Change search
Refine search result
123456 51 - 100 of 254
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 51.
    Edin, Michaela
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium-catalyzed redox reactions and lipase-catalyzed asymmetric transformations of alcohols2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The major part of this thesis describes the synthesis of enantiopure alcohols and diols by combining ruthenium-catalyzed redox reactions that lead to racemization or epimerization and lipase-catalyzed asymmetric trans-formations in one-pot.

    A mechanistic study of the unexpected facile formation of meso-diacetate products found in enzyme-catalyzed acetylations of alkanediols with Candida antarctica lipase B (CALB) was first performed. By deuterium labeling it was found that the formation of meso-diacetates proceeds via different mechanisms for 2,4-pentanediol and 2,5-hexanediol. Whereas the first reacts via an intramolecular acyl migration, the latter proceeds via a direct, anomalous S-acylation of the alcohol. The acyl migration occurring in the 2,4-pentanediol monoacetate was taken advantage of in asymmetric transformations of substituted 1,3-diols by combining it with a ruthenium-catalyzed epimerization and an enzymatic transesterification using CALB. The in situ coupling of these three processes results in de-epimerization and deracemization of acyclic, unsymmetrical 1,3-diols and constitutes a novel dynamic kinetic asymmetric transformation (DYKAT) concept.

    Racemization of secondary alcohols effected by a new ruthenium complex was combined in one-pot with an enzyme-catalyzed transesterification, leading to a chemoenzymatic dynamic kinetic resolution (DKR) operating at room temperature. Aromatic, aliphatic, heterocyclic and functionalized alcohols were subjected to the procedure. A mechanism for racemization by this ruthenium complex has been proposed and experimental indications for hydrogen transfer within the coordination sphere of ruthenium were found. The same ruthenium catalyst was used for epimerization in DYKAT of 1,2-diols, and a very similar complex was employed in isomerization of allylic alcohols to saturated ketones. The former method is a substrate extension of the above principle applied for DYKAT of 1,3-diols. The combination of a lipase and an organocatalyst was demonstrated by linking a lipase-catalyzed transesterification to a proline-mediated aldol reaction for the production of enantiopure (S)-β-hydroxy ketones and acetylated (R)-aldols.

  • 52.
    Eklund, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Analysis of Carbohydrates: Dynamical Properties and Interactions2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis a computational complement to experimental observables will be presented. Computational tools such as molecular dynamics and quantum chemical tools will be used to aid in the interpretation of experimentally (NMR) obtained structural data. The techniques are applied to study the dynamical features of biologically important carbohydrates and their interaction with proteins. When evaluating conformations, molecular mechanical methods are commonly used. Paper I, highlights some important considerations and focuses on the force field parameters pertaining to carbohydrate moieties. Testing of the new parameters on a trisaccharide showed promising results. In Paper II, a conformational analysis of a part of the repeating unit of a Shigella flexneri bacterium lipopolysaccharide using the modified force field revealed two major conformational states. The results showed good agreement with experimental data. In Paper III, a trisaccharide using Langevin dynamics was investigated. The approach used in the population analysis included a least-square fit technique to match T1 elaxation parameters. The results showed good agreement with experimental T-ROE build-up curves, and three states were concluded to be involved. In Paper IV, carbohydrate moieties were used in the development of prodrug candidates, to “hide” peptide opioid receptor agonists. Langevin dynamics and quantum chemical methods were employed to elucidate the structural preference of the compound. The results showed a chemical shift difference between hydrogens across the ring for the two isomers as well as a difference in the coupling constant, when taking the dynamics into account. In Paper V, the interaction of the Salmonella enteritidis bacteriophage P22 with its host bacterium, involves an initial hydrolysis of the O-antigenic polysaccharide (O-PS). Docking calculations were used to examine the binding between the Phage P22 tail-spike protein and the O-PS repeating unit. Results indicated a possible active site in conjunction with NMR measurements.

  • 53.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition Metal Hydrides: Biomimetic Studies and Catalytic Applications2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, studies of the nature of different transition metal-hydride complexes are described. The first part deals with the enantioswitchable behaviour of rhodium complexes derived from amino acids, applied in asymmetric transfer hydrogenation of ketones. We found that the use of amino acid thio amide ligands resulted in the formation of the R-configured product, whereas the use of the corresponding hydroxamic acid- or hydrazide ligands selectively gave the S-alcohol.

    Structure/activity investigations revealed that the stereochemical outcome of the catalytic reaction depends on the ligand mode of coordination.

    In the second part, an Fe hydrogenase active site model complex with a labile amine ligand has been synthesized and studied. The aim of this study was to find a complex that efficiently catalyzes the reduction of protons to molecular hydrogen under mild conditions. We found that the amine ligand functions as a mimic of the loosely bound ligand which is part of the active site in the hydrogenase.

    Further, an Fe hydrogenase active site model complex has been coupled to a photosensitizer with the aim of achieving light induced hydrogen production. The redox properties of the produced complex are such that no electron transfer from the photosensitizer part to the Fe moiety occurs.

    In the last part of this thesis, the development of a protocol for the transfer hydrogenation of ketones to secondary alcohols without the involvement of transition metal catalysts is described. A variety of ketones were efficiently reduced in 2-propanol using catalytic amounts of alkali alkoxide under microwave irradiation.

  • 54.
    Engelmark Cassimjee, Karim
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kadow, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wikmark, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Svedendahl Humble, Maria
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rothstein, M. L.
    Rothstein, D. M.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications2014In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, no 65, p. 9134-9137Article in journal (Refereed)
    Abstract [en]

    A general combined purification and immobilization method to facilitate biocatalytic process development is presented. The support material, EziG (TM), is based on controlled porosity glass (CPG) or polymer-coated versions thereof (HybCPG) and binds protein affinity tags. Biocatalytic reactions in aqueous and organic media with seven enzymes of biocatalytic interest are shown.

  • 55.
    Engqvist, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Direct Amino Acid-Catalyzed Enantioselective α-Oxidation Reactions and Asymmetric de novo Synthesis of Carbohydrates2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The ability of amino acids to form nucleophilic enamines with aldehydes and ketones has been used in the development of asymmetric α-oxidation reactions with electrophilic oxidizing agents. Singlet molecular oxygen has for the first time been asymmetrically incorporated into aldehydes and ketones, and the products were isolated as their corresponding diols in good yields and ee’s. Organocatalytic α-oxidations of cyclic ketones with iodosobenzene and N-sulfonyloxaziridine were also possible and furnished after reduction the product diols in generally low yields and in low to good ee’s. Amino acids have also been shown to catalyze the formation of carbohydrates by sequential aldol reactions. For example, proline and hydroxy proline mediate a highly selective trimerisation of α-benzyloxyacetaldehyde into allose, which was obtained in >99 % ee. Non linear effect studies of this reaction revealed the largest permanent nonlinear effect observed in a proline-catalyzed reaction to date. Moreover, polyketides were also assembled in a similar fashion by an amino acid-catalyzed one-pot reaction, and was successful for the trimerisation of propionaldehyde, however the sequential cross aldol reactions suffered from lower selectivities. This problem was overcome by the development of a two-step synthesis that enabled the formation of a range of polyketides with excellent selectivities from a variety of aldehydes. The method furnishes the polyketides via the shortest route reported and in comparable product yields to most multi-step synthesis. All polyketides were isolated as single diastereomers with >99 % ee. Based on the observed amino acid-catalysis, amino acids are thought to have taken part in the prebiotic formation of tetroses and hexoses.

  • 56.
    Engström, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective biotransformations using engineered lipases from Candida antarctica2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Enzymes are attractive catalysts in organic synthesis since they are efficient, selective and environmentally friendly. A large number of enzyme-catalyzed transformations have been described in the literature. If no natural enzyme can carry out a desirable reaction, one possibility is to modify an existing enzyme by protein engineering and thereby obtain a catalyst with the desired properties. In this thesis, the development of enantioselective enzymes and their use in synthetic applications is described. 

    In the first part of this thesis, enantioselective variants of Candida antarctica lipase A (CALA) towards α-substituted p-nitrophenyl esters were developed by directed evolution. A highly selective variant of CALA towards p-nitrophenyl 2-phenylpropanoate was developed by pairwise randomization of amino acid residues close to the active site. The E value of this variant was 276 compared to 3 for the wild type.

    An approach where nine residues were altered simultaneously was used to discover another highly enantioselective CALA variant (E = 100) towards an ibuprofen ester. The sterical demands of this substrate made it necessary to vary several residues at the same time in order to reach a variant with improved properties.

    In the second part of the thesis, a designed variant of Candida antarctica lipase B (CALB) was employed in kinetic resolution (KR) and dynamic kinetic resolution (DKR) of secondary alcohols. The designed CALB variant (W104A) accepts larger substrates compared to the wild type, and by the application of CALB W104A, the scope of these resolutions was extended.

    First, a DKR of phenylalkanols was developed using CALB W104A. An enzymatic resolution was combined with in situ racemization of the substrate, to yield the products in up to 97% ee. Secondly, the KR of diarylmethanols with CALB W104A was developed. By the use of diarylmethanols with two different aryl groups, highly enantioselective transformations were achieved.

  • 57.
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Exploring the Molecular Behavior of Carbohydrates by NMR Spectroscopy: Shapes, motions and interactions2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Carbohydrates are essential biomolecules that decorate cell membranes and proteins in organisms. They are important both as structural elements and as identification markers. Many biological and pathogenic processes rely on the identification of carbohydrates by proteins, thereby making them attractive as molecular blueprints for drugs. This thesis describes how NMR spectroscopy can be utilized to study carbohydrates in solution at a molecular level. This versatile technique facilitates for investigations of (i) shapes, (ii) motions and (iii) interactions.

    A conformational study of an E. coli O-antigen was performed by calculating atomic distances from NMR NOESY experiments. The acquired data was utilized to validate MD simulations of the LPS embedded in a membrane. The agreement between experimental and calculated data was good and deviations were proven to arise from spin-diffusion. In another study presented herein, both the conformation and the dynamic behavior of amide side-chains linked to derivatives of D-Fucp3N, a sugar found in the O-antigen of bacteria, were investigated. J-couplings facilitated a conformational analysis and 13C saturation transfer NMR experiments were utilized to measure rate constants of amide cis-trans isomerizations.

    13C NMR relaxation and 1H PFG diffusion measurements were carried out to explore and describe the molecular motion of mannofullerenes. The dominating motions of the mannofullerene spectral density were found to be related to pulsating motions of the linkers rather than global rotational diffusion. The promising inhibition of Ebola viruses identified for a larger mannofullerene can thus be explained by an efficient rebinding mechanism that arises from the observed flexibility in the linker.

    Molecular interactions between sugars and caffeine in water were studied by monitoring chemical shift displacements in titrations. The magnitude of the chemical shift displacements indicate that the binding occurs by a face to face stacking of the aromatic plane of caffeine to the ring plane of the sugar, and that the interaction is at least partly driven by solvation effects. Also, the binding of a Shigella flexneri serotype Y octasaccharide to a bacteriophage Sf6 tail spike protein was investigated. This interaction was studied by 1H STD NMR and trNOESY experiments. A quantitative analysis of the STD data was performed employing a newly developed method, CORCEMA-ST-CSD, that is able to simulate STD data more accurately since the line broadening of protein resonances are accounted for in the calculations.

  • 58.
    Engström, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Muñoz, Antonio
    Illescas, Beatriz M.
    Martin, Nazario
    Ribeiro-Viana, Renato
    Rojo, Javier
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Investigation of glycofullerene dynamics by NMR spectroscopy2015In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 32, p. 8750-8755Article in journal (Refereed)
    Abstract [en]

    Glycofullerenes, in which carbohydrate molecules are attached via a linker to a [60]fullerene core, facilitate spherical presentation of glyco-based epitopes. We herein investigate the dynamics of two glycofullerenes, having 12 and 36 mannose residues at their periphery, by NMR translational diffusion and quantitative C-13 relaxation studies employing a model-free approach for their interpretation. The sugar residues are shown to be highly flexible entities with S-2 < 0.2 in both compounds. Notably, the larger glycofullerene with longer linkers shows faster internal dynamics and higher flexibility than its smaller counterpart. The dynamics and flexibility as well as the slower translational diffusion of the larger glycofullerene, thereby favoring rebinding to a receptor, may together with its spatial extension explain why it is better than the smaller one at blocking the DC-SIGN receptor and inhibiting the infection by pseudotyped Ebola virus particles.

  • 59.
    Erbing, Elis
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sanz-Marco, Amparo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vazquez-Romero, Ana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Malmberg, Jesper
    Johansson, Magnus J.
    Gomez-Bengoa, Enrique
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Base- and Additive-Free Ir-Catalyzed ortho-Iodination of Benzoic Acids: Scope and Mechanistic Investigations2018In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 8, no 2, p. 920-925Article in journal (Refereed)
    Abstract [en]

    A protocol for the C-H activation/iodination of benzoic acids catalyzed by a simple iridium complex has been developed. The method described in this paper allows the ortho-selective iodination of a variety of benzoic acids under extraordinarily mild conditions in the absence of any additive or base in 1,1,1,3,3,3-hexafluoroisopropanol as the solvent. The iridium catalyst used tolerates air and moisture, and selectively gives ortho-iodobenzoic acids with high conversions. Mechanistic investigations revealed that an Ir(III)/Ir(V) catalytic cycle operates, and that the unique properties of HFIP enables the C-H iodination using the carboxylic moiety as a directing group.

  • 60.
    Erbing, Elis
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vazquez-Romero, Ana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tolstoy, Päivi
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    General, Simple, and Chemoselective Catalysts for the Isomerization of Allylic Alcohols: The Importance of the Halide Ligand2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 44, p. 15659-15663Article in journal (Refereed)
    Abstract [en]

    Remarkably simple Ir-III catalysts enable the isomerization of primary and sec-allylic alcohols under very mild reaction conditions. X-ray absorption spectroscopy (XAS) and mass spectrometry (MS) studies indicate that the catalysts, with the general formula [Cp*Ir-III], require a halide ligand for catalytic activity, but no additives or additional ligands are needed.

  • 61.
    Eriksson, Kristofer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development and Applications of Surface-Confined Transition Metal Complexes: Heterogeneous Catalysis and Anisotropic Particle Surfaces2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main focus of this thesis has been directed towards developing novel surface-confined transition metal complexes for applications in heterogeneous catalysis and for the preparation of anisotropic particle surfaces. The first part describes the heterogenization of a homogeneous transition metal-based catalyst tetraphenyl cobalt porphyrin (CoTPP) on silicon wafers and on silica particles. The activity in hydroquinone oxidation for the silica particle-immobilized CoTPPs was found to be increased 100-fold compared to its homogeneous congener whereas the silicon wafer-immobilized CoTPPs achieved lower activity due to the formation of clusters of catalyst molecules on the support surface as detected with atomic force microscopy (AFM). The second part of this thesis describes the development and characterization of anisotropic particle-surfaces by electrochemical site-specific oxidation of surface-confined thiols. Reactive patches or gold gradients could be obtained on the particle surfaces depending on the type of working electrode used and on the electrolyte composition. The particle surface functionalities were characterized with X-ray photoelectron spectroscopy (XPS) and the particle-surface-confined patches and gradients were conjugated with proteins to obtain fluorescence for investigation using fluorescence microscopy. Gold-functionalized siliceous mesocellular foams were further demonstrated to be highly efficient and selective catalysts in the cycloisomerization of 4-alkynoic acids to lactones. The final part of this thesis describes the preparation and characterization of palladium nanoparticles heterogenized in the pores of siliceous mesocellular foam. The nanoparticles were analyzed with transmission electron microscopy (TEM) and found to have a size of 1-2 nm. Primary- and secondary benzylic- and allylic alcohols were oxidized by the heterogeneous palladium nanoparticles in high to excellent yields using air atmosphere as the oxygen source. The nanopalladium catalyst was used up to five times without any decrease in activity and the size of the nanoparticles was retained according to TEM.

  • 62.
    Eriksson, Kristofer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Lars Erik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Göthelid, Emmanuelle
    Department of Physics and Astroniomy Uppsala University.
    Nyholm, Leif
    Department of Chemistry, Uppsala Univeristy.
    Oscarsson, Sven
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Manufacturing of Anisotropic Particles by Site Specific Oxidation of Thiols2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 16, p. 7681-7683Article in journal (Refereed)
    Abstract [en]

    A novel method for the manufacturing of functional anisotropic particles based on an inexpensive and straightforward electrochemical approach is presented. The method enables large-scale manufacturing of anisotropic particles as well as fabrication of multifunctional beads which may be used in the design of barcodes for multiplex diagnostics.

  • 63.
    Eriksson, Kristofer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palmgren, Pal
    Nyholm, Leif
    Oscarsson, Sven
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Electrochemical Synthesis of Gold and Protein Gradients on Particle Surfaces2012In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, no 28, p. 10318-10323Article in journal (Refereed)
    Abstract [en]

    A straightforward, versatile approach to the production of protein gradients on planar and spherical particle surfaces is described. The method is based on the spatially controlled oxidation of thiolated surfaces by Au(III) ions generated via the electrochemical oxidation of a gold electrode in a phosphate-buffered saline solution (10 mM PBS, pH 7.2, 150 mM NaCl). Because the gold electrode is in direct contact with the thiolated surfaces, the released Au(III) ions, which are present as Au(III) chloride complexes, give rise to the formation of a surface gradient of Au(I)-thiolate complexes depending on the local redox potential given by the local Au(III) concentration. As is shown on the basis of the use of X-ray photoelectron spectroscopy and fluorescently labeled proteins, the Au(I)-thiolate complexes can subsequently be functionalized with thiolated proteins, yielding surface density protein gradients on micrometer-sized nonconducting polymer beads as well as linear Au(I)-thiolate gradients on planar silicon surfaces.

  • 64.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kovacs, Helena
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NMR structure analysis of uniformly 13C-labeled carbohydrates2014In: Journal of Biomolecular NMR, ISSN 0925-2738, E-ISSN 1573-5001, Vol. 59, no 2, p. 95-110Article in journal (Refereed)
    Abstract [en]

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of C-13-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly C-13-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-C-13)-sucrose, 342 Da] and one compound of medium molecular weight (C-13-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, similar to 10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The C-13 resonances are traced using C-13-C-13 correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the C-13 resonances, the H-1 chemical shifts are derived in a straightforward manner using one-bond H-1-C-13 correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J (CC) splitting of the C-13 resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either C-13 or H-1 detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T-2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the H-1-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the C-13-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with N-15 at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and C-13-detected (H)CACO spectra.

  • 65.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Li, Shengyu
    Yang, Zhennai
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER2015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 402, p. 87-94Article in journal (Refereed)
    Abstract [en]

    Some lactic acid bacteria, such as those of the Lactobacillus genus, have the ability to produce exopolysaccharides (EPSs) that confer favorable physicochemical properties to food and/or beneficial physiological effects on human health. In particular, the EPS of Lactobacillus plantarum C88 has recently demonstrated in vitro antioxidant activity and, herein, its structure has been investigated using NMR spectroscopy and the computer program CASPER (Computer Assisted Spectrum Evaluation of Regular polysaccharides). The pentasaccharide repeating unit of the O-deacetylated EPS consists of a trisaccharide backbone, -> 4)-alpha-DGalp-(1 -> 2)-alpha-D-Glcp-(1 -> 3)-beta-D-Glcp-(1 ->, with terminal D-Glc and D-Gal residues (1.0 and 0.8 equiv per repeating unit, respectively) extending from O3 and O6, respectively, of the -> 4)-alpha-D-Galp-(1 -> residue. In the native EPS an O-acetyl group is present, 0.85 equiv per repeating unit, at O2 of the alpha-linked galactose residue; thus the repeating unit of the EPS has the following structure: -> 4)[beta-D-Glcp-(1 -> 3)][beta-D-Galp-(1 -> 6)]alpha-D-Galp2Ac-(1 -> 2)-alpha-D-Glcp-(1 -> 3)-beta-D-Glcp-(1 ->. These structural features, and the chain length (similar to 10(3) repeating units on average, determined in a previous study), are expected to play an important role in defining the physicochemical properties of the polymer.

  • 66.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundborg, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rapid structural elucidation of polysaccharides employing predicted functions of glycosyltransferases and NMR data: Application to the O-antigen of Escherichia coli O592014In: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 24, no 5, p. 450-457Article in journal (Refereed)
    Abstract [en]

    A computerized method that uses predicted functions of glycosyltransferases (GTs) in conjunction with unassigned NMR data has been developed for the structural elucidation of bacterial polysaccharides (PSs). In this approach, information about the action of GTs (consisting of possible sugar residues used as donors and/or acceptors, as well as the anomeric configuration and/or substitution position in the respective glycosidic linkages) is extracted from the Escherichia coli O-antigen database and is submitted, together with the unassigned NMR data, to the CASPER program. This time saving methodology, which alleviates the need for chemical analysis, was successfully implemented in the structural elucidation of the O-antigen PS of E. coli O59. The repeating unit of the O-specific chain was determined using the O-deacylated PS and has a branched structure, namely, -> 6)[alpha-d-GalpA3Ac/4Ac-(1 -> 3)]-alpha-d-Manp-(1 -> 3)-alpha-d-Manp-(1 -> 3)-beta-d-Manp-(1 -> 3)-alpha-d-GlcpNAc-(1 ->. The identification of the O-acetylation positions was efficiently performed by comparison of the H-1,C-13 HSQC NMR spectra of the O-deacylated lipopolysaccharide and the lipid-free PS in conjunction with chemical shift predictions made by the CASPER program. The side-chain d-GalpA residue carries one equivalent of O-acetyl groups at the O-3 and O-4 positions distributed in the LPS in a 3:7 ratio, respectively. The presence of O-acetyl groups in the repeating unit of the E. coli O59 PS is consistent with the previously proposed acetyltransferase WclD in the O-antigen gene cluster.

  • 67.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Karolinska Institute.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Facile Structural Elucidation of Glycans Using NMR Spectroscopy Data and the Program CASPER: Application to the O-Antigen Polysaccharide of Escherichia coli O1552013In: ChemPlusChem, ISSN 2192-6506, Vol. 78, no 11, p. 1327-1329Article in journal (Refereed)
    Abstract [en]

    The program CASPER was successfully employed to rapidly elucidate a new O-antigen polysaccharide structure (obtained from a strain of Escherichia coli serogroup O155), using solelyunassigned NMR spectroscopy data as input information. Thus, what is considered the most tedious and time-consuming part of the structural elucidation process has been reduced from several hours (or even days) of manual interpretation to about four minutes of automated analysis.

  • 68.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Elucidation of the O-Antigen Polysaccharide from Escherichia coli O1812015In: ChemistryOpen, ISSN 2191-1363, Vol. 4, no 1, p. 47-55Article in journal (Refereed)
    Abstract [en]

    Shiga-toxin-producing Escherichia coli (STEC) is an important pathogen associated to food-borne infection in humans; strains of E.coli O181, isolated from human cases of diarrhea, have been classified as belonging to this pathotype. Herein, the structure of the O-antigen polysaccharide (PS) from E.coli O181 has been investigated. The sugar analysis showed quinovosamine (QuiN), glucosamine (GlcN), galactosamine (GalN), and glucose (Glc) as major components. Analysis of the high-resolution mass spectrum of the oligosaccharide (OS), obtained by dephosphorylation of the O-deacetylated PS with aqueous 48% hydrofluoric acid, revealed a pentasaccharide composed of two QuiNAc, one GlcNAc, one GalNAc, and one Glc residue. The H-1 and (CNMR)-C-13 chemical shift assignments of the OS were carried out using 1D and 2D NMR experiments, and the OS was sequenced using a combination of tandem mass spectrometry (MS/MS) data and NMR (CNMR)-C-13 glycosylation shifts. The structure of the native PS was determined using NMR spectroscopy, and it consists of branched pentasaccharide repeating units joined by phosphodiester linkages: -> 4)[alpha-L-QuipNAc-(1 -> 3)]-alpha-D-GalpNAc6Ac-(1 -> 6)-alpha-D-Glcp-(1 -> P-4)-alpha-L-QuipNAc-(1 -> 3)-beta-D-GlcpNAc-(1 ->; the O-acetyl groups represent 0.4 equivalents per repeating unit. Both the OS and PSs exhibit rare conformational behavior since two of the five anomeric proton resonances could only be observed at an elevated temperature.

  • 69.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies and biosynthetic aspects of the O-antigen polysaccharide from Escherichia coli O422015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 403, p. 174-181Article in journal (Refereed)
    Abstract [en]

    The structure of the O-antigen polysaccharide (PS) from Escherichia coli O42 has been investigated by NMR spectroscopy as the main method, which was complemented with sugar analysis, mass spectrometry, and analysis of biosynthetic information. The O-specific chain of the O-deacylated lipopolysaccharide (LPS-OH) consists of branched tetrasaccharide-glycerol repeating units joined by phosphodiester linkages. The lipid-free polysaccharide contains 0.8 equiv of O-acetyl groups per repeating unit and has the following teichoic acid-like structure: Based on biosynthetic aspects, this should also be the biological repeating unit. This O-antigen structure is remarkably similar to that of E. coli O28ac, differing only in the presence or absence, respectively, of a glucose residue at the branching point. The structural similarity explains the serological cross-reactivity observed between strains of these two serogroups, and also their almost identical O-antigen gene cluster sequences. -> 2)-(R)-Gro-(1-P-4)-beta-D-GlcpNAc-(1 -> 3)-beta-D-Galf2Ac-(1 -> 3)-alpha-D-GlcpNAc-(1 -> vertical bar a-D-Glcp-(1 -> 3)

  • 70.
    Fransson, Ann-Britt L.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deracemization of Functionalized Alcohols via Combined Ruthenium and Enzyme Catalysis2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The major part of this thesis describes the synthesis of enantiopure alcohols and diols by combining ruthenium-catalyzed racemization or epimerization and lipase-catalyzed asymmetric transformations. A minor part of this thesis is focused on ruthenium-catalyzed redox reactions for transfer hydrogenation of 1,3-cycloalkanediketones.

    Kinetic resolution of racemic γ-hydroxy acid derivatives was performed via Pseudomonas cepacia lipase (PS-C)-catalyzed transesterification. γ-Hydroxy esters and γ-hydroxy amides were studied showing in higher selec-tivity and yields for the γ-hydroxy amides. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity. Combining enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution (DKR). The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution increased the yields of the acetate product. The synthetic utility of this procedure was illustrated by the practical synthesis of the γ-lactone (R)-5-methyltetrahydrofuran-2-one.

    A distereoselective transformation of cis/trans-1,3-cyclohexandiol using Candida antarctica lipase B (CALB)-catalyzed transesterification was of interest. Desymmetrization of cis-1,3-cyclohexanediol to the (R-monoacetate was successfully accomplished. Enantiopure (R,R)-diacetate was obtained from the (R)-monoacetate in a DYKAT process at room tem-perature. Metal- and enzyme-catalyzed transformation of cis/trans-1,3-cyclohexanediol using PS-C, gives a high diastereoselectivity for cis-diacetate. The (S)-mono-acetate was obtained from cis-diacetate by CALB-catalyzed hydrolysis. In addition, it was shown, by the use of deuterium-labeling that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

    Ruthenium-catalyzed transfer hydrogenation of 1,3-cyclohexanedione under microwave heating was developed as an efficient and fast method for the preparation of 1,3-cycloalkandiols.

  • 71.
    Frigell, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of O-linked Carbasugar Analogues of Galactofuranosides and N-linked Neodisaccharides2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, carbohydrate mimicry is investigated through the syntheses of carbohydrate analogues and evaluation of their inhibitory effects on carbohydrate-processing enzymes.

    Galactofuranosides are interesting structures because they are common motifs in pathogenic microorganisms but not found in mammals. M.tuberculosis, responsible for the disease tuberculosis, has a cell wall containing a repeating unit of alternating (1→5)- and (1→6)-linked β-D-galactofuranosyl residues. Synthetic inhibitors of the enzymes involved in the biosynthesis of the cell wall could find great therapeutic use.

    The first part of this thesis describes the first synthesis of the hydrolytically stable carbasugar analogue of galactofuranose, 4a-carba-β-D-Galf, and the synthetic work of synthesising β-linked pseudodisaccharides containing carba-Galf, which were tested for glycosyltransferease inhibitory activity. The pseudodisaccharide carba-Galf-(β1→5)-carba-Galf was found to be a moderate inhibitor of the glycosyltransferase GlfT2 of M.tuberculosis. The thesis also describes how a general method towards biologically relevant α-linked carba-Galf ethers was developed.

    The final part of this thesis is focussed on the formation of nitrogen-linked monosaccharides without the participation of the anomeric centre. Such a mode of coupling is called tail-to-tail neodisaccharide formation. The couplings of carbohydrate derivatives via the Mitsunobu reaction are successfully reported herein. The method describes the key introduction of an allylic alcohol in the electrophile and the subsequent functionalisation of the alkene to obtain the neodisaccharide. Two synthesised neodisaccharides presented in this thesis have been sent to be tested for glycosidase inhibitory activity.

  • 72.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    First synthesis of 4a-carba-beta-D-galactofuranose2007In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 48, no 52, p. 9073-9076Article in journal (Refereed)
  • 73.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of carbadisaccharide mimics of galactofuranosides2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 36, p. 5142-5144Article in journal (Refereed)
  • 74.
    Gemma, Emiliano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Oligosaccharides for Interaction Studies with Various Lectins2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, the syntheses of oligosaccharides for interaction studies with various lectins are described. The first section reports the syntheses of tetra, tri- and disaccharides corresponding to truncated versions of the glucosylated arm of Glc1Man9(GlcNAc)2, found in the biosynthesis of N-glycans. The thermodynamic parameters of their interaction with calreticulin, a lectin assisting and promoting the correct folding of newly synthesised glycoproteins, were established by isothermal titration calorimetry. In the second section, a new synthetic pathway leading to the same tetra- and trisaccharides is discussed. Adoption of a convergent strategy and of a different protecting group pattern resulted in significantly increased yields of the target structures. The third section describes the syntheses of a number of monodeoxy-trisaccharides related to the above trisaccharide Glc-α-(1→3)-Man-α-(1→2)-Man-α-OMe. Differentsynthetic approaches were explored and the choice of early introduction of the deoxy functionality proved the most beneficial. In the last section, the synthesis of spacer-linked LacNAc dimers as substrates for the lectins galectin-1 and -3 is presented. This synthesis was realized by glycosidation of a number diols with peracetylated LacNAc-oxazoline. Pyridinium triflate was tested as a new promoter, affording the target dimers in high yields. This promoter in combination with microwave irradiation gave even higher yields and also shortened the reaction times.

  • 75.
    Ghosh, Raju
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lindstedt, Erik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Room Temperature, Metal-Free Arylation of Aliphatic Alcohols2014In: ChemistryOpen, ISSN 2191-1363, Vol. 3, no 2, p. 54-57Article in journal (Refereed)
    Abstract [en]

    Diaryliodonium salts are demonstrated as efficient arylating agents of aliphatic alcohols under metal-free conditions. The reaction proceeds at room temperature within 90min to give alkyl aryl ethers in good to excellent yields. Aryl groups with electron-withdrawing substituents are transferred most efficiently, and unsymmetric iodonium salts give chemoselective arylations. The methodology has been applied to the formal synthesis of butoxycaine.

  • 76.
    Ghosh, Raju
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Metal-Free Synthesis of N-Aryloxyimides and Aryloxyamines2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 6, p. 1830-1832Article in journal (Refereed)
    Abstract [en]

    N-Hydroxyphthalimide and N-hydroxysuccinimide have been arylated with diaryliodonium salts to provide N-aryloxyimides in excellent yields in short reaction times. A novel hydrolysis under mild and hydrazine-free conditions yielded aryloxyamines, which are valuable building blocks in the synthesis of oxime ethers and benzofurans.

  • 77.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Access to Cinnamyl Derivatives from Arenes and Allyl Esters by a Biomimetic Aerobic Oxidative Dehydrogenative Coupling2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 6, p. 1664-1667Article in journal (Refereed)
    Abstract [en]

    An efficient biomimetic aerobic oxidative dehydrogenative alkenylation of arenes with allyl esters is presented. The reaction proceeds under an ambient pressure of oxygen with relatively low catalyst loading of palladium acetate, employing catalytic amounts of electron-transfer mediators (ETMs). This study represents a new environmentally friendly method for the synthesis of cinnamyl derivatives.

  • 78.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Direct C-H Arylation of Nonbiased Olefins2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 17, p. 4432-4435Article in journal (Refereed)
    Abstract [en]

    An efficient ligand-promoted biomimetic aerobic oxidative dehydrogenative cross-coupling between arenes and nonbiased olefins is presented. Acridine as a ligand was found to significantly enhance the rate, the yield, and the scope of the reaction under ambient oxygen pressure, providing a variety of alkenylarenes via an environmentally friendly procedure.

  • 79.
    Gigant, Nicolas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aerobic Double Dehydrogenative Cross Coupling between Cyclic Saturated Ketones and Simple Arenes2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 20, p. 5890-5894Article in journal (Refereed)
    Abstract [en]

    The synthesis of 3-aryl-2-cyclohexenones is a topic of current interest as they are not only privileged structures in bioactive molecules, but they are also relevant feedstocks for the synthesis of substituted phenols or anilines, which are ubiquitous structural elements both in drug design and medicinal chemistry. A simple and sustainable one-pot aerobic double dehydrogenative reaction under mild conditions for the introduction of arenes in the -position of cyclic ketones has been developed. Starting from the corresponding saturated ketone, this reaction sequence proceeds under relatively low Pd catalyst loading and involves catalytic amounts of electron-transfer mediators (ETMs) under ambient oxygen pressure.

  • 80.
    González Miera, Greco
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chupas, Peter J.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chapman, Karena W.
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange2017In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 56, no 8, p. 4576-4583Article in journal (Refereed)
    Abstract [en]

    Here we describe the topological transformation of the pores of a new framework in the bio-MOF-100 family (dia-c) into the known isomer (lcs) by doubling the pore volume, which occurs during postsynthesis modifications. During this transformation, reassembling of the metal–organic framework (MOF) building blocks into a completely different framework occurs, involving breaking/forming of metal–ligand bonds. MOF crystallinity and local structure are retained, as determined by powder X-ray diffraction (PXRD) and pair distribution function (PDF) analyses, respectively. We exploited the inherent dynamism of bio-MOF-100 by coupling chemical decorations of the framework using solvent-assisted ligand exchange to the topological change. Following this method and starting from the pristine dense dia-c phase, open lcs-bio-MOF-100 was prepared and functionalized in situ with an iridium complex (IrL). Alternatively, the dia-c MOF could be modified with wide-ranging amounts of IrL up to ca. 50 mol %, as determined by solution 1H NMR spectroscopy, by tuning the concentration of the solutions used and with no evidence for isomer transformation. The single-site nature of the iridium complexes within the MOFs was assessed by X-ray absorption spectroscopy (XAS) and PDF analyses. Ligand exchanges occurred quantitatively at room temperature, with no need of excess of the iridium metallolinker.

  • 81.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Studies on Metalloenzymatic Dynamic Kinetic Resolutions and Iron-Catalyzed Reactions of Allenes2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The main focus of this thesis lies in the development of new transition metal-catalyzed chemoenzymatic dynamic kinetic resolutions (DKR) of both alcohols and amines. The first part of the thesis deals with the development of new heterogeneous systems for the DKR of amines. The racemization catalysts in these different systems are all composed of palladium nanoparticles supported on either mesoporous silica or incorporated in a biocomposite that is composed of a bioactive cross-linked enzyme aggregate. 

    The second part of the thesis deals with the development of a homogeneous iron catalyst in the racemization of sec-alcohols for the implementation in a chemoenzymatic DKR. Two protocols for the racemization of sec-alcohols are reported. The first one could not be combined with a chemoenzymatic kinetic resolution, although this was overcome in the second iron based protocol. 

    Following the successful iron catalyzed chemoenzymatic DKR of sec-alcohols, the iron catalyst was used in the cyclization of α-allenic alcohols and N-protected amines to furnish 2,3-dihydrofurans and 2,3-dihydropyrroles, respectively. The cyclization is proceeding in a diastereoselective manner.

    The last part of the thesis deals with attempts to further elucidate the mechanism of activation of a known ruthenium racemization catalyst. X-ray absorption spectroscopy using synchrotron radiation was used for this purpose.

  • 82.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lihammar, Richard
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases2014In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 79, no 9, p. 3747-3751Article in journal (Refereed)
    Abstract [en]

    A catalyst consisting of palladium nanoparticles supported on amino-functionalized siliceous mesocellular foam (Pd-AmP-MCF) was used in chemoenzymatic dynamic kinetic resolution (DKR) to convert primary amines to amides in high yields and excellent ee's. The efficiency of the nanocatalyst at temperatures below 70 degrees C enables reaction conditions that are more suitable for enzymes. In the present study, this is exemplified by subjecting 1-phenylethylamine (1a) and analogous benzylic amines to DKR reactions using two commercially available lipases, Novozyme-435 (Candida antartica Lipase B) and Amano Lipase PS-C1 (lipase from Burkholderia cepacia) as biocatalysts. The latter enzyme has not previously been used in the DKR of amines because of its low stability at temperatures over 60 degrees C. The viability of the heterogeneous Pd-AmP-MCF was further demonstrated in a recycling study, which shows that the catalyst can be reused up to five times.

  • 83.
    Görbe, Tamás
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Heterogeneous catalysis in racemization and kinetic resolution along a journey in protein engineering2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of my thesis concerns the use of heterogeneous acidic resins for racemization of tert-alcohols without any side-product formation. The focus was to develop a system which can be further extended to a DKR protocol consisting of an enzymatic KR reaction. Based on our knowledge of the resins, an unexpected migratory DKR protocol turned out to be an efficient method for the synthesis of carbocyclic allylic carbinols.

    The development of enzyme and metal catalyst hybrids was already an ongoing theme in our group. A supporter-free biohybrid catalyst was developed which can be used in several different types of reactions. The Pd(0)-CalB CLEA catalyst was applied in a two-step-cascade transformation and in the DKR of benzylic primary amines. The catalyst was characterized by different analytical techniques, to understand its composition and structure.

    The enzymes have always been the main focus of the studies and therefore wild type enzymes were initially utilized. However, these natural biocatalysts are associated with certain limitations. In contrast, protein engineering allows for enzymes to be modified and optimized. We have used the technique to create a subtilisin Carlsberg mutant, which was studied both by modeling and in vitro. The mutant was found to catalyze the (S)-selective transesterification of sec-alcohols containing long aliphatic carbon chains, and it also exhibited higher performance in organic solvent.

    The last project concerned the protein engineering of CalA enzyme towards tert-alcohols. The kinetic resolution of tert-alcohols with this enzyme is very slow but it occurs with good enantioselectivity. The aim was therefore to improve the activity of CalA via protein engineering. Seven amino acids were mutated close to the active site and a library was created based on our prediction. Throughout the screening, a few variants showed higher activity, which were sequenced and further analyzed in the transesterification of tert-alcohols.

  • 84.
    Hamark, Christoffer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Landström, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    SEAL by NMR: Glyco-Based Selenium-Labeled Affinity Ligands Detected by NMR Spectroscopy2014In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 43, p. 13905-13908Article in journal (Refereed)
    Abstract [en]

    We report a method for the screening of interactions between proteins and selenium-labeled carbohydrate ligands. SEAL by NMR is demonstrated with selenoglycosides binding to lectins where the selenium nucleus serves as an NMR-active handle and reports on binding through Se-77 NMR spectroscopy. In terms of overall sensitivity, this nucleus is comparable to C-13 NMR, while the NMR spectral width is ten times larger, yielding little overlap in Se-77 NMR spectroscopy, even for similar compounds. The studied ligands are singly selenated bioisosteres of methyl glycosides for which straightforward preparation methods are at hand and libraries can readily be generated. The strength of the approach lies in its simplicity, sensitivity to binding events, the tolerance to additives and the possibility of having several ligands in the assay. This study extends the increasing potential of selenium in structure biology and medicinal chemistry. We anticipate that SEAL by NMR will be a beneficial tool for the development of selenium-based bioactive compounds, such as glycomimetic drug candidates.

  • 85. Harper, James K.
    et al.
    Tishler, Derek
    Richardson, David
    Lokvam, John
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Solid-State NMR Characterization of the Molecular Conformation in Disordered Methyl alpha-L-Rhamnofuranoside2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 26, p. 5534-5541Article in journal (Refereed)
    Abstract [en]

    A combination of solid-state C-13 NMR tensor data and DFT computational methods is utilized to predict the conformation in disordered methyl alpha-L-rhamnofuranoside. This previously uncharacterized solid is found to be crystalline and consists of at least six distinct conformations that exchange on the kHz time scale. A total of 66 model structures were evaluated, and six were identified as being consistent with experimental C-13 NMR data. All feasible structures have very similar carbon and oxygen positions and differ most significantly in OH hydrogen orientations. A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder. This rearrangement is accompanied by smaller changes in ring conformation and is slow enough to be observed on the NMR time scale due to severe steric crowding among ring substituents. The relatively minor differences in non-hydrogen atom positions in the final structures suggest that characterization of a complete crystal structure by X-ray powder diffraction may be feasible.

  • 86. He, Xibing
    et al.
    Hatcher, Elizabeth
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    MacKerell, Alexander D., Jr.
    Bifurcated Hydrogen Bonding and Asymmetric Fluctuations in a Carbohydrate Crystal Studied via X-ray Crystallography and Computational Analysis2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 25, p. 7546-7553Article in journal (Refereed)
    Abstract [en]

    The structure of the O-methyl glycoside of the naturally occurring 6-O-[(R)-1-carboxyethyl]-alpha-D-galactopyranose, C10H18O8, has been determined by X-ray crystallography at 100 K, supplementing the previously determined structure obtained at 293 K (Acta Crystallogr. 1996, C52, 2285-2287). Molecular dynamics simulations of this glycoside were Performed in the crystal environment with different numbers of units cells included in the primary simulation system at both 100 and 293 K. The Calculated unit cell Parameters and the intramolecular geometries (bonds, angles, and dihedrals) agree well with experimental results. Atomic fluctuations, including B-factors and anisotropies, are in good agreement with respect to the relative values on an atom-by-atom basis. In addition, the fluctuations increase with increasing simulation system size, with the simulated values converging to values lower than those observed experimentally indicating that the simulation model is not accounting for all possible contributions to the experimentally observed B-factors, which may be related to either the simulation time scale or size. In the simulation's, the hydroxyl group of O7 is found to from bifurcated hydrogen bonds with O6 and O8 of an adjacent molecule, with the interactions dominated by the interaction HO7-O6 interaction. Quantum mechanical calculations support this observation.

  • 87.
    Ilchenko, Nadia O.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Novel Applications of Benziodoxole Reagents in the Synthesis of Organofluorine Compounds2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis concerns method development of new synthetic routes by applying electrophilic hypervalent iodine reagents, such as trifluoromethyl-benziodoxole (Togni reagent) and fluoro-benziodoxole. The first project involved the addition of an oxygen moiety and trifluoromethyl group across double and triple bonds (both groups derived from the hypervalent iodine reagent). We observed that electron donating substituents on the aromatic ring of the substrate accelerated the oxytrifluoromethylation reaction. This transformation was further expanded to halo-trifluoromethylation reaction of a vinyl silane substrate. We also developed a copper mediated cyanotrifluoromethylation reaction, which was accelerated by PCy3 additive. This transformation allowed for the creation of two new C-C bonds in a single addition reaction. The direct C-H trifluoromethylation reaction of quinones was achived using the Togni-reagent in the presence of B2pin2 additive. The intriguing additive effects of both B2pin2 and PCy3 inspired us to examine the mechanism of these transformations.

    Fluoro-benziodoxole is the fluoroiodane analogue of the trifluoromethylating Togni reagent. We developed a AgBF4 mediated geminal difluorination of styrenes using this fluoroiodine reagent. In this process one fluorine atom came from the fluoroiodane, while the other fluorine was derived from the tetrafluoroborate ion. A similar approach was applied for the 1,3-oxyfluorination and difluorination of cyclopropanes. Similarly, this fluorinative ring opening of unactivated cyclopropanes involved the introduction of an electrophilic fluorine atom from the fluoroiodane reagent and a nucleophilic one from the tetrafluoroborate ion. This reaction was extended to synthesis of 1,3-oxyfluorinated products. When alkenes reacted with the fluoro-benziodoxole reagent in the presence of palladium catalyst the iodofluorination reaction occurred.  Both the iodine and fluorine atoms were derived from the fluoroiodane reagent. The iodofluorination reaction with disubstituted and cyclic alkenes proceeded with high regio- and stereoselectivity.

  • 88.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tasch, Boris O. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild Silver-Mediated Geminal Difluorination of Styrenes Using an Air- and Moisture-Stable Fluoroiodane Reagent2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 47, p. 12897-12901Article in journal (Refereed)
    Abstract [en]

    An air-and moisture-stable fluoroiodane in the presence of AgBF4 is suitable for selective geminal difluorination of styrenes under mild reaction conditions. One of the C-F bonds is formed by transfer of electrophilic fluorine from the hypervalent iodine reagent, while the other one arises from the tetrafluoroborate counterion of silver. Deuterium-isotope-labelling experiments and rearrangement of methyl styrene substrates suggest that the reaction proceeds through a phenonium ion intermediate.

  • 89.
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development and Applications of Hypervalent Iodine Compounds: Powerful Arylation and Oxidation Reagents2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis describes the efficient synthesis of several hypervalent iodine(III) compounds. Electron-rich diaryliodonium salts have been synthesized in a one-pot procedure, employing mCPBA as the oxidant. Both symmetric and unsymmetric diaryliodonium tosylates can be isolated in high yields. An in situ anion exchange also enables the synthesis of previously unobtainable diaryliodonium triflates.

    A large-scale protocol for the synthesis of a derivative of Koser’s reagent, that is an isolable intermediate in the diaryliodonium tosylate synthesis, is furthermore described. The large-scale synthesis is performed in neat TFE, which can be recovered and recycled. This is very desirable from an environmental point of view.

    One of the few described syntheses of enantiopure diaryliodonium salts is discussed. Three different enantiopure diaryliodonium salts bearing electron-rich substituents are synthesized in moderate to high yields. The synthesis of these three salts shows the challenge in the preparation of electron-rich substituted unsymmetric salts.

    The second part of the thesis describes the application of both symmetric and unsymmetric diaryliodonium salts in organic synthesis. A metal-free efficient and fast method for the synthesis of diaryl ethers from diaryliodonium salts has been developed. The substrate scope is wide as both the phenol and the diaryliodonium salt can be varied. Products such as halogenated ethers, ortho-substituted ethers and bulky ethers, that are difficult to obtain with metal-catalyzed procedures, are readily prepared. The mild protocol allows arylation of racemization-prone a-amino acid derivatives without loss of enantiomeric excess.

    A chemoselectivity investigation was conducted, in which unsymmetric diaryliodonium salts were employed in the arylation of three different nucleophiles in order to understand the different factors that influence which aryl moiety that is transferred to the nucleophile.

  • 90.
    Jalalian, Nazli
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ishikawa, Eloisa E.
    Universidade de Sao Paulo, Instituto de Quimica.
    Silva Jr., Luiz F.
    Universidade de Sao Paulo, Instituto de Quimica.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Room temperature, metal-free synthesis of diaryl ethers with use of diaryliodonium salts2011In: Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011, American Chemical Society , 2011Conference paper (Other academic)
    Abstract [en]

    Diaryl ethers are common structural features in numerous natural products and biol. active compds.  Despite more than a century of immense focus on finding efficient synthetic routes to this compd. class, diaryl ethers remain difficult to obtain.  Routes that are catalytic in copper have been developed, but high catalyst loadings, excess reagents, elevated temps. and long reaction times are still needed.  Pd-catalyzed cross-couplings of phenols and aryl halides at temps. up to 100 °C have recently been reported to give high yields of diaryl ethers.  Diaryliodonium salts are non-toxic alternatives to transition metals in the synthesis of diaryl ethers and we have recently developed effective synthetic routes to these salts.  Herein we report a fast, high-yielding synthesis of diaryl ethers.  The reaction conditions are mild, metal-free, and avoid the use of halogenated solvents, additives, or excess reagents.  Precautions to avoid air or moisture are not needed.  The scope includes ortho- and halo-substituted diaryl ethers, which are difficult to obtain by metal-catalyzed protocols .

  • 91.
    Jalalian, Nazli
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric α-arylation of carbonyl compounds with chiral diaryliodonium salts2009In: Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, Washington, D.C.: American Chemical Society , 2009Conference paper (Other academic)
  • 92.
    Jalalian, Nazli
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and asymmetric synthesis of chiral diaryliodonium salts2010In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 66, no 31, p. 5793-5800Article in journal (Refereed)
    Abstract [en]

    The application of chiral hypervalent iodine reagents in asymmetric synthesis is highly desirable, as the reagents are metal-free, environmentally benign and employed under mild conditions. Three chiral diaryliodonium salts have been designed to provide chemoselectivity and asymmetric induction in asymmetric alpha-phenylation of carbonyl compounds. The synthetic routes to the selected targets are detailed herein, together with a structural investigation into the diastereoselectivity of the alkylation process.

  • 93.
    Jalalian, Nazli
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Koser’s Reagent and Derivatives2013In: Organic Syntheses, ISSN 0078-6209, Vol. 90, p. 1-9Article in journal (Refereed)
  • 94.
    Janson, Pär
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oxidative Trifluoromethylation and other Functionalization Reactions of Alkenes and Alkynes2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis concerns the use of various potent oxidants in organic synthesis. The main focus is directed at selectively introducing trifluoromethyl groups into compounds containing double or triple bonds. All reactions proceed under mild conditions and can in most cases be performed on the bench-top.

    We have developed three different procedures for transformations of activated alkenes and alkynes as well as quinones. In paper I the selective introduction of a trifluoromethyl group together with an oxygen functionality to double and triple bonds is demonstrated.

    Paper II is focused on the related chemoselective cyanotrifluoromethylation in which a cyano group is added instead of the oxygen functionality.

    Paper III describes a new procedure for C–H trifluoromethylation of quinones. Our studies on the mechanistic aspects of the above reactions are described in Paper IV. In these studies we investigated the ligand and substituent effects in Cu-catalyzed reactions.

    Paper V is focused on a conceptually new palladium-catalyzed allylic C–H acyloxylation of olefins under oxidative conditions. The procedure uses an inexpensive, safe and environmentally benign oxidant, sodium perborate, which is activated with acetic anhydride.

  • 95.
    Jiang, Tuo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium(II)-Catalyzed Oxidative Carbocyclization: Stereoselective Formation of C–C and C–B Bonds2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions.

    The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields.

    The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products.

    The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity.

  • 96.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium(II) Polypyridyl Complexes: Applications in Artificial Photosynthesis2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Molecular mimics of PS II, which consist of a photosensitizer linked to electron acceptors/donors, are attractive candidates for the conversion of solar energy into chemical energy. Several different classes of sensitizers have been studied and among these, ruthenium(II) polypyridyl complexes continue to attract major attention.

    The first part of this thesis presents the photophysical properties, stereochemistry, and general synthesis of ruthenium(II) polypyridyl complexes based on 2,2´-bipyridyl and 2,2´:6´,2´´-terpyridyl ligands. The second part deals with ruthenium(II) polypyridyl complexes linked to electron acceptors (benzoquinone, naphthalene diimide) and electron donors (phenothiazine, tyrosine, manganese complexes). Functionalized 2,2´-bipyridines and 2,2´:6´,2´´-terpyridines were synthesized and used in the stepwise assembly of the chromophore-quencher complexes. These were fully characterized and the redox properties were studied by cyclic and differential pulse voltammetry. The intramolecular charge-separated states formed after light excitation of the ruthenium(II) unit were observed by time-resolved absorption and EPR spectroscopy.

    In the third part of this thesis, the synthesis and photophysical properties of a novel class of bistridentate ruthenium(II) polypyridyl complexes based on bipyridyl-pyridyl methane ligamds are discussed. The solution structures of the homoleptic and heteroleptic complexes were studied by 2D NMR techniques. The X-ray structure of one of the homoleptic complexes has been solved. The effect on the excited state lifetime for these ruthenium(II) complexes compared to the parent [Ru(tpy)2]2+ is discussed. Finally, in one of the heteroleptic complexes an interesting reversible linkage iomerization was observed that could be induced either electrochemically or chemically.

  • 97.
    Johansson, Tommy
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Studies on Transformations of H-Phosphonates into DNA Analogues Containing P-S or P-C Bonds2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, mechanistic and synthetic studies on transformations of H-phosphonates into DNA analogues containing P-S or P-C bonds are described.

    Configurational stability of dinucleoside H-phosphonates and the stereochemical course of their sulfurisation in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were investigated. In light of these studies, the reported stereoselective sulfurisation of dinucleoside H-phosphonates and benzoylphosphonates in the presence of DBU was proved to be incorrect.

    Efficient protocols for the synthesis of new nucleotide analogues with non-ionic C-phosphonate internucleotide linkages were developed. The synthesis of dinucleoside 2-pyridylphosphonates was successfully performed by a DBU-promoted reaction of H-phosphonate diesters with N-methoxypyridinium salts. The thio analogues, 2-pyridyl- and 4-pyridyl phosphonothioate diesters, could be obtained by modifying the reactions developed for their oxo counterparts. Dinucleoside 3-pyridylphosphonates were prepared via a palladium(0)-catalysed cross coupling strategy that could be extended also to the synthesis of nucleotide analogues with metal-complexing properties, i.e. terpyridyl- and bipyridylphosphonate derivatives.

    Oligonucleotides modified with pyridylphosphonate internucleotide linkages have been prepared and preliminary studies on their hybridisation properties and resistance towards enzymatic degradation were performed.

    Finally, nucleotidic units for the incorporation of pyridylphosphonate groups at the 5’-terminus of oligonucleotides were designed. Condensations of such units with a suitably protected nucleoside afforded after oxidation the expected dinucleoside (3’-5’)-phosphates with pyridylphosphonate monoester functions at the 5’-ends.

  • 98.
    Johnston, Eric
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    New Tools for Green Catalysis: Studies on a Biomimetic Hybrid Catalyst and a Novel Nanopalladium Catalyst2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis describes an improved synthetic route to hybrid (hydroquinone-Schiff base)cobalt catalysts. Preparation of the 5-(2,5-hydroxyphenyl)salicylaldehyde building block was improved by altering the protective groups of the hydroquinone (HQ) starting material. Both protection and deprotection could be carried out under mild conditions, resulting in high yields. By optimizing the reaction conditions of the Suzuki cross-coupling, an efficient and inexpensive synthetic route with a good overall yield was developed.

    The second part describes the use of the hybrid catalyst as an electron transfer mediator (ETM) in the palladium-catalyzed aerobic carbocyclization of enallenes. By covalently linking the HQ to the cobalt Schiff-base complex the reaction proceeded at lower temperatures with a five-fold increase of the reaction rate compared to the previously reported system.

    The third part describes the application of the hybrid catalyst in the biomimetic aerobic oxidation of secondary alcohols. Due to the effi­ciency of the intramolecular electron transfer, the hybrid catalyst allowed for a lower catalytic loading and milder reaction conditions compared to the previous separate-component system. Benzylic alcohols as well as aliphatic alcohols were oxidized to the corresponding ketones in excellent yield and selectivity using this methodology.

    The fourth part describes the synthesis and characterization of highly dispersed palladium nanoparticles supported on aminopropyl-modified siliceous mesocellular foam. The Pd nanocatalyst showed excellent activity for the aerobic oxidation of a wide variety of alcohols under air atmosphere. Moreover, the catalyst can be recycled several times without any decrease in activity or leaching of the metal into solution.

    Finally, the fifth part describes the application of the Pd nanocatalyst in transfer hydrogenations and Suzuki coupling reactions. The catalyst was found to be highly efficient for both transformations, resulting in chemoselective reduction of various alkenes as well as coupling of a variety of aryl halides with various boronic acids in excellent yields. Performing the latter reaction under microwave irradiation significantly increased the reaction rate, compared to conventional heating. However, no significant increase in reaction rate was observed for the transfer hydrogenations, under microwave heating.

  • 99.
    Jonsson, Hanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Exploring the structure of oligo- and polysaccharides: Synthesis and NMR spectroscopy studies2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A deeper understanding of the diversity of carbohydrates and the many applications of oligo- and polysaccharides found in nature are of high interest. Many of the processes involving carbohydrates affect our everyday life. This thesis is based on six papers all contributing to an extended perspective of carbohydrate property and functionality. An introduction to carbohydrate chemistry together with a presentation of selected carbohydrate synthesis and analysis methods introduces the reader to the research field. The first paper is an NMR spectroscopy reinvestigation of the structures of the O-antigens from the lipopolysaccharides (LPS) of Shigella dysenteriae type 3 and Escherichia coli O124. The repeating units were concluded to be built of identical branched pentasaccharides now with the correct anomeric configurations. Paper II is a structural investigation of the O-antigen from the LPS of E. coli O74 which is built of branched tetrasaccharide repeating units including the uncommon monosaccharide d-Fuc3NAc. Paper III is a conformational study of a rhamnose derivative, using NMR spectroscopy and X-ray crystallography. The benzoyl ester group positioned at C4 prefers an “eclipsed” conformation in the crystal as well as in solution. The use of site-specifically 13C-labeled compounds in conformational studies is discussed in Papers IV and V. The disaccharide α-L-Rhap-(1→2)-α-L-Rhap-OMe was synthesized together with two 13C-isotopologues and studied with NMR spectroscopy to give seven J-couplings related to torsion angles φ and ψ. The trisaccharide α-L-Rhap-(1→2)[α-L-Rhap-(1→3)]-α-L-Rhap-OMe was synthesized with 13C-labeling at two positions which presented a solution to a problem of overlapping signals in the 1H NMR spectrum. The site-specific labeling also facilitated the measurement of two 3JCC and two 2JCH coupling constants. Finally, chapter 6 gives a short introduction to glycosynthase chemistry and discusses the synthesis of α-glycosyl fluorides. A novel cyclic heptasaccharide was synthesized from α-laminariheptaosyl fluoride using a mutant of the enzyme laminarase 16A and subsequently analyzed by NMR spectroscopy.

  • 100.
    Kadow, Maria
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Ernst Moritz Arndt Universitat Greifswald, Germany.
    Balke, Kathleen
    Willetts, Andrew
    Bornscheuer, Uwe T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E-coli2014In: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 98, no 9, p. 3975-3986Article in journal (Refereed)
    Abstract [en]

    The major limitation in the synthetic application of two-component Baeyer-Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.

123456 51 - 100 of 254
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.34-SNAPSHOT
|