Change search
Refine search result
45678910 301 - 350 of 1362
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 301.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vallin, Michaela
    Hult, Karl
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB2012In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 68, no 37, p. 7613-7618Article in journal (Refereed)
    Abstract [en]

    An enzymatic kinetic resolution of diarylmethanols via acylation has been developed. This was achieved by the use of a mutated variant of CALB that accepts larger substrates compared to the wild type. By the use of diarylmethanols with two differently sized aryl groups, enantioselective transformations were achieved. A larger size-difference led to a higher enantioselectivity. In addition, substrates with electronically different aryl groups, such as phenyl and pyridyl, also gave an enantioselective reaction. The highest E value was observed with a substrate where steric and electronic effects were combined.

  • 302.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vallin, Michaela
    Syrén, Per-Olof
    Hult, Karl
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mutated variant of Candida antarctica lipase B in (S)-selective dynamickinetic resolution of secondary alcohols2011In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 9, no 1, p. 81-82Article in journal (Refereed)
    Abstract [en]

    An (S)-selective dynamic kinetic resolution of secondaryalcohols, employing a mutated variant of Candida antarcticalipase B (CalB) gave products in 84–88% yield and in 90–97%ee.

  • 303.
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbohydrate dynamics and interactions studied by NMR spectroscopy2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The combination of NMR spectroscopy and molecular dynamics (MD) simulations are powerful tools in the studying of bioorganic molecules in solution. In this thesis two such studies are presented with focus on the NMR aspect. The caffeine association to sugars (D-glucose and sucrose) was investigated by NMR titrations and NOESY experiments in paper I. The observations from the NMR experiments confirmed MD simulations showing that the binding occurs by a face-to-face interaction between the aromatic surface of the caffeine and axial protons of the sugar ring. Different sugar molecules and residues have different preferences regarding which side of the sugar ring that are involved in the binding. The sucrose residues bind with only one ring face each whereas β-D-glucopyranose has two sides of similar binding probability and the α-D-glucopyranose has something in between. The MD simulations showed that the driving force of the binding is partly driven by hydration effects that favor the enthalpy of the system. A new approach to calculate NMR relaxation parameters (that is dependent on molecular motions) from computational simulations is presented in paper II. Each sugar residue is assumed to be a rigid unit connected by flexible joints in the approach, thus the name diffusive chain model (DCM). The simplified model together with a stochastic simulation approach lowers the computational cost which makes it possible to acquire long enough trajectories to the calculations of spin relaxation parameters. Two case studies with slightly different methodologies are presented. In one of them, spin relaxation parameters are reproduced for the human milk oligosaccharide LNF-1 in a feasible way by the use of Brownian dynamics.

  • 304.
    Engström, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conformational Dynamics and Exchange Kinetics of N-Formyl and N-Acetyl Groups Substituting 3-Amino-3,6-dideoxy-alpha-D-galactopyranose, a Sugar Found in Bacterial O-Antigen Polysaccharides2017In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 41, p. 9487-9497Article in journal (Refereed)
    Abstract [en]

    Three dimensional shape and conformation of. carbohydrates are important factors in molecular recognition events and the N-acetyl group of a monosaccharide residue can function as a conformational gatekeeper whereby it influences the overall shape of the oligosaccharide. NMR spectroscopy and quantum mechanics (QM) calculations are used herein to investigate both the conformational preferences and the dynamic behavior of N-acetyl and N-formyl substituents of 3-amino-3,6-dideoxy-alpha-D-galactopyranose, a sugar and substitution pattern found in bacterial O-antigen polysaccharides. QM calculations suggest that the amide oxygen can be involved in hydrogen bonding with the axial OH4 group primarily but also with the equatorial OH2 group. However, an NMR J coupling analysis indicates that the 01 torsion angle, adjacent to the sugar ring, prefers an ap conformation where conformations <180 degrees also are accessible, but does not allow for intramolecular hydrogen bonding. In the formyl-substituted compound (4)J(HH) coupling constants to the exo-cyclic group were detected and analyzed. A van't Hoff analysis revealed that the trans conformation at the amide bond is favored by Delta G degrees approximate to - 0.8 kcal.mol(-1) in the formyl-containing compound and with Delta G degrees approximate to -2.5 kcal.mol(-1) when the N-acetyl group is the substituent. In both cases the enthalpic term dominates to the free energy, irrespective of water or DMSO as solvent, with only a small contribution from the entropic term. The cis-trans isomerization of the theta(2) torsion angle, centered at the amide bond, was also investigated by employing H-1 NMR line shape analysis and C-13 NMR saturation transfer experiments. The extracted transition rate constants were utilized to calculate transition energy barriers that were found to be about 20 kcal.mol(-1) in both DMSO-d(6) and D2O. Enthalpy had a higher contribution to the energy barriers in DMSO-d(6) compared to in D2O, where entropy compensated for the loss of enthalpy.

  • 305.
    Ericsson, Daniel J.
    et al.
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Kasrayan, Alex
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Patrik
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Bergfors, Terese
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mowbray, Sherry L.
    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center.
    X-Ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation2008In: Journal of Molecular Biology, ISSN 0022-2836, Vol. 376, no 1, p. 109-119Article in journal (Refereed)
    Abstract [en]

    In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-Å resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic α/β hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation

  • 306.
    Eriksson, Kristofer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gothelid, Emmanuelle
    Puglia, Carla
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oscarsson, Sven
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Performance of a biomimetic oxidation catalyst immobilized on silica particles2013In: Journal of Catalysis, ISSN 0021-9517, E-ISSN 1090-2694, Vol. 303, p. 16-21Article in journal (Refereed)
    Abstract [en]

    A biomimetic oxidation catalyst, cobalt porphyrin with thiol linkers, was chemically conjugated to silica particles and utilized in the oxidation of hydroquinone to benzoquinone. The cobalt porphyrin/silica particle catalyst was characterized with Inductively Coupled Plasma (ICP) and X-ray Photoelectron Spectroscopy (XPS). The catalytic performance of the cobalt porphyrin molecules was compared to previous results for the same catalyst grafted to a gold surface and on silicon wafers. The measured catalytic activity, after background correction, was 100 times higher than that of its homogeneous counterpart, 10 times higher than that on a silicon wafer, and almost the same as that on a gold surface. The turnover frequency rates after 400 h are still comparable with initial rates reported for homogeneous porphyrins and salophens, whereas the use of particles as support increases the active surface area, which removes the limitations for scale-up associated with the previously used silicon wafers and gold surfaces.

  • 307. Eriksson, Kristofer L. E.
    et al.
    Chow, Winnie W. Y.
    Puglia, Carla
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Göthelid, Emmanuelle
    Oscarsson, Sven
    Performance of a biomimetic oxidation catalyst immobilized on silicon wafers: comparison with its gold congener2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 21, p. 16349-16354Article in journal (Refereed)
    Abstract [en]

    With the aim of extending the usefulness of an existing biomimetic catalytic system, cobalt porphyrin catalytic units with thiol linkers were heterogenized via chemical grafting to silicon wafers and utilized for the catalytic oxidation of hydroquinone to p-benzoquinone. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology and composition of the heterogeneous catalyst. The results of the catalytic oxidation of hydroquinone obtained with porphyrins grafted on silicon were compared with those obtained earlier with the same catalyst in homogeneous phase and immobilized on gold. It was found that the catalysis could run over 400 h, without showing any sign of deactivation. The measured catalytic activity is at least 10 times higher than that measured under homogeneous conditions, but also 10 times lower than that observed with the catalytic unit immobilized on gold. The reasons of this discrepancy are discussed in term of substrate influence and overlayer organization. The silicon-immobilized catalyst has potential as an advanced functional material with applications in oxidative heterogeneous catalysis of organic reactions, as it combines long-term relatively high activity with low cost.

  • 308.
    Eriksson, Kristofer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Nyholm, Leif
    Oscarsson, Sven
    Bäckvall, Jan Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Electrochemical Preparation of Dispersed Gold Nanoparticles Supported in the Pores of Siliceous Mesocellular Foam: An Efficient Catalyst for Cycloisomerization of 4-Alkynoic Acids to LactonesManuscript (preprint) (Other academic)
    Abstract [en]

    A versatile approach for the production of dispersed thiol-stabilized gold nanoparticles in the pores of siliceous mesocellular foam (MCF) is described and the thiol-stabilized gold nanoparticles were found to catalyze the cyclization of 4-pentynoic acids to lactones. The reported method is based on an electrochemical oxidation of a gold substrate generating oxidative Au(III) species which give rise to a surface-confined redox reaction yielding MCF supported Au(I)-thiolates. By reducing the MCF-S-Au(I) complex with sodium borohydride thiol-stabilized gold nanoparticles were obtained which were characterized with Transmission Electron Microscopy (TEM). The nanoparticles were found to be in the size of 1-8 nm. Inductive Coupled Plasma (ICP) analysis indicated an Au loading of 3 % (w/w) on the MCF. Further 0.5 mol% of the MCF-S-Au(0) solids were used to catalyze the cyclization reaction of 4-alkynoic acid under mild conditions with high selectivity (> 99%).

  • 309.
    Eriksson, Kristofer
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyholm, Leif
    Oscarsson, Sven
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dispersed Gold Nanoparticles Supported in the Pores of Siliceous Mesocellular Foam: A Catalyst for Cycloisomerization of Alkynoic Acids to gamma-Alkylidene Lactones2015In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 10, p. 2250-2255Article in journal (Refereed)
    Abstract [en]

    A versatile approach for the production of dispersed thiol-stabilized gold nanoparticles in the pores of siliceous mesocellular foam (MCF) is described. The reported method is based on an electrochemical oxidation of a gold surface generating oxidative Au-III species, which give rise to a surface-confined redox reaction yielding MCF-supported Au-I thiolates. By reducing the corresponding Au-I-S-MCF species with sodium borohydride, thiol-stabilized gold nanoparticles in the size range of 1-8 nm were obtained as determined by transmission electron microscopy. Elemental analysis indicated an Au loading of 3% (w/w) on the MCF. The surface-confined Au nanoparticles were used to catalyze the cycloisomerization of alkynoic acids to the corresponding -alkylidene lactones in high efficiency and complete 5-exo-dig selectivity under mild reaction conditions.

  • 310.
    Eriksson, Lars
    et al.
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Widmalm, Göran
    Department of Organic Chemistry.
    Methyl 3-O-alpha-D-mannopyranosyl beta-D-glucopyranoside tetrahydrate2008In: Acta Crystallographica Section E, ISSN 1600-5368, Vol. E64, no 8, p. o1639-o1640Article in journal (Refereed)
  • 311.
    Eriksson, Lars
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl 3-O-alpha-L-fucopyranosyl alpha-D-galactopyranoside: a synchrotron study2012In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. 68, p. o528-U1770Article in journal (Refereed)
    Abstract [en]

    The title compound, C13H24O10 is the methyl glycoside of a structural element alpha-L-Fucp-(1 -> 3)-alpha-D-Galp making up two thirds of the repeating unit in the capsular polysaccharide of Klebsiella K63. The conformation of the title compound is described by the glycosidic torsion angles phi(H) = 55 (1)degrees and psi H = -24 (1)degrees. The hydroxymethyl group in the galactose residue is present in the gauche-trans conformation. In the crystal, O-H center dot center dot center dot O hydrogen bonds connect the disaccharide units into chains along the a-axis direction and further hydrogen bonds cross-link the chains.

  • 312.
    Eriksson, Lars
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl 3-O-α-l-fucopyranosyl β-d-glucopyranoside tetrahydrate2012In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. 68, p. o3180-o3181Article in journal (Refereed)
    Abstract [en]

    The title compound, C13H24O10·4H2O, is the methyl glycoside of a disaccharide structural element present in the backbone of the capsular polysaccharide from Klebsiella K1, which contains only three sugars and a substituent in the polysaccharide repeating unit. The conformation of the title disaccharide is described by the glycosidic torsion angles ϕH = 51.1 (1)° and ψH = 25.8 (1)°. In the crystal, a number of O—HO hydrogen bonds link the methyl glycoside and water mol­ecules, forming a three-dimensional network. One water mol­ecule is disordered over two positions with occupancies of 0.748 (4) and 0.252 (4).

  • 313. Eriksson, Lars
    et al.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl α-l-rhamnosyl-(1→2)[α-l-rhamnosyl-(1→3)]-α-l-rhamnoside penta­hydrate: synchrotron study2012In: Acta Crystallographica Section E: Structure Reports Online, ISSN 1600-5368, E-ISSN 1600-5368, Vol. 68, no 7, p. o2221-o2222Article in journal (Refereed)
    Abstract [en]

    The title hydrate, C19H34O13·5H2O, contains a vicinally disubstituted tris­accharide in which the two terminal rhamnosyl sugar groups are positioned adjacent to each other. The conformation of the tris­accharide is described by the glycosidic torsion angles ϕ2 = 48 (1)°, ψ2 = −29 (1)°, ϕ3 = 44 (1)° and ψ3 = 4 (1)°, whereas the ψ2 torsion angle represents a conformation from the major state in solution, the ψ3 torsion angle conformation may have been caught near a potential energy saddle-point when compared to its solution structure, in which at least two but probably three conformational states are populated. Extensive inter­molecular O—HO hydrogen bonding is present in the crystal and a water-containing channel is formed along the b-axis direction.

  • 314. Ertem, Mehmed Z.
    et al.
    Cramer, Christopher J.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    N-O bond cleavage mechanism(s) in nitrous oxide reductase2012In: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 17, no 5, p. 687-698Article in journal (Refereed)
    Abstract [en]

    Quantum chemical calculations of active-site models of nitrous oxide reductase (N2OR) have been undertaken to elucidate the mechanism of N-O bond cleavage mediated by the supported tetranuclear Cu4S core (Cu-Z) found in the enzymatic active site. Using either a minimal model previously employed by Gorelsky et al. (J. Am. Chem. Soc. 128:278-290, 2006) or a more extended model including key residue side chains in the active-site second shell, we found two distinct mechanisms. In the first model, N2O binds to the fully reduced Cu-Z in a bent mu-(1,3)-O,N bridging fashion between the Cu-I and Cu-IV centers and subsequently extrudes N-2 while generating the corresponding bridged mu-oxo species. In the second model, substrate N2O binds loosely to one of the coppers of Cu-Z in a terminal fashion, i.e., using only the oxygen atom; loss of N-2 generates the same mu-oxo copper core. The free energies of activation predicted for these two alternative pathways are sufficiently close to one another that theory does not provide decisive support for one over the other, posing an interesting problem with respect to experiments that might be designed to distinguish between the two. Effects of nearby residues and active-site water molecules are also explored.

  • 315.
    Fawzy Abdel-Magied, Ahmed
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study2017In: Radiochimica Acta, ISSN 0033-8230, E-ISSN 2193-3405, Vol. 105, no 10, p. 813-820Article in journal (Refereed)
    Abstract [en]

    There is a high interest to develop suitable solid phase extractants for uranium separation from aqueous solutions in order to reduce cost and enhance the efficiency. This paper describes solid phase extraction of uranium(VI) from aqueous phosphoric acid solution using MCM-41 based D2HEPA-TOPO organophosphorous extractants. The mixture of D2HEPA (di-2-ethyl-hexylphosphoric acid) and TOPO (tri-n-octylphosphine oxide) was impregnated into the pores of MCM-41 and the synthesized sorbent was fully characterized. The influences of different factors such as synergistic mixture ratio, phosphoric acid concentration, mixing time and temperature were investigated. The results showed that 90% of uranium(VI) extraction can be achieved within 5 min, using D2HEPATOPO@MCM-41 (mass ratio 2: 1 w/w) from 1 M phosphoric acid containing 64 ppm of uranium at room temperature. High adsorption capacity of uranium(VI) have been achieved at the mentioned conditions. The rate constant for the chemical adsorption of uranium(VI) was 0.988 g mg. 1 min. 1 calculated by the pseudo-second order rate equation. The obtained thermodynamics parameters showed that uranium(VI) adsorption from H-3 PO4 is an exothermic and spontaneous process.

  • 316.
    Fontana, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NMR spectroscopy in structural and conformational analysis of bacterial polysaccharides2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Carbohydrates constitute one of the three major classes of biomolecules found in all living cells and, unlike nucleic acids and proteins, their polymeric structures are not based on a template. The structural diversity of these molecules confers them an enormous capacity to encode information in biological systems, acting as efficient mediators in the interaction of the cell with the environment. In order to understand the roles of glycans in biological processes it is of key importance to have a detailed understanding of their structures and conformational preferences, and NMR spectroscopy is one of most powerful techniques for the study of these molecules in solution.

    This thesis is focused on the structural and conformational analysis of lipopolysaccharides from Gram-negative bacteria. In the first two projects (Chapter 2 and 3) the structural analyses of the biological repeating units of the O-antigen polysaccharides from E. coli O174ab and O115 are described; in both cases a combination of NMR spectroscopy and gas chromatography techniques were used. Special emphasis was made in the characterization of the O-acetylation patterns observed in the native O-antigen polysaccharide from E. coli O115. Chapter 4 describes the development of a new methodology for the determination of the absolute configuration of monosaccharide components of glycans. This methodology was used in the structural elucidation of the O-antigen PS of E. coli O155 (Chapter 5) that was carried out in a semi-automated manner using the program CASPER and unassigned NMR data. The conformational preferences of O-antigen PS of E. coli O5ac and O5ab are analyzed in Chapter 6, using a combination of NMR spectroscopy and molecular modeling methods. In Chapter 7 the structural analysis is focused on the core region of the LPS, and the structures of the deacylated lipooligosaccharides of three rough mutants of B. melitesis are reported. In several of the aforementioned chapters, the biosynthetic aspects behind the assembly of the respective PSs were examined on the bases of genetic information available in the NCBI and ECODAB databases.  Finally, in Chapter 8, different NMR pulse sequences available for the study of proteins and nucleic acids were evaluated and optimized for the structural analysis of 13C uniformly-labeled oligo- and polysaccharides.

  • 317.
    Fontana, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of glycans by NMR spectroscopy2012Licentiate thesis, comprehensive summary (Other academic)
  • 318.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 14, p. 7727-7741Article in journal (Refereed)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 319.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Moriyón, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the rough lipopolysaccharides of Brucella melitensis mutants affected in the biosynthesis of the core and O-antigen polysaccharideManuscript (preprint) (Other academic)
  • 320.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundborg, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies and biosynthetic aspects of the o antigen polysaccharide from Escherichia coli o1742012In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 354, p. 102-105Article in journal (Refereed)
    Abstract [en]

    The structure of the repeating unit of the O-antigenic polysaccharide (PS) from Escherichia coli O174 has been determined. Component analysis together with H-1 and C-13 NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by H-1, C-13-heteronuclear multiple-bond correlation and H-1, H-1-NOESY experiments. The PS is composed of tetrasaccharide repeating units with the following structure: -> 4)-beta-D-GlcpA-(1 -> 3)-beta-D-Galp-(1 -> 3)-beta-D-GalpNAc-(1 -> vertical bar beta-D-GlcpNAc-(1 -> 2) Cross-peaks of low intensity were present in the NMR spectra consistent with a beta-D-GlcpNAc-(1 -> 2)-beta-D-GlcpA(1 -> structural element at the terminal part of the polysaccharide, which on average is composed of similar to 15 repeating units. Consequently the biological repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.

  • 321.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ramström, Kristoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of the O-antigen polysaccharide from Escherichia coli O115 and biosynthetic aspects thereof2013In: Glycobiology, ISSN 0959-6658, E-ISSN 1460-2423, Vol. 23, no 3, p. 354-362Article in journal (Refereed)
    Abstract [en]

    The structure of the O-antigen polysaccharide (PS) of Escherichia coliO115 has been investigated using a combination of component analysis and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy experiments. The repeating unit of the O-antigen was elucidated using the O-deacetylated PS and has the following branched pentasaccharide structure: →3)[β-L-Rhap-(1 → 4)]-β-D-GlcpNAc-(1 → 4)-α-D-GalpA-(1 → 3)-α-D-Manp-(1 → 3)-β-D-GlcpNAc-(1→. Cross-peaks of low intensity, corresponding to a β-L-Rhap-(1 → 4)-β-D-GlcpNAc-(1→ structural element, were present in the NMR spectra and attributed to the terminal part of the PS; this information defines the biological repeating unit of the O-antigen by having a 3-substituted N-acetyl-D-glucosamine (GlcNAc) residue at its reducing end. Analysis of the NMR spectra of the native PS revealed O-acetyl groups distributed over different positions of theL-Rhap residue (∼0.70 per repeating unit) as well as at O-2 and O-3 of the D-GalpA residue (∼0.03 and ∼0.25 per repeating unit, respectively), which is in agreement with the presence of two acetyltransferases previously identified in the O-antigen gene cluster (Wang Q, Ruan X, Wei D, Hu Z, Wu L, Yu T, Feng L, Wang L. 2010. Mol Cell Probes. 24:286–290.). In addition, the four glycosyltransferases initially identified in the O-antigen gene cluster of E. coli O115 were analyzed using BLAST, and the function of two of them predicted on the basis of similarities with glycosyltransferases from Shigella dysenteriae type 5 and 12, as well as E. coli O58 and O152.

  • 322.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaccheus, Mona
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Ansaruzzaman, Mohammad
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-160002016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 432, p. 41-49Article in journal (Refereed)
    Abstract [en]

    The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.

  • 323. Foster, R. A.
    et al.
    Carlin, N. I. A.
    Majcher, M.
    Tabor, H.
    Ng, L.-K.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural elucidation of the O-antigen of the Shigella flexneri provisionalserotype 88-893: structural and serological similarities with S. flexneri provisional serotype Y394 (1c)2011In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 346, no 6, p. 872-876Article in journal (Refereed)
    Abstract [en]

    The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. 1H and 13C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap2Ac-(1→3)[α-d-Glcp-(1→2)-α-d-Glcp-(1→4)]-β-d-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme.

  • 324. Fourniere, Viviane
    et al.
    Skantz, Linnea
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sajtos, Ferenc
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oscarson, Stefan
    Lahmann, Martina
    Synthesis of the Lewis b pentasaccharide and a HSA-conjugate thereof2010In: Tetrahedron, ISSN 0040-4020, E-ISSN 1464-5416, Vol. 66, no 39, p. 7850-7855Article in journal (Refereed)
    Abstract [en]

    Helicobacter pylori, a gastric pathogen, binds to various blood group antigens, including the Lewis types, present in the gastric tissue and a relation between the presentation of the ligands and the overall strength of binding has been assumed. Synthetic Lewis b tetra- and hexasaccharide conjugates are available but not the analogous pentasaccharide. An efficient synthesis of the amino spacer equipped Lewis b pentasaccharide, 3-aminopropyl alpha-L-fucopyranosyl-(1 -> 2)-beta-D-galactopyranosyl-(1 3)-[alpha-L-fucopyranosyl-(1 -> 4)]-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1 -> 3)-beta-D-galactopyranoside, is presented to enable further investigation of the carbohydrate recognition process of H. pylori.

  • 325.
    Fournière, Viviane
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of non-glycosidically linked selenoether pseudodisaccharides2010In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 51, no 16, p. 2127-2129Article in journal (Refereed)
    Abstract [en]

    Non-glycosidically linked disaccharide mimetics with a selenoether functionality linking the two monosaccharide residues have been synthesised. Protected Glc(Se3–3)Glc, Glc(Se3–6)Glc and Glc(Se3–6)Man structures were obtained. Selenium was introduced by displacement of carbohydrate sulfonates with a selenobenzoate anion. Conversion into diselenides by methanolysis of the benzoate and aerial oxidation was followed by reduction of the diselenides to selenolates, and in situ displacement of a second carbohydrate sulfonate in an SN2 reaction to give selenoethers. Glc(Se3–3)Glc and Glc(Se3–6)Glc were also obtained in deprotected form.

  • 326. Francois, Camille
    et al.
    Pourchet, Sylvie
    Boni, Gilles
    Fontaine, Stephane
    Gaillard, Yves
    Placet, Vincent
    Galkin, Maxim V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orebom, Alexander
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Plasseraud, Laurent
    Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications2016In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 73, p. 68732-68738Article in journal (Refereed)
    Abstract [en]

    A novel lignin-based synthon, diglycidylether of iso-eugenol (DGE-isoEu) is used as a prepolymer for the preparation of thermosetting resins. DGE-isoEu is synthesized in a two-step procedure with a satisfactory yield from bio-based iso-eugenol (isoEu, 2-methoxy-4-(1-propenyl)phenol) catalytically fragmented from lignin in an organosolv process. DGE-isoEu was fully characterized by NMR, MS and FTIR. Curing of the DGE-isoEu monomer has then been investigated in the presence of several carboxylic acid derivatives hardeners. The thermal and mechanical properties of each material were recorded showing, in particular, a high T-g and instantaneous modulus values in the range of 78-120 degrees C and 4.6-5.5 GPa, respectively. The lignin derived new materials give very attractive thermo-mechanical properties comparable to that of common BPA-containing epoxy resins.

  • 327.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pàmies, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized γ-Hydroxy Amides2005In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 70, no 7, p. 2582-2587Article in journal (Refereed)
    Abstract [en]

    An efficient kinetic resolution of racemic gamma-hydroxy amides 1 was performed via Pseudomas cepacia lipase (PS-C)-catalyzed transesterification. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity (E values of up to > 250). The combination of enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution. The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution yields the corresponding acetates in good yield and good to high enantioselectivity (ee's up to 98%). The synthetic utility of this procedure was illustrated by the practical synthesis of the versatile intermediate gamma-lactone (R)-5-methyltetrahydrofuran-2-one.

  • 328.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Highly Efficient Ru-catalyzed Transfer Hydrogenation/Hydrogenation Procedure for 1,3-Cycloalkandiols using Controlled Microwave HeatingManuscript (Other academic)
  • 329.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Xu, Yongmei
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic Resolution, Desymmetrization and Dynamic Kinetic Asym-metric Transformation of 1,3-Cycloalkanediols2006In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
    Abstract [en]

    An efficient desymmetrization of cis-1,3-cyclohexanediol to (1S,3R)-3-(acetoxy)-1-cyclohexanol ((R,S)-2a) was performed via Candida antarctica lipase B (CALB)-catalyzed transesterification, in high yield (up to 93%) and excellent enantioselectivity (ee's up to >99.5%). (R,R)-Diacetate ((R,R)-3a) was obtained in a DYKAT process at room temperature from (1S,3R)-3-acetoxy-1-cyclohexanol ((R,S)-2a), in a high trans/cis ratio (91:9) and in excellent enantioselectivity of >99%. Metal- and enzyme-catalyzed dynamic transformation of cis/trans-1,3-cyclohexanediol using PS-C gave a high diastereoselectivity for cis-diacetate (cis/trans = 97:3). The (1R,3S)-3-acetoxy-1-cyclohexanol (ent-(R,S)-2a) was obtained from cis-diacetate by CALB-catalyzed hydrolysis in an excellent yield (97%) and selectivity (>99% ee). By deuterium labeling it was shown that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

  • 330. Fransson, Ann-Britt
    et al.
    Xu, Yongmei
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Enzymatic resolution, desymmetrization and dynamic kinetic asymmetric transformation of 1,3-cycloalkanediols2006In: Journal of organic chemistry, ISSN 0022-3263, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
  • 331.
    Franzén, Johan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Carbocyclizations of Allenes with Unsaturated Hydrocarbons2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Palladium-catalyzed reactions of unsaturated hydrocarbons are important processes in organic chemistry especially for the generation of ring systems. This thesis describes the development and mechanistic studies of carbocyclization reactions of allenes with olefins, allyls or 1,3-dienes catalyzed by palladium(0)- and palladium(II)-complexes. These reactions generally exhibit high stereo- and regioselectivity and give rise to stereodefined [n,3,0] bicyclic systems (n=3,4,5,6) in good to excellent yields. The mechanisms for these reactions were investigated with special attention directed to the intramolecular reaction of (π-allyl)palladium(II)-complexes and (π-1,3-diene)palladium(II)-complexes with allenes. It was demonstrated that the carbon-carbon bond formation occurred by nucleophilic attack of the middle carbon atom of the allene on the face of the allyl or 1,3-diene opposite to that of the palladium atom. Further, two new types of oxidative palladium(II)-catalyzed reactions between allenes and olefins or 1,3-dienes have been developed. These cyclizations constitute a new type of carbon-carbon bond forming reaction and there are support for a palladium(II)-catalyzed C-H activation at the allenic moiety rendering a vinylidienepalladium-intermediate followed by carbon-carbon bond formation via insertion of the olefin or 1,3-diene.

  • 332.
    Franzén, Johan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbon-Carbon bond formation in Palladium(II)-Catalyzed Allylic Oxidation: A Novel Oxidative Carbozyclization of Allene-Substituted Olefins2003In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 125, no 20, p. 6056-6057Article in journal (Refereed)
  • 333.
    Franzén, Johan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Löfstedt, Joakim
    Dorange, Ismet
    Bäckvall, Jan E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allenes as Carbon Nucleophiles in Palladium-Catalyzed Reactions: Observation of anti Attack of Allenes on (p-Allyl)Palladium Complexes2002In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 124, no 38, p. 11246-11247Article in journal (Refereed)
  • 334.
    Franzén, Johan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Löfstedt, Joakim
    Falk, Jennica
    Bäckvall, Jan-E
    Stereoselective Palladium-Catalyzed Carbocyclization of Allenic Allylic Carboxylates.2003In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 125, no 46, p. 14140-14148Article in journal (Refereed)
  • 335. François, Camille
    et al.
    Pourchet, Sylvie
    Boni, Gilles
    Rautiainen, Sari
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fournier, Lucie
    Robert, Carine
    Thomas, Christophe M.
    Fontaine, Stephane
    Gaillard, Yves
    Placet, Vincent
    Plasseraud, Laurent
    Design and synthesis of biobased epoxy thermosets from biorenewable resources2017In: Comptes rendus. Chimie, ISSN 1631-0748, E-ISSN 1878-1543, Vol. 20, no 11-12, p. 1006-1016Article in journal (Refereed)
    Abstract [en]

    Biobased diepoxy synthons derived from isoeugenol, eugenol or resorcinol (DGE-isoEu, DGE-Eu and DGER, respectively) have been used as epoxy monomers in replacement of the diglycidyl ether of bisphenol A (DGEBA). Their curing with six different biobased anhydride hardeners leads to fully biobased epoxy thermosets. These materials exhibit interesting thermal and mechanical properties comparable to those obtained with conventional petrosourced DGEBA-based epoxy resins cured in similar conditions. In particular, a high T-g in the range of 90-130 degrees C and instantaneous moduli higher than 4.3 GPa have been recorded. These good performances are very encouraging, making these new fully biobased epoxy thermosets compatible with the usual structural application of epoxy materials.

  • 336.
    Frigell, Jens
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Towards Carbasugar-Based Mimics of Mycobacerial Arabinogalactan2008Licentiate thesis, comprehensive summary (Other academic)
  • 337.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Carbasugar analogues of galactofuranose: α-O-linked derivativesManuscript (preprint) (Other academic)
    Abstract [en]

    Using an indirect method, we have synthesised α-linked carbasugar analogues of galactofuranosides for the first time. Opening of a β-talo configured carbasugar 1,2-epoxide by alcohol nucleophiles under Lewis acidic conditions proceeded with very good regioselectivity to give α-talo configured C-1-substituted ethers with OH-2 free. Inversion of configuration at OH-2 by an oxidation–reduction sequence gave the α-galacto configured carbahexofuranose C-1 ethers. A carbadisaccharide corresponding to the Galf(α1→3)Manp substructure from Apodus deciduus galactomannan was synthesised to exemplify the method.

  • 338.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbasugar analogues of galactofuranosides: alpha-O-linked derivatives2010In: BEILSTEIN J ORG CHEM, ISSN 1860-5397, Vol. 6, p. 1127-1131Article in journal (Refereed)
    Abstract [en]

    Using an indirect method, we have synthesised alpha-linked carbasugar analogues of galactofuranosides for the first time. Ring opening of a beta-talo configured carbasugar 1,2-epoxide by alcohol nucleophiles under Lewis acidic conditions proceeded with very good regioselectivity to give alpha-talo configured C1-substituted ethers with a free OH-group at the C2 position. Inversion of configuration at C2 by an oxidation-reduction sequence gave the alpha-galacto configured carbahexofuranose C1 ethers. A carbadisaccharide corresponding to the Galf(alpha 1 -> 3)Manp substructure from Apodus deciduus galactomannan was synthesised to exemplify the method.

  • 339.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbasugar analogues of galactofuranosides: beta-O-linked derivatives and towards beta-S-linked derivatives2011In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 346, no 11, p. 1277-1290Article in journal (Refereed)
    Abstract [en]

    A selectively protected carbasugar analogue of beta-galactofuranose was synthesised from glucose using ring-closing metathesis as the key step. The carbasugar was converted into an alpha-galacto configured 1,2-epoxide, which was an effective electrophile in Lewis acid catalysed coupling reactions with alcohols. The epoxide was opened with regioselective attack at C-1 to give beta-galacto configured C-1 ethers. Using carbohydrates as nucleophiles, we synthesised a number of pseudodisaccharides. The epoxide was also regioselectively opened at C-1 with a sulfur nucleophile under basic conditions to give a beta-galacto configured C-1 thioether.

  • 340.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Cumpstey, Ian
    Carbasugar analogues of galactofuranosides: β-O-linked derivativesManuscript (preprint) (Other academic)
    Abstract [en]

    A selectively protected carbasugar analogue of β-galactofuranose was synthesised from glucose using ring-closing metathesis as the key step. The carbasugar was converted into an α-galacto configured 1,2-epoxide, which was an effective electrophile in Lewis acid catalysed coupling reactions with alcohols. The epoxide was opened with regioselective attack at C-1 to give β-galacto configured C-1 ethers. Using carbohydrates as nucleophiles, we synthesised a number of pseudodisaccharides.

  • 341.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pearcey, J.A.
    Lowary, T.
    Cumpstey, Ian
    Carbasugar Analogues of Galactofuranose: Pseudodisaccharide Mimics of Fragments of Mycobacterial ArabinogalactanManuscript (preprint) (Other academic)
    Abstract [en]

    A partially protected carbasugar analogue of β-galactofuranose was converted into an α-galacto configured 1,2-epoxide, which was was opened by alcohols under Lewis acid catalysis with regioselective attack at C-1 to give β-galacto configured C-1 ethers. Using OH-5 and OH-6 carbagalactofuranose derivatives as nucleophiles, we synthesised pseudodisaccharide analogues of substructures of the arabinogalactan from M. tuberculosis. The dicarba analogue of the disaccharide Galf(β1→5)Galf was found to moderately inhibit the action of GlfT2 galactofuranosyl transferase from M. tuberculosis.

  • 342.
    Frigell, Jens
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pearcey, Jean A.
    Lowary, Todd L.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carbasugar Analogues of Galactofuranosides: Pseudodisaccharide Mimics of Fragments of Mycobacterial Arabinogalactan2011In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 7, p. 1367-1375Article in journal (Refereed)
    Abstract [en]

    A partially protected carbasugar analogue of beta-galactofuranose was converted into an alpha-galacto-configured 1,2-epoxide, which was opened by alcohols under Lewis acid catalysis with regioselective attack at C-1 to give beta-galacto-configured C-1 ethers. Using OH-5 and OH-6 carbagalactofuranose derivatives as nucleophiles, we synthesised pseudodisaccharide analogues of substructures of the arabinogalactan from M. tuberculosis. The dicarba analogue of the disaccharide Galf(beta 1 -> 5) Galf was found to moderately inhibit the action of GlfT2 galactofuranosyl transferase from M. tuberculosis.

  • 343.
    Fryxelius, Jacob
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Ligands for High-Valent Metal Oxidation Catalysts2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes several approaches towards the design of a water oxidation catalyst. Different aspects of coordination and water oxidation chemistry are adressed and result in various syntheses of ligands and their metal complexes.

  • 344.
    Fryxelius, Jacob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Anderlund, Magnus
    Xu, Yunhua
    Huang, Ping
    Magnuson, Ann
    Sun, Licheng
    Åkermark, Björn
    A Tetranuclear Mn Dimer of DimersManuscript (Other academic)
  • 345.
    Fryxelius, Jacob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eilers, Gerriet
    Feyziyev, Yashar
    Magnuson, Ann
    Sun, Licheng
    Lomoth, Reiner
    Synthesis and redox properties of a [meso-tris(4-nitrophenyl)corrolato]Mn(III) complex2005In: Journal of Porphyrins and Phtalocyanines, Vol. 9, p. 379-386Article in journal (Refereed)
  • 346.
    Fryxelius, Jacob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pica, Delphine
    Eriksson, Lars
    Åkermark, Björn
    Preparation of Copper(II) Complexes of a Mixed Amide-Phenolate LigandIn: Inorganic Chemistry CommunicationsArticle in journal (Refereed)
  • 347.
    Färnbäck, Magnus
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl 2-O-beta-L-fucopyranosyl alpha-D-glucopyranoside monohydrate: a synchrotron study2008In: Acta Crystallographica Section C, ISSN 0108-2701, Vol. 64, no 2, p. o31-o32Article in journal (Refereed)
  • 348.
    Färnbäck, Magnus
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Söderman, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido-alpha-D-galactopyranosyl-(1-2)-: [3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl-(1-3)]-4-O-benzoyl-alpha-L-rhamnopyranoside n-hexane 0.1-solvate2007In: Acta Crystallographica: Section E, Vol. E63, p. o1581-o1583Article in journal (Refereed)
  • 349.
    Fång, Johan
    et al.
    Stockholm University, Faculty of Science, Department of Environmental Chemistry.
    Eriksson, Johan
    Stockholm University, Faculty of Science, Department of Environmental Chemistry.
    Bergman, Åke
    Stockholm University, Faculty of Science, Department of Environmental Chemistry.
    Widmalm, Göran
    Department of Organic Chemistry.
    Separation and NMR characterisation of Hexabromocyclododecane (HBCDD)2007In: Svensk-norsk miljökjemisk vintermöte: Dr. Holms Hotell, Geilo, 2007, p. 34-Conference paper (Other academic)
  • 350. Gagliardo, Marcella
    et al.
    Selander, Nicklas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mehendale, Nilesh C.
    van Koten, Gerard
    Klein Gebbink, Robertus J. M.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic performance of symmetrical and unsymmetrical sulfur-containing pincer complexes: synthesis and tandem catalytic activity of the first PCS-pincer palladium complex2008In: Chemistry: a European journal, ISSN 0947-6539, Vol. 14, no 16, p. 4800-4809Article in journal (Refereed)
45678910 301 - 350 of 1362
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf