Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Anderlund, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear Manganese Complexes for Artificial Photosynthesis: Synthesis and Properties2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II.

    The redox properties of these complexes have been investigated with electro chemical methods and the structure of the complexes has been investigated with different X-ray techniques. Structural aspects and the effect of water on the redox properties have been shown.

    One of the manganese complexes has been covalently linked in a triad donor-photosensitizer-acceptor (D–P–A) system. The kinetics of this triad has been investigated in detail after photo excitation with both optical and EPR spectroscopy. The formed charge separated state (D–P–A+) showed an unusual long lifetime for triad based on ruthenium photosensitizers.

    The thesis also includes a study of manganese-salen epoxidation reactions that we believe can give an insight in the oxygen transfer mechanism in the water oxidising complex in photosystem II.

  • 2.
    Edin, Michaela
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium-catalyzed redox reactions and lipase-catalyzed asymmetric transformations of alcohols2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The major part of this thesis describes the synthesis of enantiopure alcohols and diols by combining ruthenium-catalyzed redox reactions that lead to racemization or epimerization and lipase-catalyzed asymmetric trans-formations in one-pot.

    A mechanistic study of the unexpected facile formation of meso-diacetate products found in enzyme-catalyzed acetylations of alkanediols with Candida antarctica lipase B (CALB) was first performed. By deuterium labeling it was found that the formation of meso-diacetates proceeds via different mechanisms for 2,4-pentanediol and 2,5-hexanediol. Whereas the first reacts via an intramolecular acyl migration, the latter proceeds via a direct, anomalous S-acylation of the alcohol. The acyl migration occurring in the 2,4-pentanediol monoacetate was taken advantage of in asymmetric transformations of substituted 1,3-diols by combining it with a ruthenium-catalyzed epimerization and an enzymatic transesterification using CALB. The in situ coupling of these three processes results in de-epimerization and deracemization of acyclic, unsymmetrical 1,3-diols and constitutes a novel dynamic kinetic asymmetric transformation (DYKAT) concept.

    Racemization of secondary alcohols effected by a new ruthenium complex was combined in one-pot with an enzyme-catalyzed transesterification, leading to a chemoenzymatic dynamic kinetic resolution (DKR) operating at room temperature. Aromatic, aliphatic, heterocyclic and functionalized alcohols were subjected to the procedure. A mechanism for racemization by this ruthenium complex has been proposed and experimental indications for hydrogen transfer within the coordination sphere of ruthenium were found. The same ruthenium catalyst was used for epimerization in DYKAT of 1,2-diols, and a very similar complex was employed in isomerization of allylic alcohols to saturated ketones. The former method is a substrate extension of the above principle applied for DYKAT of 1,3-diols. The combination of a lipase and an organocatalyst was demonstrated by linking a lipase-catalyzed transesterification to a proline-mediated aldol reaction for the production of enantiopure (S)-β-hydroxy ketones and acetylated (R)-aldols.

  • 3.
    Eklund, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Computational Analysis of Carbohydrates: Dynamical Properties and Interactions2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis a computational complement to experimental observables will be presented. Computational tools such as molecular dynamics and quantum chemical tools will be used to aid in the interpretation of experimentally (NMR) obtained structural data. The techniques are applied to study the dynamical features of biologically important carbohydrates and their interaction with proteins. When evaluating conformations, molecular mechanical methods are commonly used. Paper I, highlights some important considerations and focuses on the force field parameters pertaining to carbohydrate moieties. Testing of the new parameters on a trisaccharide showed promising results. In Paper II, a conformational analysis of a part of the repeating unit of a Shigella flexneri bacterium lipopolysaccharide using the modified force field revealed two major conformational states. The results showed good agreement with experimental data. In Paper III, a trisaccharide using Langevin dynamics was investigated. The approach used in the population analysis included a least-square fit technique to match T1 elaxation parameters. The results showed good agreement with experimental T-ROE build-up curves, and three states were concluded to be involved. In Paper IV, carbohydrate moieties were used in the development of prodrug candidates, to “hide” peptide opioid receptor agonists. Langevin dynamics and quantum chemical methods were employed to elucidate the structural preference of the compound. The results showed a chemical shift difference between hydrogens across the ring for the two isomers as well as a difference in the coupling constant, when taking the dynamics into account. In Paper V, the interaction of the Salmonella enteritidis bacteriophage P22 with its host bacterium, involves an initial hydrolysis of the O-antigenic polysaccharide (O-PS). Docking calculations were used to examine the binding between the Phage P22 tail-spike protein and the O-PS repeating unit. Results indicated a possible active site in conjunction with NMR measurements.

  • 4.
    Engqvist, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Direct Amino Acid-Catalyzed Enantioselective α-Oxidation Reactions and Asymmetric de novo Synthesis of Carbohydrates2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The ability of amino acids to form nucleophilic enamines with aldehydes and ketones has been used in the development of asymmetric α-oxidation reactions with electrophilic oxidizing agents. Singlet molecular oxygen has for the first time been asymmetrically incorporated into aldehydes and ketones, and the products were isolated as their corresponding diols in good yields and ee’s. Organocatalytic α-oxidations of cyclic ketones with iodosobenzene and N-sulfonyloxaziridine were also possible and furnished after reduction the product diols in generally low yields and in low to good ee’s. Amino acids have also been shown to catalyze the formation of carbohydrates by sequential aldol reactions. For example, proline and hydroxy proline mediate a highly selective trimerisation of α-benzyloxyacetaldehyde into allose, which was obtained in >99 % ee. Non linear effect studies of this reaction revealed the largest permanent nonlinear effect observed in a proline-catalyzed reaction to date. Moreover, polyketides were also assembled in a similar fashion by an amino acid-catalyzed one-pot reaction, and was successful for the trimerisation of propionaldehyde, however the sequential cross aldol reactions suffered from lower selectivities. This problem was overcome by the development of a two-step synthesis that enabled the formation of a range of polyketides with excellent selectivities from a variety of aldehydes. The method furnishes the polyketides via the shortest route reported and in comparable product yields to most multi-step synthesis. All polyketides were isolated as single diastereomers with >99 % ee. Based on the observed amino acid-catalysis, amino acids are thought to have taken part in the prebiotic formation of tetroses and hexoses.

  • 5.
    Gemma, Emiliano
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of Oligosaccharides for Interaction Studies with Various Lectins2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, the syntheses of oligosaccharides for interaction studies with various lectins are described. The first section reports the syntheses of tetra, tri- and disaccharides corresponding to truncated versions of the glucosylated arm of Glc1Man9(GlcNAc)2, found in the biosynthesis of N-glycans. The thermodynamic parameters of their interaction with calreticulin, a lectin assisting and promoting the correct folding of newly synthesised glycoproteins, were established by isothermal titration calorimetry. In the second section, a new synthetic pathway leading to the same tetra- and trisaccharides is discussed. Adoption of a convergent strategy and of a different protecting group pattern resulted in significantly increased yields of the target structures. The third section describes the syntheses of a number of monodeoxy-trisaccharides related to the above trisaccharide Glc-α-(1→3)-Man-α-(1→2)-Man-α-OMe. Differentsynthetic approaches were explored and the choice of early introduction of the deoxy functionality proved the most beneficial. In the last section, the synthesis of spacer-linked LacNAc dimers as substrates for the lectins galectin-1 and -3 is presented. This synthesis was realized by glycosidation of a number diols with peracetylated LacNAc-oxazoline. Pyridinium triflate was tested as a new promoter, affording the target dimers in high yields. This promoter in combination with microwave irradiation gave even higher yields and also shortened the reaction times.

  • 6.
    Kjellgren, Johan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Employment of Palladium Pincer Complex Catalysts and Lewis Acids for Synthesis and Transformation of Organometallic Compounds2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is mainly focused on the development of new palladium catalyzed transformations using so-called “pincer” complexes. These complexes were applied as catalysts in two important areas of organometallic chemistry: substitution of propargylic substrates by dimetallic reagents; and allylation of aldehydes and imines by allylstannanes. In addition, this thesis includes studies on Lewis acid mediated cyclization reactions of allylsilanes with aldehydes.

    Pincer complex catalyzed substitution of various propargylic substrates could be achieved under mild conditions using tin and silicon based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. The regioselectivity of the substitution reaction strongly depends on the steric and electronic effects of the propargylic substrate. According to our mechanistic studies the key intermediate of the reaction is an organostannane (or silane) coordinated pincer complex. DFT modeling studies on the transfer of the trimethylstannyl functionality to the propargylic substrate revealed a novel mechanism, which is based on the unique topology of the pincer-complex catalysts.

    Our further studies showed that palladium pincer complexes can be employed as efficient catalysts for electrophilic allylic substitution of allylstannanes with aldehyde and imine substrates. In contrast to previous applications for electrophilic allylic substitutions via bis-allylpalladium complexes, this reaction involves mono-allylpalladium intermediates which were observed by 1H-NMR spectroscopy.

    The last chapter of this thesis is focused on Lewis-acid mediated cyclization of hydroxy functionalized allylsilanes, which afford tetrahydropyran derivatives with a high stereoselectivity.

  • 7.
    Kullberg, Martin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Studies on nucleoside H-phosphonoselenoate chemistry and chalcogen exchange reaction between P(V) and P(III) compounds2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, the chemistry of compounds containing P-Se bonds has been studied. As a new addition to this class of compounds, H-phosphonoselenoate monoesters, have been introduced and two synthetic pathways for their preparation have been developed.

    The reactivity of H-phosphonoselenoate monoesters towards a variety of condensing agents has been studied. From these, efficient conditions for the synthesis of H-phosphonoselenoate diesters have been developed. The produced diesters have subsequently been used in oxidative transformations, which gave access to the corresponding P(V) compounds, e.g. dinucleoside phosphoroselenoates or dinucleoside phosphoroselenothioates.

    Furthermore, a new selenizing agent, triphenyl phosphoroselenoate, has been developed for selenization of P(III) compounds. This reagent has high solubility in organic solvents and was found to convert phosphite triesters and H-phosphonate diesters efficiently into the corresponding phosphoroselenoate derivatives.

    The selenization of P(III) compounds with triphenyl phosphoroselenoate proceeds through a selenium transfer reaction. A computational study was performed to gain insight into a mechanism for this reaction. The results indicate that the transfer of selenium or sulfur from P(V) to P(III) compounds proceeds most likely via an X-philic attack of the P(III) nucleophile on the chalcogen of the P(V) species. For the transfer of oxygen, the reaction may also proceed via an edge attack on the P=O bond.

  • 8.
    Lindén, Auri
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Flavins as Biomimetic Catalysts for Sulfoxidation by H2O2: Catalyst Immobilization in Ionic Liquid for H2O2 Oxidations2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the development of catalytic oxidation reactions utilizing hydrogen peroxide as terminal oxidant. The main focus has been to find flavin catalysts that are easy to handle and stable to store but still able to perform the desired reaction. A variety of dihydroflavins were prepared and the electrochemical oxidation potentials were measured and compared with their catalytic activity.

    A flavin catalyst was applied in the sulfoxidation of allylic and vinylic sulfides by H2O2. This transformation was highly chemoselective and the sulfoxides were obtained without formation of other oxidation products. The scope of the reaction was demonstrated by applying the method on substrates with a wide range of functional groups such as a tertiary amine. Another flavin catalyst was immobilized in the ionic liquid [BMIm]PF6 and used for sulfoxidations by H2O2. The chemoselectivity was maintained in this system and the catalyst-ionic liquid system could be recycled several times.

    Finally two bimetallic catalyst systems for the dihydroxylation of alkenes by H2O2 were immobilized in the ionic liquid. These systems employed either vanadium acetylacetonate VO(acac)2 or methyl trioxorhenium (MTO) as co-catalysts together with the substrate-selective osmium catalyst. Good to excellent yields of the diols were obtained.

  • 9.
    Samec, Joseph S M
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ruthenium-catalyzed hydrogen transfer involving amines and imines: Mechanistic studies and synthetic applications2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with ruthenium-catalyzed hydrogen transfer involving amines and imines and is divided into two parts.

    In Part 1 a mechanistic study has been performed. The complexation of the imine to the catalyst and the decomplexation patterns of the formed ruthenium-amine complexes, isotope studies, and exchange studies show that the mechanism of the hydrogen transfer involving amines and imines is different from the hydrogen transfer involving alcohols and carbonyls.

    In Part 2 synthetic applications of the hydrogen transfer is presented. First the rutheniumcatalyzed transfer hydrogenation of imines by 2-propanol in an unpolar solvent was investigated. The corresponding amines were isolated in good to excellent yields. Even imines bearing labile functional groups were smoothly transferred to amines with very low catalyst loadings and short reaction times employing microwave heating. Then the reverse reaction, transfer dehydrogenation of amines to imines, was investigated using either MnO2 or oxygen as terminal oxidant. Important products such as aldimines, ketimines, and non benzylic anilines were prepared in the aerobic oxidation. We also demonstrated that the aerobic oxidation is compatible with proline-mediated organocatalysis, yielding amines in high yields and ee:s. Finally the racemization of chiral amines was investigated. A cumbersome side product formation was investigated and hampered by the use of a mild hydrogen donor, giving a mild and efficient racemization process for both primary and secondary amines.

  • 10.
    Sebelius, Sara
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kálmán J., Szabó
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allylation of aldehyde and imine substrates with in situ generated allylboronates - a simple route to enantioenriched homoallyl alcohols2005In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 12, p. 2539-2547Article in journal (Refereed)
    Abstract [en]

    Allylation of aldehyde and imine substrates was achieved using easily available allylacetates and diboronate reagents in the presence of catalytic amounts of palladium. This operationally simple one-pot reaction has a broad synthetic scope, as many functionalities including, acetate, carbethoxy, amido and nitro groups are tolerated. The allylation reactions proceed with excellent regio- and stereoselectivity affording the branched allylic isomer. By employment of commercially available chiral diboronates enantioenriched homoallyl alcohols (up to 53% ee) could be obtained. The mechanistic studies revealed that the in situ generated allylboronates react directly with the aldehyde substrates, however the allylation of the sulfonylimine substrate requires palladium catalysis.

  • 11.
    Teodorovic, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of oligosaccharides related to the capsular polysaccharide of Neisseria meningitidis serotype A2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In order to find suitable stable vaccine candidates against Neisseria meningitidis group A, several structures related to the capsular polysaccharide have been synthesised. The first part of the thesis describes the synthesis of C-phosphonate analogues starting from glucose. The key step is a Mitsunobu coupling of a methyl C-phosphonate monomer to the 6-hydroxyl group of a 2-acetamido mannose derivative. Contained within this work is a description of an improved synthesis of 2-azido-2-deoxy-D-mannopyranose. The second part outlines the synthesis of structural elements present in the native capsular polysaccharide of Neisseria meningitidis serotype A including different acetylation and phosphorylation patterns. The final chapter describes an improved synthesis of the Lewis b hexasaccharide needed for purification of and interaction studies with the Helicobacter pylori adhesin BabA.

  • 12.
    Xu, Yunhua
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor Systems2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Artificial systems involving water oxidation and solar cells are promising ways for the conversion of solar energy into fuels and electricity. These systems usually consist of a photosensitizer, an electron donor and / or an electron acceptor. This thesis deals with the synthesis and photoinduced electron transfer of several donor-sensitizer-acceptor supramolecular systems.

    The first part of this thesis describes the synthesis and properties of two novel dinuclear ruthenium complexes as electron donors to mimic the donor side reaction of Photosystem II. These two Ru2 complexes were then covalently linked to ruthenium trisbipyridine and the properties of the resulting trinuclear complexes were studied by cyclic voltammetry and transient absorption spectroscopy.

    The second part presents the synthesis and photoinduced electron transfer of covalently linked donor-sensitizer supramolecular systems in the presence of TiO2 as electron acceptors. Electron donors are tyrosine, phenol and their derivatives, and dinuclear ruthenium complexes. Intramolecular electron transfer from the donor to the oxidized sensitizer was observed by transient absorption spectroscopy after light excitation of the Ru(bpy)32+ moiety. The potential applications of Ru2-based electron donors in artificial systems for water oxidation and solar cells are discussed.

    In the final part, the photoinduced interfacial electron transfer in the systems based on carotenoids and TiO2 is studied. Carotenoids are shown to act as both sensitizers and electron donors, which could be used in artificial systems to mimic the electron transfer chain in natural photosynthesis.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf