Change search
Refine search result
1234567 51 - 100 of 2610
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 51.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vollgraff, Tobias
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylboration2015In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 137, no 35, p. 11262-11265Article in journal (Refereed)
    Abstract [en]

    Allylboration of ketones with gamma-disubstituted allylboronic acids is performed in the presence of chiral BINOL derivatives. The reaction is suitable for single-step creation of adjacent quaternary stereocenters with high selectivity. We show that, with an appropriate choice of the chiral catalyst and the stereoisomeric prenyl substrate, full control of the stereo- and enantioselectivity is possible in the reaction.

  • 52.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 5, p. 1434-1437Article in journal (Refereed)
    Abstract [en]

    An efficient and simple methodology was developed for the synthesis of oxazolidinones, oxazolidinthiones, imidazolidinthiones, and imidazolidinones from the corresponding propargylic starting materials using Pd(OAc)(2) and n-Bu4NOAc as catalysts in DCE at room temperature.

  • 53.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Scalable Synthesis of Oxazolones from Propargylic Alcohols through Multistep Palladium(II) Catalysis: beta-Selective Oxidative Heck Coupling of Cyclic Sulfonyl Enamides and Aryl Boroxines2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 51, p. 13745-13750Article in journal (Refereed)
  • 54.
    Albers, Michael F
    et al.
    Department of Chemical Biology, Max Planck Institute for Molecular Physiology.
    Hedberg, Christian
    Amino acid building blocks for Fmoc solid-phase synthesis of peptides phosphocholinated at serine, threonine, and tyrosine2013In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 78, no 6, p. 2715-2719Article in journal (Refereed)
    Abstract [en]

    Phosphocholination of eukaryotic host cell proteins has recently been identified as a novel post-translational modification important for bacterial pathogenesis. Here, we describe the first straightforward synthetic strategy for peptides containing phosphocholinated serine, threonine, or tyrosine residues using preformed functional amino acid building blocks, fully compatible with standard Fmoc solid-phase peptide synthesis.

  • 55.
    Albers, Michael F
    et al.
    Department of Chemical Biology, Max-Planck Institute of Molecular Physiology.
    van Vliet, Bart
    Hedberg, Christian
    Amino acid building blocks for efficient Fmoc solid-phase synthesis of peptides adenylylated at serine or threonine2011In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 13, no 22, p. 6014-6017Article in journal (Refereed)
    Abstract [en]

    The first straightforward building block based (non-interassembly) synthesis of peptides containing adenylylated serine and threonine residues is described. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The described Thr-AMP SPPS-building block has been employed in the synthesis of the Thr-adenylylated sequence of human GTPase CDC42 (Ac-SEYVP-T(AMP)-VFDNYGC-NH(2)). Further, we demonstrate proof-of-concept for the synthesis of an Ser-adenylylated peptide (Ac-GSGA-S(AMP)-AGSGC-NH(2)) from the corresponding adenylylated serine building block.

  • 56.
    Albers, Michael Franz
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis and investigation of bacterial effector molecules2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    During infections, bacterial microorganisms initiate profound interactions with mammalian host cells. Usually defense mechanisms of the host destroy intruding bacteria in rapid manner. However, many bacterial pathogens have evolved in a way to avoid these mechanisms. By use of effector molecules, which can be small organic molecules or proteins with enzymatic activity, the host is manipulated on a molecular level. Effectors mediating post-translational modifications (PTMs) are employed by many pathogens to influence the biological activity of host proteins. In the presented thesis, two related PTMs are investigated in detail: Adenylylation, the covalent transfer of an adenosine monophosphate group from adenosine triphosphate onto proteins, and phosphocholination, the covalent transfer of a phosphocholine moiety onto proteins. Over the past years, enzymes mediating these modifications have been discovered in several pathogens, especially as a mechanism to influence the signaling of eukaryotic cells by adenylylating or phosphocholinating small GTPases. However, the development of reliable methods for the isolation and identification of adenylylated and phosphocholinated proteins remains a vehement challenge in this field of research. This thesis presents general procedures for the synthesis of peptides carrying adenylylated or phosphocholinated tyrosine, threonine and serine residues. From the resulting peptides, mono-selective polyclonal antibodies against adenylylated tyrosine and threonine have been raised. The antibodies were used as tools for proteomic research to isolate unknown substrates of adenylyl transferases from eukaryotic cells. Mass spectrometric fragmentation techniques have been investigated to ease the identification of adenylylated proteins. Furthermore, this work presents a new strategy to identify adenylylated proteins. Additionally, small effector molecules are involved in the regulation of infection mechanisms. In this work, the small molecule LAI-1 (Legionella autoinducer 1) from the pathogen Legionella pneumophila, the causative agent of the Legionnaire’s disease, was synthesised together with its amino-derivatives. LAI-1 showed are a clear pharmacological effect on the regulation of the life cycle of L. pneumophila, initiating transmissive traits like motility and virulence. Furthermore, LAI-1 was shown to have an effect on eukaryotic cells as well. Directed motility of the eukaryotic cells was significantly reduced and the cytoskeletal architecture was reorganised, probably by interfering with the small GTPase Cdc42.

  • 57. Albrecht, Christiane
    et al.
    Fechner, Peter
    Honcharenko, Dmytro
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Baltzer, Lars
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
    Gauglitz, Günther
    A new assay design for clinical diagnostics based on alternative recognition elements2010In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 25, no 10, p. 2302-2308Article in journal (Refereed)
  • 58.
    Alfredsson, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Synthesis and Characterization of Acrylfentanyl Metabolites2017Independent thesis Basic level (degree of Bachelor), 10,5 credits / 16 HE creditsStudent thesis
    Abstract [en]

    Acrylfentanyl is a synthetic opioid that has been widely used in the last year. To help in the fight against synthetic drugs two potential metabolites of acrylfentanyl, one monohydroxy and one dihydroxy were synthesized. These metabolites will hopefully later be implemented in the analytical methods for metabolites of acrylfentanyl in urine by the Swedish National Board of Forensic Medicine.

    To have metabolites for analysis are very important as they are the main target in drug testing.

    The method used to synthesize the metabolites is a five-step synthesis with an additional 6th step for the dihydroxy metabolite. The methods used in the synthesis includes protection of amine with tert-butyloxycarbonyl, reductive amination with sodium triaceto boronhydride, alkylation and demethylation with boron tribromide. The methods used produced good results with high yields in nearly all steps.

  • 59.
    Algarra, Andres G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Insights into the Isomerism of Hexacoordinate Metal-Sarcophagine Complexes: The Relationship between Structure and Stability2015In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, no 3, p. 503-511Article in journal (Refereed)
    Abstract [en]

    The hexacoordinate complexes that the macrobicyclic ligands {(NH3)(2)sar)(2+) and {NMe3)(2)sar}(2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) form with transition metals such as Co-III, Co-II and Cu-II can adopt several isomeric structures. In this article, we have firstly employed DFT methods lo compute the relative stability of their Delta-ob(3), Delta-ob(2)lel, Delta-lel(2)ob and Delta-lel(3) isomers, as well as the activation barriers for their interconversion. In agreement with the experimental data, the results show that, in general, the different isomers of the Co-III and Co-II complexes present similar free energies, whereas the Cu-II complexes show a strong tendency towards the lel(3) form. In addition, the interplay between the structure and stability of these species has been studied by combining shape maps with a distortion/interaction energy analysis. In contrast to the geometries close to the ideal octahedron that all the studied Co complexes present, the le)3 structures of [Cu{(NH3)(2)sar}](4+) and [Cu{(NMe3)(2)sar](4+) are better described. as trigonal prisms. In such structures the ligand adopts a conformation significantly more stable than in the other isomers, and this drives the formation of lel(3)-[Cu{(NH3)(2)sar}](4+) and lel(3)-[Cu{(NNe3)(2)sar}](4+). Overall, the results show a clear relationship between the stability of a given isomer and its degree of distortion with respect to the ideal octahedron (or trigonal prism), with the latter being ultimately dependent on the transition metal and its radius.

  • 60. Ali, Majid
    et al.
    Bashir, Tariq
    University of Borås, School of Engineering.
    Persson, Nils-Krister
    Skrifvars, Mikael
    University of Borås, School of Engineering.
    Stretch Sensing Properties of PEDOT Coated Conductive Yarns Produced by OCVD Process2011Conference paper (Refereed)
  • 61.
    Ali, Tara
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of O-Polysaccharides from Diarrhoeal Escherichia coli2007Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis describes the structural analysis of O-polysaccharides from the Gram-negative bacterium Escherichia coli that is a diarrhoeal pathogen. The Escherichia coli serotypes investigated were O178, O171, O166 and O128. The methods used in these studies were nuclear magnetic resonance spectroscopy and component analysis.

    All analysed serotypes had pentasaccharide repeating units. E. coli strain O128 and O166 was shown to have the topology of four carbohydrate residues in the backbone while the 5-residue backbone is found in E. coli O178 and O171.

    The biological repeating units have been determined for the analysed polysaccharides and it was shown that all of the serotypes studied had a 3-substituted N-acetylgalactosamine residue at the reducing end. From this it was deduced that the terminal end of E. coli O171 and O128 have sialic acid and blood type antigens, respectively. This should make E. coli O171 and O128 less recognizable to the immune system as a foreign invader. This can result in that E. coli O171 and O128 may evade the immune system more easily.

  • 62.
    Ali, Tara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural determination of the O-antigenic polysaccharide from Escherichia coli O1662007In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 342, no 2, p. 274-278Article in journal (Refereed)
  • 63. Almroth, Bethanie M. Carney
    et al.
    Gunnarsson, Lina M.
    Cuklev, Filip
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kristiansson, Erik
    Larsson, D. G. Joakim
    Waterborne beclomethasone dipropionate affects the physiology of fish while its metabolite beclomethasone is not taken up2015In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 511, p. 37-46Article in journal (Refereed)
    Abstract [en]

    Asthma is commonly treated with inhalable glucocorticosteroids, including beclomethasone dipropionate (BDP). This is a synthetic prodrug which is metabolized to the more active monopropionate (BMP) and free beclomethasone in humans. To evaluate potential effects of residual drugs on fish, we conducted a 14 day flow-through exposure experiment with BDP and beclomethasone using rainbow trout, and analyzed effects on plasma glucose, hepatic glutathione and catalase activity together with water and body concentrations of the BDP, BMP and beclomethasone. We also analyzed hepatic gene expression in BDP-exposed fish by micro-array and quantitative PCR Beclomethasone (up to 0.65 mu g/L) was not taken up in the fish while BDP (0.65 and 0.07 mu g/L) resulted in accumulation of both beclomethasone, BMP and BDP in plasma, reaching levels up to those found in humans during therapy. Accordingly, exposure to 0.65 mu g/L of BDP significantly increased blood glucose as well as oxidized glutathione levels and catalase activity in the liver. Exposure to beclomethasone or the low concentration of BDP had no effect on these endpoints. Both exposure concentrations of BDP resulted in significantly higher transcript abundance of phosphoenolpyruvate carboxykinase involved in gluconeogenesis, and of genes involved in immune responses. As only the rapidly metabolized prodrug was potent in fish, the environmental risks associated with the use of BDP are probably small. However, the observed physiological effects in fish of BDP at plasma concentrations known to affect human physiology provides valuable input to the development of read-across approaches in the identification of pharmaceuticals of environmental concern.

  • 64. Alogheli, Hiba
    Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffoldIn: Article in journal (Refereed)
  • 65. Alonso, Diego
    et al.
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Deprotection of Sulfonyl Aziridines1998In: J. Org. Chem., no 63, p. 9455-9461Article in journal (Refereed)
  • 66. Alonso, Diego
    et al.
    Bertilsson, Sophie
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Johnsson, Sandra
    Nordin, Sofia
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Södergren, Mikael
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    New Expedient Route to Both Enantiomers of Nonproteinogenic a-Amino Acid Derivatives from the Unsaturated 2-Aza-Bicyclo Moiety1999In: J. Org. Chem., no 64, p. 2276-2280Article in journal (Refereed)
  • 67. Alonso, Diego
    et al.
    Brandt, Peter
    Nordin, Sofia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Andersson, Pher
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Ru(arene)(amino alcohol)-Catalyzed Transfer Hydrogenation of Ketones: Mechanism and Origin of Enantioselectivity1999In: J. Am. Chem. Soc., no 121, p. 9580-9588Article in journal (Refereed)
    Abstract
  • 68. Alonso, Diego
    et al.
    Guijarro, David
    Pinho, Pedro
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Temme, Oliver
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    (1S,3R,4R)-2-Azanorbornylmethanol, an Efficient Ligand for Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation of Ketones1998In: J. Org. Chem., no 63, p. 2749-2751Article in journal (Refereed)
  • 69.
    Alpe, Marianne
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of oligosaccharides related to the capsular polysaccharides of Streptococcus pneumoniae serotype 9 and of Cryptococcus neoformans2003Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present investigation, synthesis of oligosaccharides corresponding to structural elements present in the capsular polysaccharides of Streptococcus pneumoniae and Cryptococcus neoformans has been achieved. The first two sections describe the synthesis of spacer-equipped oligosaccharides corresponding to structures from the CPS of Streptococcus pneumoniae serotypes 9N, 9A and 9L, the production of which involved synthetic challenges such as the construction of β-ManNAc and α-GlcA linkages. The former challenge was met by employing azide displacement of a 2-O-triflate substituent on a β-glucoside, whereas the latter task was accomplished utilizing thioethyl glucuronic acid donors in the presence of various promoters. The pentasaccharide product obtained correspond to the complete repeating unit of the CPS of serotype 9A.

    The last two sections of this thesis describe the construction of thioglycoside di- and trisaccharide building blocks containing α-Man, β-Xyl, β-GlcA and 6-O-acetyl motifs, as well as subsequent assembly of these building blocks into oligosaccharides corresponding to the repeating units of the capsular polysaccharide of the yeast Cryptococcus neoformans. The GlcA moiety was introduced via trichloroacetimidate coupling involving the peracetylated glucuronic acid methyl ester donor, after which the subsequent necessary benzylation was performed with the di- and trisaccharides. All of the target oligosaccharides were synthesized as amino-spacer glycosides in order to make conjugation to a carrier protein possible.

  • 70.
    Alvi, Muhammad Rouf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Low-coordinate Organosilicon Chemistry: Fundamentals, Excursions Outside the Field, and Potential Applications2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis reports on unsaturated silicon compounds, as well as excursions from these into germanium chemistry, single molecule electronics, and silyl protective group chemistry. Both experimental and computational investigations were performed.

    Potassium germenolates were synthesized through reactions of tris(timethylsilyl) substituted acyl- and carbamylgermanes with potassium tert-butoxide. The potassium germenolates calculated by density functional theory have pyramidal structures at the Ge atoms, similar to the Si in the corresponding potassium silenolates, indicating negative charge on germanium rather than on oxygen. Germenolates also display germyl anion-like reactivity instead of germene-like reactivity as they are alkylated at Ge and initiate anionic polymerization of dienes rather than form [4+2] cycloadducts. The NMR chemical shifts reveal more negative charge at Ge in germenolates than at Si in analogous silenolates.

    Computations indicate that silabenzenes and silapyridines are reachable via [1,3]-silyl shifts from cyclic conjugated acylsilanes. Differently sized substituents were considered to prevent dimerizations, and 1-triisopropylsilyl-2-triisopropylsiloxy-6-tert-butylsilabenzene is a good synthetic target. Computations also show that silaphenolates are species with negative charge primarily localized at oxygen atom. Their planar structures, bond lengths, and NICS values reveal significant influence of aromaticity. Electrostatic repulsion should increase their stability, however, steric bulk is also important.

    Furthermore, it was found computationally that [1,3]-silyl shift from an acylsilane to a silene can function as a molecular switch reaction. Conductance calculations support this proposition.  

    Finally, tris(trimethylsilyl)silylmethaneamide (hypersilylamide) together with catalytic amounts of triflic acid were found to be efficient for protection of a range of alkyl and aryl alcohols and thiols in good to excellent yields. The protocol can be used to protect the less hindered OH group of a diol and has a broad functional group tolerance. A catalytic cycle is proposed. Hypersilyl protected alcohols and thiols are deprotected efficiently under photolytic conditions.

  • 71.
    Alvi, Muhammad Rouf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Anas, Saithalavi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Lozinski, Kaitlin
    Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC) and Department of Chemistry, University of Richmond, UR 1099, 28 Westhampton Way, VA 23173, USA.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Scope and Limitations of an Acid Catalyzed Protocol for Hypersilyl Protection of Alcohols Manuscript (preprint) (Other academic)
    Abstract [en]

    A highly efficient and convenient triflic acid (TfOH) catalyzed protocol for the protection of various functionalized alcohols in CH2Cl2 at ambient temperature using tris(trimethylsilyl)silyl-N,N-dimethyl-methaneamide (hypersilylamide) 1 as the protecting reagent is developed. Herein, results on the scope and limitations of this protocol for a number of functionalized alcohols are presented. This method was found to be effective for the selective protection of less hindered OH groups in different classes of diols containing both pri/tert, sec/tert, or aromatic/aliphatic hydroxyl groups. In general, our protocol exhibited excellent functional group tolerance in the protection of alcohols containing alkoxy, keto, amino, as well as halo substituents in good to excellent yields.

  • 72.
    Alvi, Muhammad Rouf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Burkhard O., Jahn
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Computational Investigation of Brook-Type Silabenzenes and Their Possible Formation through [1,3]-Si -> O Silyl Shifts2013In: Organometallics, ISSN 0276-7333, E-ISSN 1520-6041, Vol. 32, no 1, p. 16-28Article in journal (Refereed)
    Abstract [en]

    Quantum chemical calculations with the M062X hybrid meta density functional theory method were performed in order to examine formation of Brook-type silabenzenes 4a 4l, silapyridines 6a 6d, and five-membered ring silaheteroaromatics 8a8d through [1,3]-trimethylsilyl (TMS) and [1,3]-tri(isopropyl)silyl (TIPS) shifts from a tetrahedral silicon atom to an adjacent carbonyl oxygen of cyclic conjugated acylsilane precursors. All Brook-type silabenzenes and silapyridines, having a 2-trialkylsiloxy substituent, are at lower relative energies than their precursors, whereas silaheteroaromatics 8a 8d are found at slightly higher energies. The free energies of activation for the thermal [1,3]-TMS shifts range from 29 to 44 kcal/mol, with the lowest for a Brook-type silapyridine and the highest for a silafuran. The geometries of the Brook-type silabenzenes, silapyridines, silafuran and silathiophene indicate aromatic character, but the silapyrroles are nonaromatic. At M062X/6-311+G(d)//M062X/6-31G(d) level all Brook-type silabenzene dimers studied herein are more stable than two silabenzenes, also for a silabenzene with bulky TIPS, OTIPS and tert-butyl substituents (4l). Yet, comparisons of the B3LYP/6-31G(d) dimerization energies of 4l with that of the isolable 1-Tbt-silabenzene (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl) of Tokitoh [J. Chin. Chem. Soc. 2008, 55, 487] indicate that 4l will also be a monomeric silabenzene, and thus, a suitable synthetic target.

  • 73.
    Alvi, Muhammad Rouf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Jahn, Burkhard O.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Tibbelin, Julius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Baumgartner, Judith
    Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria.
    Gómez, Cesar Pay
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Highly Efficient and Convenient Acid Catalyzed Hypersilyl Protection of Alcohols and Thiols by Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide2012Article in journal (Other academic)
    Abstract [en]

    Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide, herein named hypersilylamide, is a convenient and efficient source of the hypersilyl group in the first widely applicable acid catalyzed protocol for silyl group protection of primary, secondary, tertiary alkyl as well as aryl alcohols and thiols in high yields. The sole by-product is N,N-dimethylformamide (DMF) and a range of solvents can be used, including DMF. A high selectivity in the protection of diols can be achieved, also for diols with very small differences in the steric demands at the two hydroxyl groups. Moreover, in the protection of equivalent alcohol and thiol sites the protection of the alcohol is faster, allowing for selective protection in high yields. Quantum chemical calculations at the M062X hybrid meta density functional theory level give insights on the mechanism for the catalytic process. Finally, the hypersilyl group is easily removed from all protected alcohols and thiols examined herein by irradiation at 254 nm.

  • 74.
    Amirkhanov, N V
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Chattopadhyaya, J
    The RNase H Affinity and Cleavage of the target RNA in the Antisense-RNA Hybrid Duplexes Containing various 3’-Tethered Substituents in the Antisense Strand.2002In: J. Chem. Soc. Perkin 2, Vol. 2, p. 271-281Article in journal (Refereed)
  • 75.
    Amirkhanov, N V
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Pradeepkumar, P I
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Chattopadhyaya, J
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Kinetic Analysis of the RNA Cleavage of the oxetane modified Antisense-RNA Hybrid Duplex by RNase H.2002In: J. Chem. Soc. Perkin 2, Vol. 5, p. 976-984Article in journal (Refereed)
  • 76.
    An, Junxue
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    The Ru complexes containing pyridine-dicarboxylate ligand: electronic effect on their catalytic activity toward water oxidation2011In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 155, p. 267-275Article in journal (Refereed)
    Abstract [en]

    Two series of mononuclear ruthenium complexes [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid; L = 4-methoxypyridine, 1; pyridine, 2; pyrazine, 3) and [Ru(pdc)L-2(dmso)] (dmso = dimethyl sulfoxide; L = 4-methoxypyridine, 4; pyridine, 5) were synthesized and spectroscopically characterized. Their catalytic activity toward water oxidation has been examined using Ce-IV (Ce(NH4)(2)(NO3)(6)) as the chemical oxidant under acidic conditions. Complexes 1, 2 and 3 are capable of catalyzing Ce-IV-driven water oxidation while 4 and 5 are not active. Electronic effects on their catalytic activity were illustrated: electron donating groups increase the catalytic activity.

  • 77.
    Anderlund, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear Manganese Complexes for Artificial Photosynthesis: Synthesis and Properties2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II.

    The redox properties of these complexes have been investigated with electro chemical methods and the structure of the complexes has been investigated with different X-ray techniques. Structural aspects and the effect of water on the redox properties have been shown.

    One of the manganese complexes has been covalently linked in a triad donor-photosensitizer-acceptor (D–P–A) system. The kinetics of this triad has been investigated in detail after photo excitation with both optical and EPR spectroscopy. The formed charge separated state (D–P–A+) showed an unusual long lifetime for triad based on ruthenium photosensitizers.

    The thesis also includes a study of manganese-salen epoxidation reactions that we believe can give an insight in the oxygen transfer mechanism in the water oxidising complex in photosystem II.

  • 78.
    Anderson, Mattias
    et al.
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Afewerki, Samson
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences.
    Berglund, Per
    AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Biotechnol, Div Ind Biotechnol, SE-10691 Stockholm, Sweden.
    Cordova, Armando
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Natural Sciences. Stockholm Univ, Dept Organ Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden.
    Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 9, p. 2113-2118Article in journal (Refereed)
    Abstract [en]

    The total synthesis of capsaicin analogues was performed in one pot, starting from compounds that can be derived from lignin. Heterogeneous palladium nanoparticles were used to oxidise alcohols to aldehydes, which were further converted to amines by an enzyme cascade system, including an amine transaminase. It was shown that the palladium catalyst and the enzyme cascade system could be successfully combined in the same pot for conversion of alcohols to amines without any purification of intermediates. The intermediate vanillyl-amine, prepared with the enzyme cascade system, could be further converted to capsaicin analogues without any purification using either fatty acids and a lipase, or Schotten-Baumann conditions, in the same pot. An aldol compound (a simple lignin model) could also be used as starting material for the synthesis of capsaicin analogues. Using l-alanine as organocatalyst, vanillin could be obtained by a retro-aldol reaction. This could be combined with the enzyme cascade system to convert the aldol compound to vanillylamine in a one-step one-pot reaction.

  • 79.
    Anderson, Mattias
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Afewerki, Samson
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Córdova, Armando
    Chemoenzymatic amination of alcohols by combining oxidation catalysts with transaminases in one potManuscript (preprint) (Other academic)
    Abstract [en]

    Chemoenzymatic methods for the amination of alcohols have been developed. The reactions were performed in a one-pot two-step fashion, where the alcohol starting material was first oxidized to the corresponding carbonyl compound and then subsequently converted to the amine product with an enzymatic system based on an amine transaminase. The enzyme system was able to operate in a water/organic solvent two-phase system in the presence of either a heterogeneous palladium(0) catalyst or a homogeneous copper(I) catalyst. High conversions to the product amines were achieved for a range of substituted benzyl alcohols and similar compounds, but unfortunately the use of aliphatic alcohols resulted in lower conversions and secondary alcohols could not be converted to the corresponding amines with this methodology.

  • 80. Anderson, Mattias
    et al.
    Afewerki, Samson
    Berglund, Per
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University, Sweden.
    Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 9, p. 2113-2118Article in journal (Refereed)
    Abstract [en]

    The total synthesis of capsaicin analogues was performed in one pot, starting from compounds that can be derived from lignin. Heterogeneous palladium nanoparticles were used to oxidise alcohols to aldehydes, which were further converted to amines by an enzyme cascade system, including an amine transaminase. It was shown that the palladium catalyst and the enzyme cascade system could be successfully combined in the same pot for conversion of alcohols to amines without any purification of intermediates. The intermediate vanillyl-amine, prepared with the enzyme cascade system, could be further converted to capsaicin analogues without any purification using either fatty acids and a lipase, or Schotten-Baumann conditions, in the same pot. An aldol compound (a simple lignin model) could also be used as starting material for the synthesis of capsaicin analogues. Using l-alanine as organocatalyst, vanillin could be obtained by a retro-aldol reaction. This could be combined with the enzyme cascade system to convert the aldol compound to vanillylamine in a one-step one-pot reaction.

  • 81.
    Andersson, Barbro
    Umeå University, Faculty of Science and Technology.
    Analysis of plant growth regulating substances1982Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Natural plant growth regulators (phytohormones) are a group of organic compounds which, in very small amounts, act as regulators of physiological processes in plants.Methods were developed for the analysis of phytohormones in samples from Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris (L.) Karst»). Identification of abscisic acid, 3-indoleacetic acid, gibbe-rellin Ag and the conjugate N-(3-indoleacetyl)aspartic acid was performed by GC-MS as their methyl esters. A quantitative determination of abscisic acid was made by GC-ECD and this method was also applied to anther samples of Anemone canadensis. 3-Indole-acetic acid and N-(3-indoleacetyl)aspartic acid were quantified by reversed-phase HPLC and spectrofluorimetric detection. Dichlorophene, used as a growth regulator in containerized seedlings of pine and spruce, was analysed by GC-MID in peat and paper.

  • 82.
    Andersson, Claes-Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
      Appendix: Experimental details for tricarbonyl chromium complexes2011Other (Other academic)
  • 83.
    Andersson, Claes-Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Chemistry of Carbon Nanostructures: Functionalization of Carbon Nanotubes and Synthesis of Organometallic Fullerene Derivatives2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is based on two main parts. The first part concerns purification and functionalization of carbon nanotubes (papers I-III), and the second part is related to the synthesis of organometallic fullerene derivatives (papers IV-VII):

    Two oxidative methods involving aqueous nitric acid were compared with respect to their capability to introduce carboxylic groups into single walled carbon nanotubes, and several literature methods for esterification and amidation of these groups have been evaluated with focus on efficiency and reproducibility in forming covalently functionalized products soluble in organic media. Amidation proceeding via a SWNT-(COCl)n intermediate yielded the expected covalent product, whereas carboxylate salt formation dominated with other attempted methods. Esterification was achieved via the acyl chloride method and via alkylation of SWNT-(COO)n, the latter being the more efficient method.

    A new, reagent-free method for purification of single- and multi walled carbon nanotubes has been developed. Microwave treatment dissociates non-nanotube carbon and disperses it into an organic solvent, resulting in very pure carbon nanotubes within a few minutes of heating, without the involvement of acidic/oxidative reagents. According to thermogravimetric analysis, Raman and IR spectroscopy, as well as SEM, the process yields nanotubes with a low degree of defects.

    A non-covalent approach has been employed to prepare nanotubes functionalized with glycosides. Derivatives of galactose and lactose were covalently linked to a pyrene moiety and the thus formed pyrene-glycosides were non-covalently attached to single- and multi walled carbon nanotubes by π-π interactions. Fluorescence titrations have been used to quantify the formed supramolecular assemblies, which for SWNTs exhibits increased water solubility.

    A fulleropyrrolidine-(tricarbonyl)chromium complex was synthesized and fully characterized. IR spectroelectrochemistry was used to probe the redox state of the fullerene and provided evidence for electronic communication between the two electroacive moieties. A C60-ferrocene-C60 triad system was synthesized and characterized. Cyclic voltammetry and fluorescence studies suggested electronic communication between ferrocene and the two fullerenes. Finally, the synthesis and initial characterization of short fullerene-ferrocene oligomers are presented.

  • 84.
    Andersson, Claes-Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Grennberg, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Short ferrocene-[60]fulleropyrrolidine oligomers. A preliminary account on synthetic studiesManuscript (preprint) (Other academic)
    Abstract [en]

    A synthetic strategy towards short fullerene based organometallic oligomers is reported. The synthetic approach is based on the secondary functionalization of N-unsubstituted fulleropyrrolidines with ferrocene dicarboxylic acid chloride. Preliminary characterization by mass spectrometry, UV/Vis and NMR suggest a trimer or tetramer structure.

  • 85.
    Andersson, Claes-Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Nyholm, Leif
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
    Grennberg, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Synthesis and characterization of a ferrocene-linked bis-fullerene[60] dumbbell2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 8, p. 2374-2381Article in journal (Refereed)
    Abstract [en]

    A new [60]fullerene dumbbell consisting of two fulleropyrrolidines connected to a central ferrocene unit by amide linkages has been prepared and fully characterized by elemental analysis, 1H NMR, UV/Vis, fluorescence and mass spectrometry. The electrochemical properties as determined by cyclic voltammetry show ground state electronic communication between the ferrocene and the fullerene units. In addition, the preparaton of a ferrocene building block for an alternative linking approach is presented.

  • 86.
    Andersson, David C.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Martinez, N.
    Zeller, D.
    Rondahl, S. H.
    Koza, M. M.
    Frick, B.
    Ekstrom, F.
    Peters, J.
    Linusson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Changes in dynamics of alpha-chymotrypsin due to covalent inhibitors investigated by elastic incoherent neutron scattering2017In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, no 37, p. 25369-25379Article in journal (Refereed)
    Abstract [en]

    An essential role of enzymes is to catalyze various chemical reactions in the human body and inhibition of the enzymatic activity by small molecules is the mechanism of action of many drugs or tool compounds used to study biological processes. Here, we investigate the effect on the dynamics of the serine protease alpha-chymotrypsin when in complex with two different covalently bound inhibitors using elastic incoherent neutron scattering. The results show that the inhibited enzyme displays enhanced dynamics compared to the free form. The difference was prominent at higher temperatures (240-310 K) and the type of motions that differ include both small amplitude motions, such as hydrogen atom rotations around a methyl group, and large amplitude motions, such as amino acid side chain movements. The measurements were analyzed with multivariate methods in addition to the standard univariate methods, allowing for a more in-depth analysis of the types of motions that differ between the two forms. The binding strength of an inhibitor is linked to the changes in dynamics occurring during the inhibitor-enzyme binding event and thus these results may aid in the deconvolution of this fundamental event and in the design of new inhibitors.

  • 87.
    Andersson, Hans
    Umeå University, Faculty of Science and Technology, Chemistry.
    Reaction Between Grignard reagents and Heterocyclic N-oxides: Synthesis of Substituted Pyridines, Piperidines and Piperazines2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the development of new synthetic methodologies for preparation of bioactive interesting compounds, e.g. substituted pyridines, piperidines or piparazines. Thesecompounds are synthesized from commercially available, cheap and easily prepared reagents, videlicet the reaction between Grignard reagents and heterocyclic N-oxides.

     The first part of this thesis deals with an improvement for synthesis of dienal-oximes and substituted pyridines. This was accomplished by a rapid addition of Grignard reagents to pyridine N-oxides at rt. yielding a diverse set of substituted dienal-oximes. During these studies, it was observed that the obtained dienal-oxmies are prone to ring-close upon heating. By taking advantage of this, a practical synthesis of substituted pyridines was developed.

    In the second part, an ortho-metalation of pyridine N-oxides using Grignard reagents is discussed. The method can be used for incorporation of a range of different electrophiles, including aldehydes, ketones and halogens. Furthermore, the importance for incorporation of halogens are exemplified through a Suzuki–Miyaura coupling reaction of 2-iodo pyridine N-oxides and different boronic acids. Later it was discovered that if the reaction temperature is kept below -20 °C, the undesired ringopening can be avoided. Thus, the synthesis of 2,3-dihydropyridine N-oxide, by reacting Grignard reagents with pyridine N-oxides at -40 °C followed by sequential addition of aldehyde or ketone, was accomplished. The reaction provides complete regio- and stereoselectivity yielding trans-2,3-dihydropyridine N-oxides in good yields. These intermediate products could then be used for synthesis of either substituted piperidines, by reduction, or reacted in a Diels–Alder cycloaddtion to give the aza-bicyclo compound.

    In the last part of this thesis, the discovered reactivity for pyridine N-oxides, is applied on pyrazine N-oxides in effort to synthesize substituted piperazines. These substances are obtained by the reaction of Grignard reagents and pyrazine N-oxides at -78 °C followed by reduction and protection, using a one-pot procedure. The product, a protected piperazine, that easily can be orthogonally deprotected, allowing synthetic modifications at either nitrogens in a fast and step efficient manner. Finally, an enantioselective procedure using a combination of PhMgCl and (-)-sparteine is discussed, giving opportunity for a stereoselective synthesis of substituted piperazines.

  • 88.
    Andersson, Håkan S.
    et al.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Figueredo, Sharel M.
    Haugaard-Kedström, Linda M.
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Bengtsson, Elina
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    Daly, Norelle L.
    Qu, Xiaoqing
    Craik, David J.
    Ouellette, Andre J.
    Rosengren, K. Johan
    Linnaeus University, Faculty of Science and Engineering, School of Natural Sciences.
    The alpha-defensin salt-bridge induces backbone stability to facilitate folding and confer proteolytic resistance2012In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 43, no 4, p. 1471-1483Article in journal (Refereed)
    Abstract [en]

    Salt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein-protein interactions. A conserved salt-bridge is a canonical feature of the alpha-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell alpha-defensin cryptdin-4 (Crp4) and peptide variants with mutations at Arg(7) or Glu(15) residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability. NMR analyses showed that both (R7G)-Crp4 and (E15G)-Crp4 adopt native-like structures, evidence of fold plasticity that allows peptides to reshuffle side chains and stabilize the structure in the absence of the salt-bridge. In contrast, introduction of a large hydrophobic side chain at position 15, as in (E15L)-Crp4 cannot be accommodated in the context of the Crp4 primary structure. Regardless of which side of the salt-bridge was mutated, salt-bridge variants retained bactericidal peptide activity with differential microbicidal effects against certain bacterial cell targets, confirming that the salt-bridge does not determine bactericidal activity per se. The increased structural flexibility induced by salt-bridge disruption enhanced peptide sensitivity to proteolysis. Although sensitivity to proteolysis by MMP7 was unaffected by most Arg(7) and Glu(15) substitutions, every salt-bridge variant was degraded extensively by trypsin. Moreover, the salt-bridge facilitates adoption of the characteristic alpha-defensin fold as shown by the impaired in vitro refolding of (E15D)-proCrp4, the most conservative salt-bridge disrupting replacement. In Crp4, therefore, the canonical alpha-defensin salt-bridge facilitates adoption of the characteristic alpha-defensin fold, which decreases structural flexibility and confers resistance to degradation by proteinases.

  • 89.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Karlsson, Jesper G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Piletsky, S A
    Koch-Schmidt, Ann-Christin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Mosbach, K
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Influence of monomer-template ratio on selectivity and load capacity of molecularly imprinted polymers: indications of template self-association1999In: Journal of Chromatography A, Vol. 848, no 1-2, p. 39-49Article in journal (Refereed)
  • 90.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Karlsson, Jesper G.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Svenson, Johan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Can template-template self-association contribute to polymer-ligand recognition characteristics?2000Conference paper (Refereed)
  • 91.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Koch-Schmidt, Ann-Christin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ohlson, Sten
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Study of the Nature of Recognition in Molecularly Imprinted Polymers1996In: J. Mol. Recogn., Vol. 9, p 675-682Article in journal (Refereed)
  • 92.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Molecular Imprinting. Recent innovations in synthetic polymer receptor and enzyme mimics1997In: Recent Research Developments in Pure and Applied Chemistry, Vol. 1, p. 133-157Article in journal (Refereed)
  • 93.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Spectroscopic evaluation of molecular imprinting polymerization systems1997In: Bioorganic Chemistry, Vol. 25, p. 203-211Article in journal (Refereed)
  • 94.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    The development of molecular imprinting2000Other (Other academic)
  • 95.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Piletsky, S A
    Mosbach, K
    Koch-Schmidt, Ann-Christin
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Novel recognition elements for improved molecularly imprinted polymer stereoselectivity1997Conference paper (Refereed)
  • 96.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ramström, O
    Crown Ethers as a Tool for the Preparation of Molecularly Imprinted Polymers1998In: Journal of Molecular Recognition, Vol. 11, p. 103-106Article in journal (Refereed)
  • 97.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ramström, Olof
    Lund University.
    Crown ethers as a tool for the preparation of molecularly imprinted polymers1997Conference paper (Other academic)
  • 98.
    Andersson, Ida E.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Modified Glycopeptides Targeting Rheumatoid Arthritis: Exploring molecular interactions in class II MHC/glycopeptide/T-cell receptor complexes2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to degradation of cartilage and bone mainly in peripheral joints. In collagen-induced arthritis (CIA), a mouse model for RA, activation of autoimmune CD4+ T cells depends on a molecular recognition system where T-cell receptors (TCRs) recognize a complex between the class II MHC Aq protein and CII259-273, a glycopeptide epitope from type II collagen (CII). Interestingly, vaccination with the Aq/CII259-273 complex can relieve symptoms and cause disease regression in mice. This thesis describes the use of modified glycopeptides to explore interactions important for binding to the Aq protein and recognition by autoimmune T-cell hybridomas obtained from mice with CIA.

    The CII259-273 glycopeptide was modified by replacement of backbone amides with different amide bond isosteres, as well as substitution of two residues that anchor the glycopeptide in prominent pockets in the Aq binding site. A three-dimensional structure of the Aq/glycopeptide complex was modeled to provide a structural basis for interpretation of the modified glycopeptide’s immunological activities. Overall, it was found that the amide bond isosteres affected Aq binding more than could be explained by the static model of the Aq/glycopeptide complex. Molecular dynamics (MD) simulations, however, revealed that the introduced amide bond isosteres substantially altered the hydrogen-bonding network formed between the N-terminal 259-265 backbone sequence of CII259-273 and Aq. These results indicated that the N-terminal hydrogen-bonding interactions follow a cooperative model, where the strength and presence of individual hydrogen bonds depended on the neighboring interactions.

    The two important anchor residues Ile260 and Phe263 were investigated using a designed library of CII259-273 based glycopeptides with substitutions by different (non-)natural amino acids at positions 260 and 263. Evaluation of binding to the Aq protein showed that there was scope for improvement in position 263 while Ile was preferred in position 260. The obtained SAR understanding provided a valuable basis for future development of modified glycopeptides with improved Aq binding. Furthermore, the modified glycopeptides elicited varying T-cell responses that generally could be correlated to their ability to bind to Aq. However, in several cases, there was a lack of correlation between Aq binding and T-cell recognition, which indicated that the interactions with the TCRs were determined by other factors, such as presentation of altered epitopes and changes in the kinetics of the TCR’s interaction with the Aq/glycopeptide complex.

    Several of the modified glycopeptides were also found to bind well to the human RA-associated DR4 protein and elicit strong responses with T-cell hybridomas obtained from transgenic mice expressing DR4 and the human CD4 co-receptor. This encourages future investigations of modified glycopeptides that can be used to further probe the MHC/glycopeptide/TCR recognition system and that also constitute potential therapeutic vaccines for treatment of RA. As a step towards this goal, three modified glycopeptides presented in this thesis have been identified as candidates for vaccination studies using the CIA mouse model.

  • 99. Andersson, L I
    et al.
    Nicholls, Ian Alan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Mosbach, K
    Immunoassays using molecularly imprinted polymers1995In: Immunoanalysis of agrochemicals: emerging technologies / [ed] Judd O. Nelson, Alexander E. Karu and Rosie B. Wong, American Chemical Society (ACS), 1995, p. 89-97Conference paper (Other academic)
  • 100.
    Andersson, Linnéa
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry. Oorganisk kemi.
    Exploring expandable microspheres as a novel pore former in gel-cast macroporous alumina2008Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Expandable microspheres have been explored as sacrificial templates for the production of macroporous ceramics. Concentrated alumina powder suspensions that contain expandable microspheres have been consolidated by gel-casting. The temperature range for the setting of the monomers and cross-linkers in the gel-casting system was tailored to allow the gas-filled polymer spheres to expand before the surrounding powder body became rigid. It has been demonstrated that it is possible to tune and tailor the porosity up to 86 % and the pore size distribution from 15 up to 150 micrometers by controlling the amount and size of the expandable microspheres. Scanning electron microscopy showed that the porosity became more and more open as the total porosity increased. This was corroborated by a preliminary study by X-ray µ Computed Tomography, which showed a very high connectivity between the pores, in a macroporous alumina body with a high porosity. The connectivity was reduced when alumina particles were deposited as a homogenous coating of on the expandable microspheres by a layer-by-layer coating process. The expandable microspheres has the advantage that a relatively low amount of organic material results in a large pore volume, which allow rapid and facile burn-out. It was demonstrated that the temperature induced expansion of the microspheres, and the associated increase of the suspension volume could be used as a novel casting method to yield macroporous alumina bodies with complex shapes. Ceramics produced with this method could find application ranging from bone scaffolds to low mass kiln furniture.

1234567 51 - 100 of 2610
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf