Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Ayesa Alvarez, Susana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Amine Building Blocks and Protease Inhibitors2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis addresses the design and synthesis of amine building blocks accomplished by applying two different synthetic procedures, both of which were developed using solid-phase chemistry. Chapter 1 presents the first of these methods, entailing a practical solid-phase parallel synthesis route to N-monoalkylated aminopiperidines and aminopyrrolidines achieved by selective reductive alkylation of primary and/or secondary amines. Solid-phase NMR spectroscopy was used to monitor the reactions for which a new pulse sequence was developed. The second method, reported in Chapter 2, involves a novel approach to the synthesis of secondary amines starting from reactive alkyl halides and azides. The convenient solid-phase protocol that was devised made use of the Staudinger reaction in order to accomplish highly efficient alkylations of N-alkyl phosphimines or N-aryl phosphimines with reactive alkyl halides.

    The second part of the thesis describes the design and synthesis of three classes of protease inhibitors targeting the cysteine proteases cathepsins S and K, and the serine protease hepatitis C virus (HCV) NS3 protease. Chapter 4 covers the design, solid-phase synthesis, and structure-activity relationships of 4-amidofurane-3-one P1-containing inhibitors of cathepsin S and the effects of P3 sulfonamide groups on the potency and selectivity towards related cathepsin proteases. This work resulted in the discovery of highly potent and selective inhibitors of cathepsin S. Two parallel solid-phase approaches to the synthesis of a series of aminoethylamide inhibitors of cathepsin K are presented in Chapter 5. Finally, Chapter 6 reports peptide-based HCV NS3 protease inhibitors containing a non-electrophilic allylic alcohol moiety as P1 group and also outlines efforts to incorporate this new template into low-molecular-weight drug-like molecules.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf