adrienne L.
    Fan, Lin
    Fausto, Anna Maria
    Feiner, Nathalie
    Forconi, Mariko
    Gamieldien, Junaid
    Gnerre, Sante
    Gnirke, Andreas
    Goldstone, Jared V.
    Haerty, Wilfried
    Hahn, Mark E.
    Hesse, Uljana
    Hoffmann, Steve
    Johnson, Jeremy
    Karchner, Sibel I.
    Kuraku, Shigehiro
    Lara, Marcia
    Levin, Joshua Z.
    Litman, Gary W.
    Mauceli, Evan
    Miyake, Tsutomu
    Mueller, M. Gail
    Nelson, David R.
    Nitsche, Anne
    Olmo, Ettore
    Ota, Tatsuya
    Pallavicini, Alberto
    Panji, Sumir
    Picone, Barbara
    Ponting, Chris P.
    Prohaska, Sonja J.
    Przybylski, Dariusz
    Saha, Nil Ratan
    Ravi, Vydianathan
    Ribeiro, Filipe J.
    Sauka-Spengler, Tatjana
    Scapigliati, Giuseppe
    Searle, Stephen M. J.
    Sharpe, Ted
    Simakov, Oleg
    Stadler, Peter F.
    Stegeman, John J.
    Sumiyama, Kenta
    Tabbaa, Diana
    Tafer, Hakim
    Turner-Maier, Jason
    van Heusden, Peter
    White, Simon
    Williams, Louise
    Yandell, Mark
    Brinkmann, Henner
    Volff, Jean-Nicolas
    Tabin, Clifford J.
    Shubin, Neil
    Schartl, Manfred
    Jaffe, David B.
    Postlethwait, John H.
    Venkatesh, Byrappa
    Di Palma, Federica
    Lander, Eric S.
    Meyer, Axel
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    The African coelacanth genome provides insights into tetrapod evolution2013In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 496, no 7445, p. 311-316Article in journal (Refereed)
    Abstract [en]

    The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.

  • 43. Amole, C.
    et al.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Capra, A.
    Cesar, C. L.
    Charlton, M.
    Deller, A.
    Donnan, P. H.
    Eriksson, S.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Humphries, A. J.
    Isaac, C. A.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Kurchaninov, L.
    Little, A.
    Madsen, N.
    McKenna, J. T. K.
    Menary, S.
    Napoli, S. C.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Pusa, P.
    Rasmussen, C. O.
    Robicheaux, F.
    Sarid, E.
    Shields, C. R.
    Silveira, D. M.
    Stracka, S.
    So, C.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Resonant quantum transitions in trapped antihydrogen atoms2012In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 483, no 7390, p. 439-U86Article in journal (Refereed)
    Abstract [en]

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured(1) and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and-by comparison with measurements on its antimatter counterpart, antihydrogen-the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state(2,3) of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped(4-6) in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  • 44. Andersen, K. K
    et al.
    and NGRIP members,
    High-resolution record of Northern hemisphere climate extending into the last interglacial period2004In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 431, p. 147-151Article in journal (Refereed)
  • 45. Andersson, Lisa S.
    et al.
    Larhammar, Martin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Memic, Fatima
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Wootz, Hanna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Schwochow, Doreen
    Rubin, Carl-Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Patra, Kalicharan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Arnason, Thorvaldur
    Wellbring, Lisbeth
    Hjälm, Göran
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Imsland, Freyja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Petersen, Jessica L.
    McCue, Molly E.
    Mickelson, James R.
    Cothran, Gus
    Ahituv, Nadav
    Roepstorff, Lars
    Mikko, Sofia
    Vallstedt, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Lindgren, Gabriella
    Andersson, Leif
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Kullander, Klas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics.
    Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice2012In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 488, no 7413, p. 642-646Article in journal (Refereed)
    Abstract [en]

    Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement(1). These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles(2). Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.

  • 46.
    Andersson, Siv GE
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Zomorodipour, A
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Andersson, Jan O
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Sicheritz-Ponten, T
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Alsmark, UCM
    Uppsala University.
    Podowski, RM
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Näslund, A Kristina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Eriksson, Ann-Sofie
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    Winkler, HH
    Kurland, Charles G
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Biology.
    The genome sequence of Rickettsia prowazekii and the origin of mitochondria1998In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 396, no 6707, p. 133-140Article in journal (Refereed)
    Abstract [en]

    We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.

  • 47. Andresen, G. B.
    et al.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Deller, A.
    Eriksson, S.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Gutierrez, A.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Humphries, A. J.
    Hydomako, R.
    Jenkins, M. J.
    Jonsell, Svante
    Stockholm University, Faculty of Science, Department of Physics.
    Jorgensen, L. V.
    Kurchaninov, L.
    Madsen, N.
    Menary, S.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Robicheaux, F.
    Sarid, E.
    Nasr, S. Seif el
    Silveira, D. M.
    So, C.
    Storey, J. W.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Yamazaki, Y.
    Trapped antihydrogen2010In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 468, no 7324, p. 673-676Article in journal (Refereed)
    Abstract [en]

    Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2, 3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter5. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 107 antiprotons and 7 × 108 positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

  • 48. Andrés, E.
    et al.
    Askebjer, P.
    Bai, X.
    Barouch, G.
    Barwick, S. W.
    Bay, R. C.
    Becker, K. -H
    Bergström, L.
    Bertrand, D.
    Bierenbaum, D.
    Biron, A.
    Booth, J.
    Botner, O.
    Bouchta, A.
    Boyce, M. M.
    Carius, Staffan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Chen, A.
    Chirkin, D.
    Conrad, J.
    Cooley, J.
    Costa, C. G. S.
    Cowen, D. F.
    Dailing, J.
    Dalberg, E.
    DeYoung, T.
    Desiati, P.
    Dewulf, J. -P
    Doksus, P.
    Edsjö, J.
    Ekström, P.
    Erlandsson, B.
    Feser, T.
    Gaug, M.
    Goldschmidt, A.
    Goobar, A.
    Gray, L.
    Haase, H.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hardtke, R.
    He, Y. D.
    Hellwig, M.
    Heukenkamp, H.
    Hill, G. C.
    Hulth, P. O.
    Hundertmark, S.
    Jacobsen, J.
    Kandhadai, V.
    Karle, A.
    Kim, J.
    Koci, B.
    Köpke, L.
    Kowalski, M.
    Leich, H.
    Leuthold, M.
    Lindahl, P.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Liubarsky, I.
    Loaiza, P.
    Lowder, D. M.
    Ludvig, J.
    Madsen, J.
    Marciniewski, P.
    Matis, H. S.
    Mihalyi, A.
    Mikolajski, T.
    Miller, T. C.
    Minaeva, Y.
    Miočinović, P.
    Mock, P. C.
    Morse, R.
    Neunhöffer, T.
    Newcomer, F. M.
    Niessen, P.
    Nygren, D. R.
    Ögelman, H.
    Pérez De Los Heros, C.
    Porrata, R.
    Price, P. B.
    Rawlins, K.
    Reed, C.
    Rhode, W.
    Richards, A.
    Richter, S.
    Martino, J. R.
    Romenesko, P.
    Ross, D.
    Rubinstein, H.
    Sander, H. -G
    Scheider, T.
    Schmidt, T.
    Schneider, D.
    Schneider, E.
    Schwarz, R.
    Silvestri, A.
    Solarz, M.
    Spiczak, G. M.
    Spiering, C.
    Starinsky, N.
    Steele, D.
    Steffen, P.
    Stokstad, R. G.
    Streicher, O.
    Sun, Q.
    Taboada, I.
    Thollander, L.
    Thon, T.
    Tilav, S.
    Usechak, N.
    Vander Donckt, M.
    Walck, C.
    Weinheimer, C.
    Wiebusch, C. H.
    Wischnewski, R.
    Wissing, H.
    Woschnagg, K.
    Wu, W.
    Yodh, G.
    Young, S.
    Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice2001In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 410, no 6827, p. 441-443Article in journal (Refereed)
    Abstract [en]

    Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.

  • 49. Aplin, Lucy M.
    et al.
    Farine, Damien R.
    Morand-Ferron, Julie
    Cockburn, Andrew
    Thornton, Alex
    Sheldon, Ben C.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
    Experimentally induced innovations lead to persistent culture via conformity in wild birds2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 518, no 7540, p. 538-541Article in journal (Refereed)
    Abstract [en]

    In human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning'. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations'''. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans''. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.

  • 50. Arcavi, Iair
    et al.
    Howell, D. Andrew
    Kasen, Daniel
    Bildsten, Lars
    Hosseinzadeh, Griffin
    McCully, Curtis
    Wong, Zheng Chuen
    Katz, Sarah Rebekah
    Gal-Yam, Avishay
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Leloudas, Giorgos
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Nugent, Peter E.
    Horesh, Assaf
    Mooley, Kunal
    Rumsey, Clare
    Cenko, S. B. Radley
    Graham, Melissa L.
    Perley, Daniel A.
    Nakar, Ehud
    Shaviv, Nir J.
    Bromberg, Omer
    Shen, Ken J.
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ofek, Eran O.
    Cao, Yi
    Wang, Xiaofeng
    Huang, Fang
    Rui, Liming
    Zhang, Tianmeng
    Li, Wenxiong
    Li, Zhitong
    Zhang, Jujia
    Valenti, Stefano
    Guevel, David
    Shappee, Benjamin
    Kochanek, Christopher S.
    Holoien, Thomas W. -S.
    Filippenko, Alexei V.
    Fender, Rob
    Nyholm, Anders
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yaron, Ofer
    Kasliwal, Mansi M. .
    Sullivan, Mark
    Lagorodnova, Nadja B.
    Walters, Richard S.
    Lunnan, Ragnhild
    Khazov, Danny
    Andreoni, Igor
    Laher, Russ R.
    Konidaris, Nick
    Wozniak, Przemek
    Bue, Brian
    Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star2017In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 551, no 7679, p. 210-213Article in journal (Refereed)
    Abstract [en]

    Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining(1). Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability(2-5). That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required.

1234567 1 - 50 of 480
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf