Change search
Refine search result
1234567 1 - 50 of 1077
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abrahamsson, S.
    et al.
    SLU, Umeå, Sweden .
    Ahlinder, J.
    FOI, Umeå, Sweden .
    Waldmann, Patrik
    Linköping University, Department of Computer and Information Science, Statistics. Linköping University, The Institute of Technology.
    García-Gil, M. R.
    SLU, Umeå, Sweden .
    Maternal heterozygosity and progeny fitness association in an inbred Scots pine population2013In: Genetica, ISSN 0016-6707, E-ISSN 1573-6857, Vol. 141, no 1-3, 41-50 p.Article in journal (Refereed)
    Abstract [en]

    Associations between heterozygosity and fitness traits have typically been investigated in populations characterized by low levels of inbreeding. We investigated the associations between standardized multilocus heterozygosity (stMLH) in mother trees (obtained from12 nuclear microsatellite markers) and five fitness traits measured in progenies from an inbred Scots pine population. The traits studied were proportion of sound seed, mean seed weight, germination rate, mean family height of one-year old seedlings under greenhouse conditions (GH) and mean family height of three-year old seedlings under field conditions (FH). The relatively high average inbreeding coefficient (F) in the population under study corresponds to a mixture of trees with different levels of co-ancestry, potentially resulting from a recent bottleneck. We used both frequentist and Bayesian methods of polynomial regression to investigate the presence of linear and non-linear relations between stMLH and each of the fitness traits. No significant associations were found for any of the traits except for GH, which displayed negative linear effect with stMLH. Negative HFC for GH could potentially be explained by the effect of heterosis caused by mating of two inbred mother trees (Lippman and Zamir 2006), or outbreeding depression at the most heterozygote trees and its negative impact on the fitness of the progeny, while their simultaneous action is also possible (Lynch. 1991). However,since this effect wasn’t detected for FH, we cannot either rule out that the greenhouse conditions introduce artificial effects that disappear under more realistic field conditions.

  • 2. Acevedo, Nathalie
    et al.
    Bornacelly, Adriana
    Mercado, Dilia
    Unneberg, Per
    Stockholm University, Science for Life Laboratory (SciLifeLab). Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mittermann, Irene
    Valenta, Rudolf
    Kennedy, Malcolm
    Scheynius, Annika
    Caraballo, Luis
    Genetic Variants in CHIA and CHI3L1 Are Associated with the IgE Response to the Ascaris Resistance Marker ABA-1 and the Birch Pollen Allergen Bet v 12016In: plos one, ISSN 1932-6203, Vol. 11, no 12, e0167453Article in journal (Refereed)
    Abstract [en]

    Helminth infections and allergic diseases are associated with IgE hyperresponsiveness but the genetics of this phenotype remain to be defined. Susceptibility to Ascaris lumbricoides infection and antibody levels to this helminth are associated with polymorphisms in locus 13q33-34. We aimed to explore this and other genomic regions to identify genetic variants associated with the IgE responsiveness in humans. Forty-eight subjects from Cartagena, Colombia, with extreme values of specific IgE to Ascaris and ABA-1, a resistance marker of this nematode, were selected for targeted resequencing. Burden analyses were done comparing extreme groups for IgE values. One-hundred one SNPs were genotyped in 1258 individuals of two well-characterized populations from Colombia and Sweden. Two low-frequency coding variants in the gene encoding the Acidic Mammalian Chitinase (CHIA rs79500525, rs139812869, tagged by rs10494133) were found enriched in high IgE responders to ABA-1 and confirmed by genetic association analyses. The SNP rs4950928 in the Chitinase 3 Like 1 gene (CHI3L1) was associated with high IgE to ABA-1 in Colombians and with high IgE to Bet v 1 in the Swedish population. CHIA rs10494133 and ABDH13 rs3783118 were associated with IgE responses to Ascaris. SNPs in the Tumor Necrosis Factor Superfamily Member 13b gene (TNFSF13B) encoding the cytokine B cell activating Factor were associated with high levels of total IgE in both populations. This is the first report on the association between low-frequency and common variants in the chitinases- related genes CHIA and CHI3L1 with the intensity of specific IgE to ABA-1 in a population naturally exposed to Ascaris and with Bet v 1 in a Swedish population. Our results add new information about the genetic influences of human IgE responsiveness; since the genes encode for enzymes involved in the immune response to parasitic infections, they could be helpful for understanding helminth immunity and allergic responses. We also confirmed that TNFSF13B has an important and conserved role in the regulation of total IgE levels, which supports potential evolutionary links between helminth immunity and allergic response.

  • 3.
    Adler, Marlen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Mechanisms and Dynamics of Carbapenem Resistance in Escherichia coli2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The emergence of extended spectrum β-lactamase (ESBL) producing Enterobacteriaceae worldwide has led to an increased use of carbapenems and may drive the development of carbapenem resistance. Existing mechanisms are mainly due to acquired carbapenemases or the combination of ESBL-production and reduced outer membrane permeability. The focus of this thesis was to study the development of carbapenem resistance in Escherichia coli in the presence and absence of acquired β-lactamases. To this end we used the resistance plasmid pUUH239.2 that caused the first major outbreak of ESBL-producing Enterobacteriaceae in Scandinavia.

    Spontaneous carbapenem resistance was strongly favoured by the presence of the ESBL-encoding plasmid and different mutational spectra and resistance levels arose for different carbapenems. Mainly, loss of function mutations in the regulators of porin expression caused reduced influx of antibiotic into the cell and in combination with amplification of β-lactamase genes on the plasmid this led to high resistance levels. We further used a pharmacokinetic model, mimicking antibiotic concentrations found in patients during treatment, to test whether ertapenem resistant populations could be selected even at these concentrations. We found that resistant mutants only arose for the ESBL-producing strain and that an increased dosage of ertapenem could not prevent selection of these resistant subpopulations. In another study we saw that carbapenem resistance can even develop in the absence of ESBL-production. We found mutants in export pumps and the antibiotic targets to give high level resistance albeit with high fitness costs in the absence of antibiotics. In the last study, we used selective amplification of β-lactamases on the pUUH239.2 plasmid by carbapenems to determine the cost and stability of gene amplifications. Using mathematical modelling we determined the likelihood of evolution of new gene functions in this region. The high cost and instability of the amplified state makes de novo evolution very improbable, but constant selection of the amplified state may balance these factors until rare mutations can establish a new function.

    In my studies I observed the influence of β-lactamases on carbapenem resistance and saw that amplification of these genes would further contribute to resistance. The rapid disappearance of amplified arrays of resistance genes in the absence of antibiotic selection may lead to the underestimation of gene amplification as clinical resistance mechanism. Amplification of β-lactamase genes is an important stepping-stone and might lead to the evolution of new resistance genes.

  • 4.
    Adler, Marlen
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Anjum, Mehreen
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Berg, Otto, G.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
    Andersson, Dan I.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Sandegren, Linus
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    High Fitness Costs and Instability of Gene Duplications Reduce Rates of Evolution of New Genes by Duplication-Divergence Mechanisms2014In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 31, no 6, 1526-1535 p.Article in journal (Refereed)
    Abstract [sv]

    An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different sub-models, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kbp of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modelling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be off-set by positive selection for novel beneficial functions.

  • 5.
    Agarwal, Prasoon
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Hematology and Immunology.
    Regulation of Gene Expression in Multiple Myeloma Cells and Normal Fibroblasts: Integrative Bioinformatic and Experimental Approaches2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work presented in this thesis applies integrative genomic and experimental approaches to investigate mechanisms involved in regulation of gene expression in the context of disease and normal cell biology.

    In papers I and II, we have explored the role of epigenetic regulation of gene expression in multiple myeloma (MM). By using a bioinformatic approach we identified the Polycomb repressive complex 2 (PRC2) to be a common denominator for the underexpressed gene signature in MM. By using inhibitors of the PRC2 we showed an activation of the genes silenced by H3K27me3 and a reduction in the tumor load and increased overall survival in the in vivo 5TMM model. Using ChIP-sequencing we defined the distribution of H3K27me3 and H3K4me3 marks in MM patients cells. In an integrated bioinformatic approach, the H3K27me3-associated genes significantly correlated to under-expression in patients with less favorable survival. Thus, our data indicates the presence of a common under-expressed gene profile and provides a rationale for implementing new therapies focusing on epigenetic alterations in MM.

    In paper III we address the existence of a small cell population in MM presenting with differential tumorigenic properties in the 5T33MM murine model. We report that the predominant population of CD138+ cells had higher engraftment potential, higher clonogenic growth, whereas the CD138- MM cells presented with less mature phenotype and higher drug resistance. Our findings suggest that while designing treatment regimes for MM, both the cellpopulations must be targeted.

    In paper IV we have studied the general mechanism of differential gene expression regulation by CGGBP1 in response to growth signals in normal human fibroblasts. We found that CGGBP1 binding affects global gene expression by RNA Polymerase II. This is mediated by Alu RNAdependentinhibition of RNA Polymerase II. In presence of growth signals CGGBP1 is retained in the nuclei and exhibits enhanced Alu binding thus inhibiting RNA Polymerase III binding on Alus. Hence we suggest a mechanism by which CGGBP1 orchestrates Alu RNA-mediated regulation of RNA Polymerase II. This thesis provides new insights for using integrative bioinformatic approaches to decipher gene expression regulation mechanisms in MM and in normal cells.

  • 6. Agler, Caryline
    et al.
    Nielsen, Dahlia M.
    Urkasemsin, Ganokon
    Singleton, Andrew
    Tonomura, Noriko
    Sigurdsson, Snaevar
    Tang, Ruqi
    Linder, Keith
    Arepalli, Sampath
    Hernandez, Dena
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    van de Leemput, Joyce
    Motsinger-Reif, Alison
    O'Brien, Dennis P.
    Bell, Jerold
    Harris, Tonya
    Steinberg, Steven
    Olby, Natasha J.
    Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB242014In: PLOS Genetics, ISSN 1553-7404, Vol. 10, no 2, e1003991- p.Article in journal (Refereed)
    Abstract [en]

    Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. Author Summary Neurodegenerative diseases are one of the most important causes of decline in an aging population. An important subset of these diseases are known as the hereditary ataxias, familial neurodegenerative diseases that affect the cerebellum causing progressive gait disturbance in both humans and dogs. We identified a mutation in RAB24, a gene associated with autophagy, in Old English Sheepdogs and Gordon Setters with hereditary ataxia. Autophagy is a process by which cell proteins and organelles are removed and recycled and its critical role in maintenance of the continued health of cells is becoming clear. We evaluated the brains of affected dogs and identified accumulations of autophagosomes within the cerebellum, suggesting a defect in the autophagy pathway. Our results suggest that a defect in the autophagy pathway results in neuronal death in a naturally occurring disease in dogs. The autophagy pathway should be investigated in human hereditary ataxia and may represent a therapeutic target in neurodegenerative diseases.

  • 7.
    Agnvall, Beatrix
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Jensen, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Effects of Divergent Selection for Fear of Humans on Behaviour in Red Junglefowl2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 11, 1-12 p.Article in journal (Refereed)
    Abstract [en]

    Domestication has caused a range of similar phenotypic changes across taxa, relating to physiology, morphology and behaviour. It has been suggested that this recurring domesticated phenotype may be a result of correlated responses to a central trait, namely increased tameness. We selected Red Junglefowl, the ancestors of domesticated chickens, during five generations for reduced fear of humans. This caused a marked and significant response in tameness, and previous studies have found correlated effects on growth, metabolism, reproduction, and some behaviour not directly selected for. Here, we report the results from a series of behavioural tests carried out on the initial parental generation (P0) and the fifth selected generation (S5), focusing on behaviour not functionally related to tameness, in order to study any correlated effects. Birds were tested for fear of humans, social reinstatement tendency, open field behaviour at two different ages, foraging/exploration, response to a simulated aerial predator attack and tonic immobility. In S5, there were no effects of selection on foraging/exploration or tonic immobility, while in the social reinstatement and open field tests there were significant interactions between selection and sex. In the aerial predator test, there were significant main effects of selection, indicating that fear of humans may represent a general wariness towards predators. In conclusion, we found only small correlated effects on behaviours not related to the tameness trait selected for, in spite of them showing high genetic correlations to fear of humans in a previous study on the same population. This suggests that species-specific behaviour is generally resilient to changes during domestication.

  • 8.
    Ahlgren Berg, Alexandra
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Developmental switches in a family of temperate phages2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    P2 is the prototype phage of the non-lambdoid P2 family of temperate phages. A developmental switch determines whether a temperate phage will grow lytically or form lysogeny after infection. P2 related phages have two face-to-face located promoters controlling the lysogenic and the lytic operon respectively, and two repressors. The immunity C repressor of P2 is the first gene of the lysogenic operon and it represses the lytic promoter. The Cox protein, the first gene of the lytic operon, is multifunctional. It represses the lysogenic promoter, acts as a directionality factor in site-specific recombination and activates the PLL promoter of satellite phage P4.

    This thesis focuses on comparisons between the developmental switches of P2 and the two heteroimmune family members, P2 Hy dis and WΦ. A characterization of the developmental switch region of P2 Hy dis identifies a directly repeated sequence which is important for C repression. P2 Hy dis Cox can substitute for P2 Cox in repression of the P2 lysogenic promoter, excision of a P2 prophage and activation of P4 PLL. The P4 ε protein can derepress the developmental switch of P2 Hy dis.

    Functional characterizations of the C repressors and Cox proteins of P2 and WΦ show that both C repressors induce bending of their respective DNA targets. WΦ C, like P2 C, has a strong dimerization activity in vivo, but there are no indications of higher oligomeric forms. Despite the high degree of identity in the C-terminus, required for dimerization in P2 C, they seem to be unable to form heterodimers. The two Cox proteins are predicted to have identical secondary structures containing a helix-turn-helix motif believed to be involved in DNA binding. It is, however, not possible to change the DNA specificity of P2 Cox to that of WΦ Cox by swapping the presumed recognition helix. P2 Cox recognizes a sequence repeated at least six times in the different targets, while WΦ Cox seems to recognize a single direct repeat. In contrast to P2 Cox, WΦ Cox binds with a stronger affinity to the switch region than to the attachment site (attP). The Cox proteins induce a strong bend in their DNA targets, strengthening the hypothesis that they have a structural role at site-specific recombination. Both proteins show a capacity to oligomerize, but P2 Cox has a higher tendency to form oligomers than WΦ Cox.

    The P2 integrase mediates site-specific recombination leading to integration or excision of the P2 genome in or out of the host chromosome. P2 Cox controls the direction by inhibiting integration and promoting excision. In this work it is shown that Cox and Int bind cooperatively to attP.

  • 9. Ahmad, S.
    et al.
    Zhao, W.
    Renström, F.
    Rasheed, A.
    Zaidi, M.
    Samuel, M.
    Shah, N.
    Mallick, N. H.
    Shungin, Dmitry
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine. Umeå University, Faculty of Medicine, Department of Odontology.
    Zaman, K. S.
    Ishaq, M.
    Rasheed, S. Z.
    Memon, F-ur-R
    Hanif, B.
    Lakhani, M. S.
    Ahmed, F.
    Kazmi, S. U.
    Deloukas, P.
    Frossard, P.
    Franks, P. W.
    Saleheen, D.
    A novel interaction between theFLJ33534locus and smokingin obesity: a genome-wide study of 14 131 Pakistani adults2016In: International Journal of Obesity, ISSN 0307-0565, E-ISSN 1476-5497, Vol. 40, no 1, 186-190 p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Obesity is a complex disease caused by the interplay of genetic and lifestyle factors, but identification of gene-lifestyle interactions in obesity has remained challenging. Few large-scale studies have reported use of genome-wide approaches to investigate gene-lifestyle interactions in obesity. METHODS: In the Pakistan Risk of Myocardial Infraction Study, a cross-sectional study based in Pakistan, we calculated body mass index (BMI) variance estimates (square of the residual of inverse-normal transformed BMI z-score) in 14 131 participants and conducted genome-wide heterogeneity of variance analyses (GWHVA) for this outcome. All analyses were adjusted for age, age(2), sex and genetic ancestry. RESULTS: The GWHVA analyses identified an intronic variant, rs140133294, in the FLJ33544 gene in association with BMI variance (P-value = 3.1 x 10(-8)). In explicit tests of gene x lifestyle interaction, smoking was found to significantly modify the effect of rs140133294 on BMI (Pinteraction = 0.0005), whereby the minor allele (T) was associated with lower BMI in current smokers, while positively associated with BMI in never smokers. Analyses of ENCODE data at the FLJ33534 locus revealed features indicative of open chromatin and high confidence DNA-binding motifs for several transcription factors, providing suggestive biological support for a mechanism of interaction. CONCLUSIONS: In summary, we have identified a novel interaction between smoking and variation at the FLJ33534 locus in relation to BMI in people from Pakistan.

  • 10. Ala-Poikela, M.
    et al.
    Svensson, E.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Rojas, A.
    Horko, T.
    Paulin, L.
    Valkonen, J.
    Kvarnheden, A.
    Genetic diversity and mixed infections of begomoviruses in tomato, pepper and cucurbit crops in Nicaragua2005In: Plant Pathology, no 54, 448-459 p.Article in journal (Refereed)
  • 11.
    Alatalo, Juha M.
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Little, Chelsea J.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
    Jagerbrand, Annika K.
    Molau, Ulf
    Vascular plant abundance and diversity in an alpine heath under observed and simulated global change2015In: Scientific Reports, ISSN 2045-2322, Vol. 5, 10197Article in journal (Refereed)
    Abstract [en]

    Global change is predicted to cause shifts in species distributions and biodiversity in arctic tundra. We applied factorial warming and nutrient manipulation to a nutrient and species poor alpine/arctic heath community for seven years. Vascular plant abundance in control plots increased by 31%. There were also notable changes in cover in the nutrient and combined nutrient and warming treatments, with deciduous and evergreen shrubs declining, grasses overgrowing these plots. Sedge abundance initially increased significantly with nutrient amendment and then declined, going below initial values in the combined nutrient and warming treatment. Nutrient addition resulted in a change in dominance hierarchy from deciduous shrubs to grasses. We found significant declines in vascular plant diversity and evenness in the warming treatment and a decline in diversity in the combined warming and nutrient addition treatment, while nutrient addition caused a decline in species richness. The results give some experimental support that species poor plant communities with low diversity may be more vulnerable to loss of species diversity than communities with higher initial diversity. The projected increase in nutrient deposition and warming may therefore have negative impacts on ecosystem processes, functioning and services due to loss of species diversity in an already impoverished environment.

  • 12. Alfonso, Julieta
    et al.
    Pollevick, Guido
    Castensson, Anja
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Jazin, Elena
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
    Frasch, Alberto
    Analysis of gene expression in the rat hippocampus using Real Time PCR reveals high inter-individual variation in mRNA expression levels2002In: Journal of Neuroscience Research, ISSN 0360-4012, Vol. 67, no 2, 225-34 p.Article in journal (Refereed)
    Abstract [en]

    In mammals, gene transcription is a step subjected to tight regulation mechanisms. In fact, changes in mRNA levels in the central nervous system (CNS) can account for numerous phenotypic differences in brain function. We performed a high-resolution analysis of mRNA expression levels for 37 genes selected from a normal rat hippocampus cDNA library. mRNA amounts were quantified using a Real Time PCR SYBR Green assay. We found that, in general, individuals from an inbred rat population (n = 20) have shown 2-3 times differences in the basal level of expression of the genes analyzed. Up to several fold differences among individuals were observed for certain genes. These inter-individual differences were obtained after correction for the different amounts of mRNA in each sample. Power calculations were performed to determine the number of individuals required to detect reliable differences in expression levels between a control and an experimental group. These data indicated that, depending on the variability of the candidate gene selected, it was necessary to analyze from five to 135 individuals in each group to detect differences of 50% in the levels of mRNA expression between two groups investigated. The comparison of mRNA abundance from different genes revealed a wide range of expression levels for the 37 genes, showing a 26,000-fold difference between the highest and lowest expressed gene.

  • 13.
    Alfredsson Timmins, Jenny
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Functional organisation of the cell nucleus in the fission yeast, Schizosaccharomyces pombe2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In eukaryotes the genome adopts a non-random spatial organisation, which is important for gene regulation. However, very little is known about the driving forces behind nuclear organisation. In the simple model eukaryote fission yeast, Schizosaccharomyces pombe, it has been known for a long time that transcriptionally repressed heterochromatin localise to the nuclear membrane (NM); the centromeres attaches to spindle pole body (SPB), while the telomeres are positioned at the NM on the opposite side of the nucleus compared to the SPB. Studies presented in this thesis aimed at advancing our knowledge of nuclear organisation in Schizosaccharomyces pombe.

    We show that the heterochromatic mating-type region localises to the NM in the vicinity of the SPB. This positioning was completely dependent on Clr4, a histone methyl transferase crucial for the formation of heterochromatin. Additional factors important for localisation were also identified: the chromo domain protein Swi6, and the two boundary elements IR-L and IR-R surrounding this locus. We further identify two other chromo domain proteins; Chp1 and Chp2, as crucial factors for correct subnuclear localisation of this region. From these results we suggest that the boundary elements together with chromodomain proteins in balanced dosage and composition cooperate in organising the mating-type chromatin.

    Gene regulation can affect the subnuclear localisation of genes. Using nitrogen starvation in S. pombe as a model for gene induction we determined the subnuclear localisation of two gene clusters repressed by nitrogen: Chr1 and Tel1. When repressed these loci localise to the NM, and this positioning is dependent on the histone deacetylase Clr3. During induction the gene clusters moved towards the nuclear interior in a transcription dependent manner.

    The knowledge gained from work presented in this thesis, regarding nuclear organisation in the S. pombe model system, can hopefully aid to a better understanding of human nuclear organisation.

  • 14.
    Ali, Muhammad Akhtar
    et al.
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Younis, Shady
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Wallerman, Ola
    Gupta, Rajesh
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Vascular Biology.
    Andersson, Leif
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Sjoblöm, Tobias
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology.
    Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells2015In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, no 25, 7743-7748 p.Article in journal (Refereed)
    Abstract [en]

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-beta, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.

  • 15.
    Ali, Raja Hashim
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Khan, Ammad Aslam
    Tracing the evolution of FERM domain of Kindlins2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 80, 193-204 p.Article in journal (Refereed)
    Abstract [en]

    Kindlin proteins represent a novel family of evolutionarily conserved FERM domain containing proteins (FDCPs) and are members of B4.1 superfamily. Kindlins consist of three conserved protein homologs in vertebrates: Kindlin-1, Kindlin-2 and Kindlin-3. All three homologs are associated with focal adhesions and are involved in Integrin activation. FERM domain of each Kindlin is bipartite and plays a key role in Integrin activation. A single ancestral Kindlin protein can be traced back to earliest metazoans, e.g., to Parazoa. This protein underwent multiple rounds of duplication in vertebrates, leading to the present Kindlin family. In this study, we trace phylogenetic and evolutionary history of Kindlin FERM domain with respect to FERM domain of other FDCPs. We show that FERM domain in Kindlin homologs is conserved among Kindlins but amount of conservation is less in comparison with FERM domain of other members in B4.1 superfamily. Furthermore, insertion of Pleckstrin Homology like domain in Kindlin FERM domain has important evolutionary and functional consequences. Important residues in Kindlins are traced and ranked according to their evolutionary significance. The structural and functional significance of high ranked residues is highlighted and validated by their known involvement in Kindlin associated diseases. In light of these findings, we hypothesize that FERM domain originated from a proto-Talin protein in unicellular or proto-multicellular organism and advent of multi-cellularity was accompanied by burst of FDCPs, which supported multi-cellularity functions required for complex organisms. This study helps in developing a better understanding of evolutionary history of FERM domain of FDCPs and the role of FERM domain in metazoan evolution.

  • 16.
    Allentoft, Morten E.
    et al.
    University of Copenhagen, Denmark.
    Pokutta, Dalia
    Gothenburg University, Sweden.
    Willerslev, Eske
    University of Copenhagen, Denmark.
    Bronze Age population dynamics and its impact on modern Eurasian genetic structure2015In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 522, 167-172 p.Article in journal (Refereed)
    Abstract [en]

    The Bronze Age of Eurasia (around 3000–1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

  • 17.
    Almlöf, Jonas
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Per
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lundmark, Anders
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ge, Bing
    Pastinen, Tomi
    Goodall, Alison H
    Cambien, François
    Deloukas, Panos
    Ouwehand, Willem H
    Syvänen, Ann-Christine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular Medicine. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Single nucleotide polymorphisms with cis-regulatory effects on long non-coding transcripts in human primary monocytes2014In: PLoS ONE, ISSN 1932-6203, Vol. 9, no 7, e102612- p.Article in journal (Refereed)
    Abstract [en]

    We applied genome-wide allele-specific expression analysis of monocytes from 188 samples. Monocytes were purified from white blood cells of healthy blood donors to detect cis-acting genetic variation that regulates the expression of long non-coding RNAs. We analysed 8929 regions harboring genes for potential long non-coding RNA that were retrieved from data from the ENCODE project. Of these regions, 60% were annotated as intergenic, which implies that they do not overlap with protein-coding genes. Focusing on the intergenic regions, and using stringent analysis of the allele-specific expression data, we detected robust cis-regulatory SNPs in 258 out of 489 informative intergenic regions included in the analysis. The cis-regulatory SNPs that were significantly associated with allele-specific expression of long non-coding RNAs were enriched to enhancer regions marked for active or bivalent, poised chromatin by histone modifications. Out of the lncRNA regions regulated by cis-acting regulatory SNPs, 20% (n = 52) were co-regulated with the closest protein coding gene. We compared the identified cis-regulatory SNPs with those in the catalog of SNPs identified by genome-wide association studies of human diseases and traits. This comparison identified 32 SNPs in loci from genome-wide association studies that displayed a strong association signal with allele-specific expression of non-coding RNAs in monocytes, with p-values ranging from 6.7×10-7 to 9.5×10-89. The identified cis-regulatory SNPs are associated with diseases of the immune system, like multiple sclerosis and rheumatoid arthritis.

  • 18. Alvarez-Castro, J.M.
    et al.
    Carlborg, Ö.
    Rönnegård, Lars
    Dalarna University, School of Technology and Business Studies, Statistics.
    Estimation and interpretation of genetic effects with epistasis using the NOIA model2012In: Quantitative trait loci (QTL): Methods and Protocols / [ed] Scott A. Rifkin, Humana Press, 2012, 191-204 p.Chapter in book (Other academic)
    Abstract [en]

    We introduce this communication with a brief outline of the historical landmarks in genetic modeling, especially concerning epistasis. Then, we present methods for the use of genetic modeling in QTL analyses. In particular, we summarize the essential expressions of the natural and orthogonal interactions (NOIA) model of genetic effects. Our motivation for reviewing that theory here is twofold. First, this review presents a digest of the expressions for the application of the NOIA model, which are often mixed with intermediate and additional formulae in the original articles. Second, we make the required theory handy for the reader to relate the genetic concepts to the particular mathematical expressions underlying them. We illustrate those relations by providing graphical interpretations and a diagram summarizing the key features for applying genetic modeling with epistasis in comprehensive QTL analyses. Finally, we briefly review some examples of the application of NOIA to real data and the way it improves the interpretability of the results.

  • 19.
    Anderson, Judy E.
    et al.
    Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child's Health (MICH), University of Manitoba, Winnipeg, Canada.
    Hansen, Lise Lotte
    Institute of Human Genetics, University of Aarhus, Denmark.
    Mooren, Frank C.
    Department of Sports Medicine, Institute of Sport Sciences, University Giessen, Germany.
    Post, Markus
    Department of Sports Medicine, Institute of Sport Sciences, University Giessen, Germany.
    Hug, Hubert
    DSM Nutritional Products Ltd, Research & Development, Kaiseraugst, Switzerland.
    Zuse, Anne
    Manitoba Institute of Cell Biology (MICB), CancerCare Manitoba, 675 McDermot Ave. Rm. ON6010, Winnipeg, Man. R3E 0V9, Canada.
    Los, Marek Jan
    Manitoba Institute of Cell Biology, Cancer Care Manitoba; Manitoba Institute of Child Health; Department of Biochemistry and Medical Genetics; Department of Human Anatomy and Cell Science, University Manitoba, Winnipeg, Canada, .
    Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases: Towards personalized medicine2006In: Drug resistance updates, ISSN 1368-7646, E-ISSN 1532-2084, Vol. 9, no 4-5, 198-210 p.Article in journal (Refereed)
    Abstract [en]

    The rapid development of new diagnostic procedures, the mapping of the human genome, progress in mapping genetic polymorphisms, and recent advances in nucleic acid- and protein chip technologies are driving the development of personalized therapies. This breakthrough in medicine is expected to be achieved largely due to the implementation of "lab-on-the-chip" technology capable of performing hundreds, even thousands of biochemical, cellular and genetic tests on a single sample of blood or other body fluid. Focusing on a few disease-specific examples, this review discusses selected technologies and their combinations likely to be incorporated in the "lab-on-the-chip" and to provide rapid and versatile information about specific diseases entities. Focusing on breast cancer and after an overview of single-nucleofide polymorphism (SNP)-screening methodologies, we discuss the diagnostic and prognostic importance of SNPs. Next, using Duchenne muscular dystrophy (DMD) as an example, we provide a brief overview of powerful and innovative integration of traditional immuno-histochemistry techniques with advanced biophysical methods such as NMR-spectroscopy or Fourier-transformed infrared (FT-IR) spectroscopy. A brief overview of the challenges and opportunities provided by protein and aptamer microarrays follows. We conclude by highlighting novel and promising biochemical markers for the development of personalized treatment of cancer and other diseases: serum cytochrome c, cytokeratin-18 and -19 and their proteolytic fragments for the detection and quantitation of malignant tumor mass, tumor cell turn-over, inflammatory processes during hepatitis and Epstein-Barr virus (EBV)-induced hemophagocytic lymphohistiocytosis and apoptotic/necrotic cancer cell death. (c) 2006 Elsevier Ltd. All rights reserved.

  • 20.
    Andersson, Anna-Carin
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Ecology and Evolution, Conservation Biology and Genetics.
    Postglacial Population History of the Common Shrew (Sorex araneus) in Fennoscandia: Molekylära studier av återkolonisation, könsbundet genflöde och kromosomrasbildning.2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The common shrew, Sorex araneus, has one of the most variable karyotypes among mammals, displaying numerous chromosomes races throughout its distribution, which can be categorized into different karyotypic groups. The objective of this thesis was to examine the postglacial population history of Fennoscandian common shrews using autosomal microsatellites, mitochondrial DNA (mtDNA) and a Y chromosome specific microsatellite (L8Y).

    Autosomal microsatellites and mtDNA revealed weak genetic structure over a hybrid zone between the karyotypically divergent Northern and Western karyotypic groups. However, the genetic structure displayed by the Y chromosome microsatellite was orders of magnitude higher. Hence, considerable chromosomal differences between the groups do not prevent female gene flow, while male gene flow is reduced (cf. Haldane's rule). Further, the results suggest that the Haldane effect may be caused by the chromosomal differences between the karyotypic groups.

    No mtDNA differentiation was observed either between chromosome races or between the Northern and Western karyotypic groups in Fennoscandia. The combined pattern of karyotypic and mtDNA variation of Fennoscandian common shrews, suggest bi-directional postglacial recolonisation from a single refugium in Europe. The variation of the Y-linked microsatellite supported this conclusion. In contrast, significant mtDNA structure, discordant with the karyotypic variation, revealed that common shrews in southern Finland belong to a different lineage than remaining Fennoscandian regions, implying postglacial recolonisation from a different source.

    MtDNA variation of the chromosome races in Sweden supports the hypothesis that three races of the Western karyotypic group have been formed through whole arm reciprocal translocations (WARTs), as suggested by their mutual karyotypic variation. The variation of the molecular markers supports the theory of rapid karyotypic evolution in the common shrew.

  • 21.
    Anderung, Cecilia
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Persson, P
    Carretero, J. M.
    Ortega, A. I.
    Arasuaga, J. L.
    Elburg, R.
    Smith, C.
    Ellegren, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Götherström, Anders
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Genetics of Iberian Bronze Age cattle remains indicate prehistoric contacts over the Strait of Gibraltar.2005In: Proceedings of the National Academy of Sciences USA, no 102, 8431-8435 p.Article in journal (Refereed)
  • 22.
    Andiappan, Anand Kumar
    et al.
    Department of Biological Sciences, National University of Singapore.
    Nilsson, Daniel
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Biomedicin.
    Halldén, Christer
    Kristianstad University, School of Education and Environment, Avdelningen för Naturvetenskap. Kristianstad University, Forskningsmiljön Biomedicin.
    Yun, Wang De
    Department of Otolaryngology, National University of Singapore.
    Säll, Torbjörn
    Department of Cell and Organism Biology, Lund University.
    Cardell, Lars Olaf
    Division of ENT Diseases, CLINTEC, Karolinska Institutet.
    Tim, Chew Fook
    Department of Biological Sciences, National University of Singapore.
    Investigating highly replicated asthma genes as candidate genes for allergic rhinitis2013In: BMC Medical Genetics, ISSN 1471-2350, Vol. 14, 51- p.Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Asthma genetics has been extensively studied and many genes have been associated with the development or severity of this disease. In contrast, the genetic basis of allergic rhinitis (AR) has not been evaluated as extensively. It is well known that asthma is closely related with AR since a large proportion of individuals with asthma also present symptoms of AR, and patients with AR have a 5-6 fold increased risk of developing asthma. Thus, the relevance of asthma candidate genes as predisposing factors for AR is worth investigating. The present study was designed to investigate if SNPs in highly replicated asthma genes are associated with the occurrence of AR.

    METHODS: A total of 192 SNPs from 21 asthma candidate genes reported to be associated with asthma in 6 or more unrelated studies were genotyped in a Swedish population with 246 AR patients and 431 controls. Genotypes for 429 SNPs from the same set of genes were also extracted from a Singapore Chinese genome-wide dataset which consisted of 456 AR cases and 486 controls. All SNPs were subsequently analyzed for association with AR and their influence on allergic sensitization to common allergens.

    RESULTS: A limited number of potential associations were observed and the overall pattern of P-values corresponds well to the expectations in the absence of an effect. However, in the tests of allele effects in the Chinese population the number of significant P-values exceeds the expectations. The strongest signals were found for SNPs in NPSR1 and CTLA4. In these genes, a total of nine SNPs showed P-values <0.001 with corresponding Q-values <0.05. In the NPSR1 gene some P-values were lower than the Bonferroni correction level. Reanalysis after elimination of all patients with asthmatic symptoms excluded asthma as a confounding factor in our results. Weaker indications were found for IL13 and GSTP1 with respect to sensitization to birch pollen in the Swedish population.

    CONCLUSIONS: Genetic variation in the majority of the highly replicated asthma genes were not associated to AR in our populations which suggest that asthma and AR could have less in common than previously anticipated. However, NPSR1 and CTLA4 can be genetic links between AR and asthma and associations of polymorphisms in NPSR1 with AR have not been reported previously.

  • 23. André, Carl
    et al.
    Larsson, Lena C
    Stockholm University, Faculty of Science, Department of Zoology.
    Laikre, Linda
    Stockholm University, Faculty of Science, Department of Zoology.
    Bekkevold, D
    Brigham, J
    Carvalho, GR
    Dahlgren, TG
    Hutchinson, WF
    Mariani, S
    Mudde, K
    Ruzzante, DE
    Ryman, Nils
    Stockholm University, Faculty of Science, Department of Zoology.
    Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci2011In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 106, no 2, 270-280 p.Article in journal (Refereed)
    Abstract [en]

    In many marine fish species, genetic population structure is typically weak because populations are large, evolutionarily young and have a high potential for gene flow. We tested whether genetic markers influenced by natural selection are more efficient than the presumed neutral genetic markers to detect population structure in Atlantic herring (Clupea harengus), a migratory pelagic species with large effective population sizes. We compared the spatial and temporal patterns of divergence and statistical power of three traditional genetic marker types, microsatellites, allozymes and mitochondrial DNA, with one microsatellite locus, Cpa112, previously shown to be influenced by divergent selection associated with salinity, and one locus located in the major histocompatibility complex class IIA (MHC-IIA) gene, using the same individuals across analyses. Samples were collected in 2002 and 2003 at two locations in the North Sea, one location in the Skagerrak and one location in the low-saline Baltic Sea. Levels of divergence for putatively neutral markers were generally low, with the exception of single outlier locus/sample combinations; microsatellites were the most statistically powerful markers under neutral expectations. We found no evidence of selection acting on the MHC locus. Cpa112, however, was highly divergent in the Baltic samples. Simulations addressing the statistical power for detecting population divergence showed that when using Cpa112 alone, compared with using eight presumed neutral microsatellite loci, sample sizes could be reduced by up to a tenth while still retaining high statistical power. Our results show that the loci influenced by selection can serve as powerful markers for detecting population structure in high gene-flow marine fish species.

  • 24.
    Ankarklev, Johan
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Franzen, Oscar
    Karolinska Inst, Dept Cell & Mol Biol, SE-17177 Stockholm, Sweden. KISP, Sci Life Lab, S-17165 Solna, Sweden..
    Peirasmaki, Dimitra
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Jerlstrom-Hultqvist, Jon
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Lebbad, Marianne
    Publ Hlth Agcy Sweden, Dept Microbiol, SE-17182 Solna, Sweden..
    Andersson, Jan
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Andersson, Bjorn
    Karolinska Inst, Dept Cell & Mol Biol, SE-17177 Stockholm, Sweden.;KISP, Sci Life Lab, S-17165 Solna, Sweden..
    Svärd, Staffan G.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates2015In: BMC Genomics, ISSN 1471-2164, Vol. 16, 697Article in journal (Refereed)
    Abstract [en]

    Background: The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates. Results: Several biological differences between the new and earlier characterized assemblage A isolates were identified, including a difference in growth medium preference. The two AII isolates were of different sub-assemblage types (AII-1 [AS175] and AII-2 [AS98]) and showed size differences in the smallest chromosomes. The amount of genetic diversity was characterized in relation to the genome of the Giardia reference isolate WB, an assemblage AI isolate. Our analyses indicate that the divergence between AI and AII is approximately 1 %, represented by similar to 100,000 single nucleotide polymorphisms (SNP) distributed over the chromosomes with enrichment in variable genomic regions containing surface antigens. The level of allelic sequence heterozygosity (ASH) in the two AII isolates was found to be 0.25-0.35 %, which is 25-30 fold higher than in the WB isolate and 10 fold higher than the assemblage AII isolate DH (0.037 %). 35 protein-encoding genes, not found in the WB genome, were identified in the two AII genomes. The large gene families of variant-specific surface proteins (VSPs) and high cysteine membrane proteins (HCMPs) showed isolate-specific divergences of the gene repertoires. Certain genes, often in small gene families with 2 to 8 members, localize to the variable regions of the genomes and show high sequence diversity between the assemblage A isolates. One of the families, Bactericidal/ Permeability Increasing-like protein (BPIL), with eight members was characterized further and the proteins were shown to localize to the ER in trophozoites. Conclusions: Giardia genomes are modular with highly conserved core regions mixed up by variable regions containing high levels of ASH, SNPs and variable surface antigens. There are significant genomic variations in assemblage A isolates, in terms of chromosome size, gene content, surface protein repertoire and gene polymorphisms and these differences mainly localize to the variable regions of the genomes. The large genetic differences within one assemblage of G. intestinalis strengthen the argument that the assemblages represent different Giardia species.

  • 25. Antolín, Roberto
    et al.
    Nettelblad, Carl
    Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Gorjanc, Gregor
    Money, Daniel
    Hickey, John M.
    A hybrid method for the imputation of genomic data in livestock populations2017In: Genetics Selection Evolution, ISSN 0999-193X, E-ISSN 1297-9686, Vol. 49, 30Article in journal (Refereed)
  • 26.
    Appelgren, Henrik
    Stockholm University.
    Spontaneous and induced mutations at the human minisatellite MS32 in yeast1999Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tandem repetitive DNA including minisatellites make up a large part of eukaryotic genomes, and some tandem repetitive loci are associated with human disease. Little is known about the functions and dynamics of these sequences. Hypervariable minisatellites are used as naturally occurring genetic markers and form the basis of DNA fingerprinting. Studies in human have shown that minisatellite alleles frequently mutate to new lengths by recombination-based mechanisms that operate in the germline, possibly in meiosis. In addition to the variability in length, all hypervariable minisatellites characterised to date also show variation in the DNA sequence of repeat units. The order of variant repeat units can be revealed by MVR-PCR (Minisatellite Variant Repeat mapping by PCR), and this has greatly contributed to mutation analysis by comparing structures of alleles before and after mutation. Certain aspects of minisatellite mutation and general eukaryotic meiotic recombination, cannot be studies in human or any other mammalian system. It was therefore necessary to develop a manipulable eukaryotic model system in the yeast Saccharomyces cerevisiae. The best characterised human minisatellite MS32 was integrated in the vicinity of a hotspot for meiotic recombination in chromosome III. This thesis presents the construction of the model system and analyses of MS32 mutation in yeast.

    The results proved that MS32 mutation is induced in meiosis. Mutant structures were strikingly similar to mutant structures seen in man. Tetrad analysis demonstrated that gene conversion is the major pathway leading to interallelic exchanges. The data also suggested that a hyper-recombinogenic state is formed, and it was shown that entire alleles can be transferred from a chromatid to another. An allele that displays reduced mutation rate in man showed a reduced mutation rate also in yeast. The results have implications for general eukaryotic meiotic recombination. Mutations at MS32 were induced in meiosis by PCB, suggesting that the model system can be used as an in vitro bioassay for the screening of environmental contaminants capable of inducing genomic damage in meiosis. It is concluded that the yeast model constitute a suitable system for the molecular dissection of pathways in spontaneous and induced minisatellite mutations and for elucidating general eukaryotic meiotic recombination mechanisms.

  • 27.
    Ardalan, Arman
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Molecular Profiling of the Population Dynamics: Foundation and Expansion of an Archaic Domesticate2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    "An ‘exponential growth of science’ throughout modern history has been frequently boasted by numerous narcissistic accounts of ‘modern humanity.’ Nonetheless, ‘modern science’ seems to have overwhelmingly compromised on its original promises by fitting into an ‘industrial scheme.’ With this concern, ‘molecular phylogeographics with conservational ambitions’ would look an intact ground for research efforts in a ‘school of biotechnology.’ The dog (Canis familiaris) as an earliest domestic animal has a history of conflicts over its origins and dispersal. Having those disputes addressed, valuable knowledge could be acquired on the nature and dynamics of domestication, and of human societies particularly of pre-agricultural ages. We employed two most widely-used genealogical markers, the mitochondrial DNA (mtDNA) and the non-recombining portion of the Y-chromosome (NRY), to address dog demography. Through 582 bps of mtDNA Control Region, complemented with whole mitochondrial genomes, it was established that almost all maternal lineages of the domestic dog worldwide coalesce to a population of at least 51 and perhaps many more female wolves in Asia South of Yangtze River (ASY) approximately 16,000 years before present (BP). This was based on the presence of a maximal diversity in this area, a descending gradient of diversity outward it, and a ubiquitous population structure everywhere in the world. A closer examination of this portrait in Southwest Asia (SwAsia) and the Fertile Crescent (FC), a region which has supplied persuasive evidence on early presence of the domestic dog, retrieved the same information, with implications for backbreeding with the local wolf population. Meanwhile, analyses of mtDNA dispersal showed that dogs took the long way via land to Madagascar Island, and not together with humans via sea. By the other approach, the NRY data in 14,437 bps length supplemented the mtDNA in reporting the height of diversity from ASY with a founding population of at least 13 male wolves, but expectably produced lower inter-regional differentiation by diversity. Screening of NRY by a SNP assay in the dingoes of Australia Island as a population of feral dogs revealed restricted and similar dispersal patterns for sires and dams. Prospects of ancient, multilocus and whole genome assays with the emerging high-throughput technologies has still more to promise on finer elaborations of these issues."

  • 28.
    Arefin, Md. Badrul
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute. Stockholm University.
    Molecular characterization of the Drosophila responses towards nematodes2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A sophisticated evolutionary conserved innate immune system has evolved in insects to fight pathogens and to restrict damage in harmful (danger) situations including cancer. A significant amount of knowledge about different infection models in Drosophila has been generated in past decades, which revealed functional resemblances and implications for vertebrate systems. However, how Drosophila responds towards multicellular parasitic nematodes and in danger situations is still little understood. Therefore, the aim of the thesis was to characterize multiple aspects of the host defense in the two important contexts mentioned above.

    We analyzed the transcriptome profiles of nematode-infected Drosophila larvae with uninfected samples. For this we employed the entomopathogenic nematode Heterorhabditis bacteriophora with its symbiont Photorhabdus luminescence to infect Drosophila larvae. We found 642 genes were differentially regulated upon infection. Among them a significant portion belonged to immune categories. Further functional analysis identified a thioester containing protein TEP3, a recognition protein GNBP-like 3, the basement membrane component protein Glutactin and several other small peptides. Upon loss or reduced expression of these genes hosts showed mortality during nematode infections. This study uncovers a novel function for several of the genes in immunity.

    Furthermore, we investigated the cellular response towards nematodes. When we eliminated hemocytes genetically (referred to as hml-apo) in Drosophila, we found hml-apo larvae are resistant to nematodes. Subsequent characterization of hml-apo larvae showed massive lamellocyte differentiation (another blood cell type which is rare in naïve larvae), emergence of melanotic masses, up- and down-regulation of Toll and Imd signaling respectively suggesting a pro-inflammatory response. Moreover, a striking defective leg phenotype in adult escapers from pupal lethality was observed. We identified nitric oxide (NO) as a key regulator of these processes. We also showed that imaginal disc growth factors 3 (IDGF3): (a) protects hosts against nematodes, (b) is a clotting component and (c) negatively regulates Wnt and JAK/STAT signaling. To follow larval behavior in the presence or absence of nematodes we monitored Drosophila larval locomotion behaviors using FIMtrack (a recently devised automated method) to elucidate evasive strategies of hosts. Finally, we characterized host defenses in three Drosophila leukemia models with and without nematode infection. Taken together, these studies shed light on host responses in two crucial circumstances, nematode infections and danger situations.

  • 29.
    Arendt, Maja
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Cairns, K. M.
    Univ New South Wales, Sch Biotechnol & Biomol Sci, Fac Sci, Sydney, NSW, Australia..
    Ballard, J. W. O.
    Univ New South Wales, Sch Biotechnol & Biomol Sci, Fac Sci, Sydney, NSW, Australia..
    Savolainen, P.
    Royal Inst Technol KTH, Sch Biotechnol, Sci Life Lab, Solna, Sweden..
    Axelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Diet adaptation in dog reflects spread of prehistoric agriculture2016In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 117, no 5, 301-306 p.Article in journal (Refereed)
    Abstract [en]

    Adaptations allowing dogs to thrive on a diet rich in starch, including a significant AMY2B copy number gain, constituted a crucial step in the evolution of the dog from the wolf. It is however not clear whether this change was associated with the initial domestication, or represents a secondary shift related to the subsequent development of agriculture. Previous efforts to study this process were based on geographically limited data sets and low-resolution methods, and it is therefore not known to what extent the diet adaptations are universal among dogs and whether there are regional differences associated with alternative human subsistence strategies. Here we use droplet PCR to investigate worldwide AMY2B copy number diversity among indigenous as well as breed dogs and wolves to elucidate how a change in dog diet was associated with the domestication process and subsequent shifts in human subsistence. We find that AMY2B copy numbers are bimodally distributed with high copy numbers (median 2n(AMY2B)=11) in a majority of dogs but no, or few, duplications (median 2n(AMY2B)=3) in a small group of dogs originating mostly in Australia and the Arctic. We show that this pattern correlates geographically to the spread of prehistoric agriculture and conclude that the diet change may not have been associated with initial domestication but rather the subsequent development and spread of agriculture to most, but not all regions of the globe.

  • 30.
    Arendt, Maja
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Fall, Tove
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Molecular epidemiology.
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Axelsson, Erik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes2014In: Animal Genetics, ISSN 0268-9146, E-ISSN 1365-2052, Vol. 45, no 5, 716-722 p.Article in journal (Refereed)
    Abstract [en]

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus.

  • 31.
    Arendt, Maja Louise
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Univ Cambridge, Dept Vet Med, Cambridge, England..
    Melin, Malin
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Tonomura, Noriko
    Broad Inst MIT & Harvard, Cambridge, MA USA.;Tufts Univ, Cummings Sch Vet Med, Dept Clin Sci, North Grafton, MA USA..
    Koltookian, Michele
    Broad Inst MIT & Harvard, Cambridge, MA USA..
    Courtay-Cahen, Celine
    Anim Hlth Trust, Newmarket, Suffolk, England..
    Flindall, Netty
    Anim Hlth Trust, Newmarket, Suffolk, England..
    Bass, Joyce
    Anim Hlth Trust, Newmarket, Suffolk, England..
    Boerkamp, Kim
    Univ Utrecht, Dept Clin Sci Compan Anim, Utrecht, Netherlands..
    Megquir, Katherine
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Inst MIT & Harvard, Cambridge, MA USA.;Tufts Univ, Cummings Sch Vet Med, Dept Clin Sci, North Grafton, MA USA..
    Youell, Lisa
    Anim Hlth Trust, Newmarket, Suffolk, England..
    Murphy, Sue
    Anim Hlth Trust, Newmarket, Suffolk, England..
    McCarthy, Colleen
    Broad Inst MIT & Harvard, Cambridge, MA USA..
    London, Cheryl
    Ohio State Univ, Dept Vet Clin Sci, Columbus, OH 43210 USA..
    Rutteman, Gerard R.
    Univ Utrecht, Dept Clin Sci Compan Anim, Utrecht, Netherlands.;Vet Specialist Ctr De Wagenrenk, Wageningen, Netherlands..
    Starkey, Mike
    Anim Hlth Trust, Newmarket, Suffolk, England..
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Inst MIT & Harvard, Cambridge, MA USA..
    Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours2015In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 11, no 11, e1005647Article in journal (Refereed)
    Abstract [en]

    Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10(-16)), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT.

  • 32.
    Arnaudeau, Catherine
    Stockholm University.
    Mitotic recombination in mammalian cells2000Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Recombination is usually defined as the exchange of genetic material between two strands or regions of nucleic acids. This process occurs in all known organisms and is highly conserved, especially among higher eukaryotes. Various types of recombination, involving homologous or non-homologous nucleic acid sequences, are known to exist. Recombination is a double-edged sword that may be beneficial or harmful for the cell. On one hand, it fulfills essential functions in connection with, e.g., repair of DNA double- strand breaks and maintenance of genomic stability; but, at the same time, this process is also partly responsible for, among other things, error prone repair and genomic instability, which can lead to cancer.

    The aim of the present study has been to investigate molecular mechanisms underlying spontaneous and induced mitotic recombination in mammalian cells and, in particular, to characterize the role of the RAD51 protein in these processes. For this purpose, V79 Chinese hamster cell lines containing spontaneous partial duplications of the hprt gene were employed. A new approach to investigate homologous recombination, which offers the unique possibility of determining the type of homologous recombination involved, was developed. This assay procedure was compared to other systems used previously for detection of induced recombination. Use of this newly developed method to characterize mechanisms underlying induction of homologous recombination revealed that inhibition of DNA synthesis is a potent pathway for such induction.

    Subsequently, the effect of overexpressing RAD51 on two different assays for recombination was determined. Our findings suggest that the RAD51 protein supports spontaneous homologous recombination via an exchange mechanism, as well as being involved in spontaneous non-homologous recombination, possibly with respect to class switch recombination. However, RAD51 was found not to affect induced non-homologous recombination, suggesting that this protein might not be involved in repairing DNA damage via non-homologous end-joining.

    Finally, the repair of DNA double-strand breaks induced in the S phase of the cell cycle was examined. Our observations in this case suggest that homologous recombination by strand invasion, employing an exchange mechanism, is a major feature of such repair and, furthermore, that a functional pathway for recombination is essential for the survival of cells in which DNA double-strand breaks have occurred.

    In summary, the work described here improves our understanding of the molecular mechanisms underlying spontaneous and induced recombination, as well as the repair of DNA double-strand breaks in mammalian cells.

  • 33.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Novicic, Zorana Kurbalija
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology. Univ Belgrade, Inst Biol Res Sinisa Stankovic, Despot Stefan Blvd 142, Belgrade 11000, Serbia..
    Castro, Jose A.
    Univ Illes Balears, Fac Ciencies, Dept Biol, Lab Genet, Edifici Guillem Colom,Campus UIB, Palma de Mallorca 07122, Balears, Spain..
    Sayadi, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Negative frequency dependent selection on sympatric mtDNA haplotypes in Drosophila subobscura2016In: Hereditas, ISSN 0018-0661, E-ISSN 1601-5223, Vol. 153, 15Article in journal (Refereed)
    Abstract [en]

    Background: Recent experimental evidence for selection on mitochondrial DNA (mtDNA) has prompted the question as to what processes act to maintain within-population variation in mtDNA. Balancing selection though negative frequency dependent selection (NFDS) among sympatric haplotypes is a possibility, but direct empirical evidence for this is very scarce. Findings: We extend the previous findings of a multi-generation replicated cage experiment in Drosophila subobscura, where mtDNA polymorphism was maintained in a laboratory setting. First, we use a set of Monte Carlo simulations to show that the haplotype frequency dynamics observed are inconsistent with genetic drift alone and most closely match those expected under NFDS. Second, we show that haplotype frequency changes over time were significantly different from those expected under either genetic drift or positive selection but were consistent with those expected under NFSD. Conclusions: Collectively, our analyses provide novel support for NFDS on mtDNA haplotypes, suggesting that mtDNA polymorphism may at least in part be maintained by balancing selection also in natural populations. We very briefly discuss the possible mechanisms that might be involved.

  • 34.
    Arnqvist, Göran
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Sayadi, Ahmed
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Immonen, Elina
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Animal ecology.
    Hotzy, Cosima
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology.
    Rankin, Daniel
    Univ Zurich, Inst Evolutionary Biol & Environm Studies, Zurich, Switzerland..
    Tuda, Midori
    Kyushu Univ, Dept Bioresource Sci, Lab Insect Nat Enemies, Fukuoka 8128581, Japan.;Kyushu Univ, Inst Biol Control, Fac Agr, Fukuoka 8128581, Japan..
    Hjelmen, Carl E.
    Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA..
    Johnston, J. Spencer
    Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA..
    Genome size correlates with reproductive fitness in seed beetles2015In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 282, no 1815, 20151421Article in journal (Refereed)
    Abstract [en]

    The ultimate cause of genome size (GS) evolution in eukaryotes remains a major and unresolved puzzle in evolutionary biology. Large-scale comparative studies have failed to find consistent correlations between GS and organismal properties, resulting in the 'C-value paradox'. Current hypotheses for the evolution of GS are based either on the balance between mutational events and drift or on natural selection acting upon standing genetic variation in GS. It is, however, currently very difficult to evaluate the role of selection because within-species studies that relate variation in life-history traits to variation in GS are very rare. Here, we report phylogenetic comparative analyses of GS evolution in seed beetles at two distinct taxonomic scales, which combines replicated estimation of GS with experimental assays of life-history traits and reproductive fitness. GS showed rapid and bidirectional evolution across species, but did not show correlated evolution with any of several indices of the relative importance of genetic drift. Within a single species, GS varied by 4-5% across populations and showed positive correlated evolution with independent estimates of male and female reproductive fitness. Collectively, the phylogenetic pattern of GS diversification across and within species in conjunction with the pattern of correlated evolution between GS and fitness provide novel support for the tenet that natural selection plays a key role in shaping GS evolution.

  • 35. Arrendal, J.S.E.
    et al.
    Walker, C.W.
    Sundqvist, A.-K.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Hellborg, L.C.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Vilà, Carles
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Genetic assessment of a demographically successful translocation program.2004In: Conservation Genetics, no 5, 79-88 p.Article in journal (Other scientific)
  • 36.
    Asano, Masanari
    et al.
    Tokyo University of Science.
    Basieva, Irina
    Linnaeus University, Faculty of Technology, Department of Mathematics.
    Khrennikov, Andrei
    Linnaeus University, Faculty of Technology, Department of Mathematics.
    Ohya, Masanori
    Tokyo University of Science.
    Tanaka, Yoshiharu
    Tokyo University of Science.
    Yamato, Ichiro
    Tokyo University of Science.
    A model of epigenetic evolution based on theory of open quantum systems2013In: Systems and Synthetic Biology, ISSN 1872-5325, Vol. 7, no 4, 161-173 p.Article in journal (Refereed)
    Abstract [en]

    We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.

  • 37.
    Asgard, Rikard
    et al.
    Uppsala Univ, Dept Pharmaceut Biosci., Uppsala, Sweden.
    Haghdoost, Siamak
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Golkar, Siv Osterman
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Hellman, Bjorn
    Uppsala Univ, Dept Pharmaceut Biosci., Uppsala, Sweden.
    Czene, Stefan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Evidence for different mechanisms of action behind the mutagenic effects of 4-NOPD and OPD: the role of DNA damage, oxidative stress and an imbalanced nucleotide pool2013In: Mutagenesis, ISSN 0267-8357, E-ISSN 1464-3804, Vol. 28, no 6, 637-644 p.Article in journal (Refereed)
    Abstract [en]

    The mutagenicity of 4-nitro-o-phenylenediamine (4-NOPD) and o-phenylenediamine (OPD) was compared using the Mouse Lymphoma Assay (MLA) with or without metabolic activation (S9). As expected, OPD was found to be a more potent mutagen than 4-NOPD. To evaluate possible mechanisms behind their mutagenic effects, the following end points were also monitored in cells that had been exposed to similar concentrations of the compounds as in the MLA: general DNA damage (using a standard protocol for the Comet assay); oxidative DNA damage (using a modified procedure for the Comet assay in combination with the enzyme hOGG1); reactive oxygen species (ROS; using the CM-H(2)DCFDA assay); and the balance of the nucleotide pool (measured after conversion to the corresponding nucleosides dC, dT, dG and dA using high-performance liquid chromatography). Both compounds increased the level of general DNA damage. Again, OPD was found to be more potent than 4-NOPD (which only increased the level of general DNA damage in the presence of S9). Although less obvious for OPD, both compounds increased the level of oxidative DNA damage. However, an increase in intracellular ROS was only observed in cells exposed to 4-NOPD, both with and without S9 (which in itself induced oxidative stress). Both compounds decreased the concentrations of dA, dT and dC. A striking effect of OPD was the sharp reduction of dA observed already at very low concentration, both with and without S9 (which in itself affected the precursor pool). Taken together, our results indicate that indirect effects on DNA, possibly related to an unbalanced nucleotide pool, mediate the mutagenicity and DNA-damaging effects of 4-NOPD and OPD to a large extent. Although induction of intracellular oxidative stress seems to be a possible mechanism behind the genotoxicity of 4-NOPD, this pathway seems to be of less importance for the more potent mutagen OPD.

  • 38.
    Asherson, Philip
    et al.
    MRC SGDP Centre, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom.
    Larsson, Henrik
    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
    Family, twin, and adoption studies of childhood onset psychiatric and neurodevelopmental disorders2016In: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, ISSN 1552-4841, E-ISSN 1552-485X, Vol. 171, no 7, 923-924 p.Article in journal (Refereed)
  • 39.
    Aslan, Selcuk
    Linköping University, Department of Physics, Chemistry and Biology, Molecular genetics.
    The molecular genotyping of flower development genes and allelic variations in ‘historic’ barley accessions2010Independent thesis Advanced level (degree of Master (One Year)), 25 credits / 37,5 HE creditsStudent thesis
    Abstract [en]

    This is a genetic study of flowering time in cultivated barley with the aim to identify the alleles contributing to rapid flowering and frost resistance. We have genotyped a collection of 23 historic barley varieties for the crucial genes [VRN-1, VRN-2, VRN-3 (HvFT), Ppd-H1, CO, and Vrs1]. We have amplified the polymorphic mutations by PCR-based methods, and sequenced them to identify possible haplotype groups. The row type was not determined of all accessions, but all the Scandinavian varieties were found to carry mutant alleles of Vrs1, that indicates them to be six-row barleys. The deletion of the crucial segment of VRN-1 vernalization contributes dominant spring growth habit. We found haplotype groups 2 and 4 to be dominant in Northern barleys whereas haplotype groups 1 and 5 dominated in south. The presence of dominant allele VRN-2 gene is addressed to floral repression until plants get vernalized. Most of the 23 varieties were found to have deleted allele of VRN-2, which is connected with a spring growth habit. The only four of the accessions that have the dominant allele of Ppd-H1 that contribute flowering are generally from the south of Europe. HvFT and CO genes CO-interact to influence flowering time. CO haplotype grouping suggest a geographical distribution of different alleles but needs more disseminations. Certain HvFT alleles cause extremely early flowering during apex development in the varieties that have deletion of VRN-2 alleles under long days. VRN-3 alleles of 14 varieties were identified.

  • 40.
    Assefaw-Redda, Yohannes
    Stockholm University, Faculty of Science, Department of Genetics, Microbiology and Toxicology.
    Hemolin expression during Cecropia development and its effect on malaria parasites2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Hemolin is a lepidopteran member of the immunoglobulin superfamily, initially isolated from the giant silkmoth Hyalophora cecropia. Hemolin is also induced by stimulation with microbial cell wall components and was recently shown to be strongly upregulated by baculovirus and double stranded RNA. An interesting characteristic of the protein is that it is not only highly expressed during infection but also during development.

    The work presented in this thesis investigated the expression of hemolin during oogenesis and embryogenesis in H. cecropia. Vitellogenic follicles from ovaries were analysed for the presence of the protein by immunohistochemistry in whole-mount preparations and in cryosections. PCR was used to show the presence of Hemolin transcripts throughout vitellogenesis and choriogenesis and in fertilized and unfertilized mature eggs and Western blots showed the protein in unfertilized eggs, yolk cells and embryo.

    Injection of the moulting hormone 20-hydroxyecdysone (20E) into hibernating diapausing pupae (low metabolic state), upregulates Hemolin. When diapausing pupae were treated with 20E and the protein synthesis inhibitor cycloheximide, its expression stayed low. This shows that the hormone indirectly regulates Hemolin by some factor(s) induced by 20E. When both bacteria and 20E were injected into diapausing pupae, an enhanced induction of hemolin gene expression occurred. Despite the seemingly indirect 20E regulation, several putative hormone responsive elements were found in the upstream region of the Hemolin (HRE-IR, HRE-M and MRE). When these elements were analysed by gel electrophoresis mobility shift assays (EMSA) to investigate their binding to nuclear factors, all the sites resulted in specific retarded bands. The HRE-IR binding factor was clearly increased by ecdysone. Last but not least we have investigated the effect of Hemolin on development of the malaria parasite Plasmodium falciparum in the midgut of the Anopheles mosquitoes. Hemolin completely inhibits the development of the parasite into its final transmission stage, the sporozoite. A future goal is to generate para-transgenic mosquitoes, enforced by hemolin, to stop malaria transmission. Importantly, hemolin did not affect the mosquito fecundity when fed to the mosquito. We are currently constructing truncated forms of hemolin to gain insight into which parts are important for its effect on the parasite.

  • 41.
    Atikuzzaman, Mohammad
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Seminal Influence on the Oviduct: Mating and/or semen components induce gene expression changes in the pre-ovulatory functional sperm reservoir in poultry and pigs2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Internal fertilization occurs in birds and eutherian mammals. Foetal development, however, is either extra- respectively intra-corpore (egg vs uterus). In these animal classes, the female genital tract stores ejaculated spermatozoa into a restricted oviductal segment; the functional pre-ovulatory sperm reservoir, where they survive until ovulation/s occur. Paradoxically, this immunologically foreign sperm suspension in seminal fluid/plasma, often microbiologically contaminated, ought to be promptly eliminated by the female local immune defence which, instead, tolerates its presence. The female immune tolerance is presumably signalled via a biochemical interplay of spermatozoa, as well as the peptides and proteins of the extracellular seminal fluid, with female epithelial and immune cells. Such interplay can result in gene expression shifts in the sperm reservoir in relation to variations in fertility. To further aid our understanding of the underlying mechanisms, this thesis studied the proteome of the seminal fluid (using 2D SDS-PAGE and mass spectrometry) including cytokine content (using Luminex and/or ELISA) of healthy, sexually mature and fertile boars and cocks. As well, gene expression changes (using cDNA microarray) in the oviductal sperm reservoirs of sexually-mature females, mated or artificially infused with homologous sperm-free seminal fluid/plasma were studied. Pigs were of commercial, fertility-selected modern breeds (Landrace), while chicken belonged to the ancestor Red Junglefowl (RJF, low egg laying-capacity), a selected egg-layer White Leghorn (WL) and of their Advanced Intercross Line (AIL). Ejaculates were manually collected as single sample in cocks or as the sperm-rich fraction [SRF] and the post- SRF fraction in boars to harvest seminal fluid/plasma for proteome/cytokine and infusion-studies. Oviducts were retrieved for gene-expression analyses via microarray immediately post-mortem (chicken) or at surgery (pig), 24 h after mating or genital infusion. In pigs, the protein-rich seminal plasma showed the highest amounts of cytokines [interferon-γ, interferon gamma-induced protein 10 (IP-10/CXCL10), macrophage derived chemokine (MDC/CCL22), growth-regulated oncogene (GRO/CXCL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), monocyte chemo-attractant protein-1 (MCP-1/ CCL2), interleukin (IL)-6, IL-8/CXCL8, IL-10, IL-15, IL-17 and transforming growth factor (TGF)-β1-3) in the larger, protein-rich and sperm-poor post-SRF, indicating its main immune signalling influence. Chicken showed also a plethora of seminal fluid proteins with serum albumin and ovotransferrin being conserved through selection/evolution. However, they showed fewer cytokines than pigs, as the anti-inflammatory/immune-modulatory TGF-β2 or the pro-inflammatory CXCL10. The RJF contained fewer immune system process proteins and lacked TGF-β2 compared to WL and AIL, suggesting selection for increased fertility could be associated with higher expression of immune-regulating peptides/proteins. The oviductal sperm reservoir reacted in vivo to semen exposure. In chicken, mating significantly changed the expression of immune-modulatory and pH-regulatory genes in AIL. Moreover, modern fertile pigs (Landrace) and chicken (WL), albeit being taxonomically distant, shared gene functions for preservation of viable sperm in the oviduct. Mating or SP/SF-infusion were able to change the expression of comparable genes involved in pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3) or immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, MMP12). The results of the thesis demonstrate that both mating and components of the sperm-free seminal fluid/plasma elicit gene expression changes in the pre-ovulatory female sperm reservoir of chickens and pigs, some conserved over domestication and fertility-selection.

  • 42.
    Atikuzzaman, Mohammad
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Bhai Mehta, Ratnesh
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science.
    Fogelholm, Jesper
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Wright, Dominic
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, Faculty of Science & Engineering.
    Rodriguez-Martinez, Heriberto
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Mating induces the expression of immune- and pH-regulatory genes in the utero-vaginal junction containing mucosal sperm-storage tubuli of hens2015In: Reproduction, Vol. 150, no 6, 473-483 p.Article in journal (Refereed)
    Abstract [en]

    The female chicken, as with other species with internal fertilization, can tolerate the presence of spermatozoa within specialized sperm-storage tubuli (SST) located in the mucosa of the utero-vaginal junction (UVJ) for days or weeks, without eliciting an immune response. To determine if the oviduct alters its gene expression in response to sperm entry, segments from the oviduct (UVJ, uterus, isthmus, magnum and infundibulum) of mated and unmated (control) hens, derived from an advanced inter-cross line between Red Junglefowl and White Leghorn, were explored 24 h after mating using cDNA microarray analysis. Mating shifted the expression of fifteen genes in the UVJ (53.33% immune-modulatory and 20.00% pH-regulatory) and seven genes in the uterus, none of the genes in the latter segment overlapping the former (with the differentially expressed genes themselves being less related to immune-modulatory function). The other oviductal segments did not show any significant changes. These findings suggest sperm deposition causes a shift in expression in the UVJ (containing mucosal SST) and the uterus for genes involved in immune-modulatory and pH-regulatory functions, both relevant for sperm survival in the hen's oviduct.

  • 43.
    Aurell, Erik
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). Aalto University, Finland.
    Innocenti, Nicolas
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST). The Hebrew University of Jerusalem, Israel.
    Zhou, Hai-Jun
    State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
    The bulk and the tail of minimal absent words in genome sequences2016In: Physical Biology, ISSN 1478-3967, E-ISSN 1478-3975, Vol. 13, no 2, 026004Article in journal (Refereed)
    Abstract [en]

    Minimal absent words (MAW) of a genomic sequence are subsequences that are absent themselves but the subwords of which are all present in the sequence. The characteristic distribution of genomic MAWs as a function of their length has been observed to be qualitatively similar for all living organisms, the bulk being rather short, and only relatively few being long. It has been an open issue whether the reason behind this phenomenon is statistical or reflects a biological mechanism, and what biological information is contained in absent words. % In this work we demonstrate that the bulk can be described by a probabilistic model of sampling words from random sequences, while the tail of long MAWs is of biological origin. We introduce the novel concept of a core of a minimal absent word, which are sequences present in the genome and closest to a given MAW. We show that in bacteria and yeast the cores of the longest MAWs, which exist in two or more copies, are located in highly conserved regions the most prominent example being ribosomal RNAs (rRNAs). We also show that while the distribution of the cores of long MAWs is roughly uniform over these genomes on a coarse-grained level, on a more detailed level it is strongly enhanced in 3' untranslated regions (UTRs) and, to a lesser extent, also in 5' UTRs. This indicates that MAWs and associated MAW cores correspond to fine-tuned evolutionary relationships, and suggest that they can be more widely used as markers for genomic complexity.

  • 44. Ausin, Israel
    et al.
    Feng, Suhua
    Yu, Chaowei
    Liu, Wanlu
    Kuo, Hsuan Yu
    Jacobsen, Elise L.
    Zhai, Jixian
    Gallego-Bartolome, Javier
    Wang, Lin
    Egertsdotter, Ulrika
    Street, Nathaniel R.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jacobsen, Steven E.
    Wang, Haifeng
    DNA methylome of the 20-gigabase Norway spruce genome2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 50, E8106-E8113 p.Article in journal (Refereed)
    Abstract [en]

    DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns.

  • 45. Axeisson, T
    et al.
    Shavorskaya, O
    Lagercrantz, U
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. evolutionär funktionsgenomik.
    Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene.2001In: Genome, ISSN 0831-2796, Vol. 44, no 5, 856-64 p.Article in journal (Refereed)
  • 46.
    Axelsson, E.
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Smith, N.G.C.
    Sundström, H.
    Berlin, S.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Ellegren, H.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and turkey.2004In: Molecular Biology and Evolution, no 21, 1538-1547 p.Article in journal (Refereed)
  • 47.
    Axelsson, Erik
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Webster, Matthew T.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ratnakumar, Abhirami
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Ponting, Chris P.
    Univ Oxford, MRC Funct Genom Unit, Dept Physiol Anat & Genet, Oxford OX1 3QX, England.
    Lindblad-Toh, Kerstin
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology. Uppsala University, Science for Life Laboratory, SciLifeLab. Broad Inst Massachusetts Inst Technol & Harvard, Cambridge, MA 02139 USA.
    Death of PRDM9 coincides with stabilization of the recombination landscape in the dog genome2011In: Genome Research, ISSN 1088-9051, E-ISSN 1549-5469, Vol. 22, no 1, 51-63 p.Article in journal (Refereed)
    Abstract [en]

    Analysis of diverse eukaryotes has revealed that recombination events cluster in discrete genomic locations known as hotspots. In humans, a zinc-finger protein, PRDM9, is believed to initiate recombination in >40% of hotspots by binding to a specific DNA sequence motif. However, the PRDM9 coding sequence is disrupted in the dog genome assembly, raising questions regarding the nature and control of recombination in dogs. By analyzing the sequences of PRDM9 orthologs in a number of dog breeds and several carnivores, we show here that this gene was inactivated early in canid evolution. We next use patterns of linkage disequilibrium using more than 170,000 SNP markers typed in almost 500 dogs to estimate the recombination rates in the dog genome using a coalescent-based approach. Broad-scale recombination rates show good correspondence with an existing linkage-based map. Significant variation in recombination rate is observed on the fine scale, and we are able to detect over 4000 recombination hotspots with high confidence. In contrast to human hotspots, 40% of canine hotspots are characterized by a distinct peak in GC content. A comparative genomic analysis indicates that these peaks are present also as weaker peaks in the panda, suggesting that the hotspots have been continually reinforced by accelerated and strongly GC biased nucleotide substitutions, consistent with the long-term action of biased gene conversion on the dog lineage. These results are consistent with the loss of PRDM9 in canids, resulting in a greater evolutionary stability of recombination hotspots. The genetic determinants of recombination hotspots in the dog genome may thus reflect a fundamental process of relevance to diverse animal species.

  • 48.
    Axelsson, Erik
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Webster, Matthew T
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Smith, Nick G C
    Burt, David W
    Ellegren, Hans
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Biology. Evolutionsbiologi.
    Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes.2005In: Genome Res, ISSN 1088-9051, Vol. 15, no 1, 120-5 p.Article in journal (Refereed)
    Abstract [en]

    A distinctive feature of the avian genome is the large heterogeneity in the size of chromosomes, which are usually classified into a small number of macrochromosomes and numerous microchromosomes. These chromosome classes show characteristic differences in a number of interrelated features that could potentially affect the rate of sequence evolution, such as GC content, gene density, and recombination rate. We studied the effects of these factors by analyzing patterns of nucleotide substitution in two sets of chicken-turkey sequence alignments. First, in a set of 67 orthologous introns, divergence was significantly higher in microchromosomes (chromosomes 11-38; 11.7% divergence) than in both macrochromosomes (chromosomes 1-5; 9.9% divergence; P = 0.016) and intermediate-sized chromosomes (chromosomes 6-10; 9.5% divergence; P = 0.026). At least part of this difference was due to the higher incidence of CpG sites on microchromosomes. Second, using 155 orthologous coding sequences we noted a similar pattern, in which synonymous substitution rates on microchromosomes (13.1%) were significantly higher than were rates on macrochromosomes (10.3%; P = 0.024). Broadly assuming neutrality of introns and synonymous sites, or constraints on such sequences do not differ between chromosomal classes, these observations imply that microchromosomal genes are exposed to more germ line mutations than those on other chromosomes. We also find that dN/dS ratios for genes located on microchromosomes (average, 0.094) are significantly lower than those of macrochromosomes (average, 0.185; P = 0.025), suggesting that the proteins of genes on microchromosomes are under greater evolutionary constraint.

  • 49.
    Axelsson, T
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics.
    Bowman, C M
    Sharpe, A G
    Lydiate, D J
    Lagercrantz, U
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Department of Evolution, Genomics and Systematics, Evolutionary Functional Genomics. evolutionär funktionsgenomik.
    Amphidiploid Brassica juncea contains conserved progenitor genomes.2000In: Genome, ISSN 0831-2796, Vol. 43, no 4, 679-88 p.Article in journal (Refereed)
  • 50.
    Ayllon, Fernando
    et al.
    Inst Marine Res, N-5024 Bergen, Norway..
    Kjaerner-Semb, Erik
    Inst Marine Res, N-5024 Bergen, Norway.;Univ Bergen, Dept Biol, Bergen, Norway..
    Furmanek, Tomasz
    Inst Marine Res, N-5024 Bergen, Norway..
    Wennevik, Vidar
    Inst Marine Res, N-5024 Bergen, Norway..
    Solberg, Monica F.
    Inst Marine Res, N-5024 Bergen, Norway..
    Dahle, Geir
    Inst Marine Res, N-5024 Bergen, Norway..
    Taranger, Geir Lasse
    Inst Marine Res, N-5024 Bergen, Norway..
    Glover, Kevin A.
    Inst Marine Res, N-5024 Bergen, Norway.;Univ Bergen, Dept Biol, Bergen, Norway..
    Almén, Markus Sällman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Rubin, Carl-Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
    Edvardsen, Rolf B.
    Inst Marine Res, N-5024 Bergen, Norway..
    Wargelius, Anna
    Inst Marine Res, N-5024 Bergen, Norway..
    The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (Salmo salar L.) Males2015In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 11, no 11, e1005628Article in journal (Refereed)
    Abstract [en]

    Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1-5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33-36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates.

1234567 1 - 50 of 1077
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf