Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abbas, Alaa
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Palladium-Catalysed Carbonylative Synthesis of Acylamidines2014Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
  • 2.
    Fyrner, Timmy
    Linköping University, The Department of Physics, Chemistry and Biology.
    Synthesis of Structures Related to Antifreeze Glycoproteins2005Independent thesis Advanced level (degree of Magister), 20 points / 30 hpStudent thesis
    Abstract [en]

    In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzoyl-3,4,6-tri-O-benzyl-α-Dgalactopyranoside, and acceptor, ethyl 4,6-O-benzylidene-2-deoxy-2-N-phthalimido-β-D-1-thio-glucopyranoside, using silver triflate activation. Subsequent epimerization to a Gal-GalN disaccharide was achieved using Moffatt oxidation followed by L-selectride® reduction. The tripeptide was synthesized in a short and convenient manner using solid phase peptide synthesis with immobilized Fmoc-Ala on Wang® resins as starting point.

  • 3.
    Grandin, Anna
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Synthetic Routes towards 2-thia-7,8-diaza-cyclopenta[l]phenanthrene and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene for Molecular Electronics Applications2009Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Electric current is known to flow through the π-bonds in oligothiophenes. In order to use them as molecular wires it is important to use a technique where the potential gradients can be generated and maintained in supramolecular networks. A solution to this problem can be the use of metal complexes as junction points within such a network.

     In this project pathways to synthesize 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) for use in molecular electronic devices have been investigated. 4-(5-Bromo-thiophen-2-yl)2,2’-bipyridine (3) was prepared via Kröhnke reaction from 3-(5-bromothiophene-2-yl)acrolein and 1-(2-Oxo-2-pyridine-2-yl-ethyl)-pyridinium iodide in an overall yield of 14 %.  

     Several routes towards 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) and 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) were tested. Since the original planned pathway did not work, lack of time made it impossible to complete the series of experiments that were needed. The synthesis of 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1) is almost finished. Due to the solvation problems, after the decarboxylation step, the product could not be analyzed by 1H-NMR in a satisfactory manner. The product was sent for analysis.

     A number of experiments towards 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) were tested but few of them worked as planned. There is a lot of work left to be done in the synthesis of this compound but the lack of time made it impossible.

     The chemistry that has been achieved is the synthesis of 1,10-phenanthroline-5,6-dione in the synthesis of 2-thia-7,8-diaza-cyclopenta[l]phenanthrene (1). The following Hinsberg thiophene synthesis probably worked but due to solvation problems the product could not be isolated. The final product after hydrolysis and decarboxylation of the remaining ester groups after the Hinsberg thiophene synthesis was tested but the results were difficult to confirm.

     In the synthesis of 1-thia-7,8-diaza-cyclopenta[l]phenanthrene (2) several attempts to make 3,4-diamino-N,N-diethyl-benzamide were made. The attack from the primary amines on the carbonyl carbon made it necessary to protect them. The attempt to synthesize 3,4-bis-acetylamino-N,N-diethyl-benzamide also failed, both the attempt directly from the carboxylic acid and through the acylchloride, even though the amines were protected.  

  • 4.
    Saarinen, Gabrielle
    Mälardalen University, School of Sustainable Development of Society and Technology.
    Development of Synthetic Routes for Preparation of 2,6-Disubstituted Spiro[3.3]heptanes.2009Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    2,6-Disubstituted spiro[3.3]heptanes were synthesized to investigate and develop synthetic methods for preparation of these compounds. Possibilities for introducing different functionalities like nitriles and sulfonamides were also investigated.

     

    Synthetic routes presented describe successive [2+2] cycloadditions between dichloroketene and olefins to give the sought after spiro compounds with low to moderate yields throughout the multi-step synthesis. [2+2] Cycloadditions offered low turnovers and chromatography was required for purification.

     

    A synthetic route with cyclisations through double substitution reactions between di-electrophiles and di-nucleophiles resulting in a 2,6-disubstituted spiro[3.3]heptane is also described. This multi-step synthesis offered higher turnover and yields and often there was no need for purification through chromatography.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf