Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Battistel, Marcos D.
    et al.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Freedberg, Daron I.
    Direct Evidence for Hydrogen Bonding in Glycans: A Combined NMR and Molecular Dynamics Study2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 17, p. 4860-4869Article in journal (Refereed)
    Abstract [en]

    We introduce the abundant hydroxyl groups of glycans as NMR handle's and structural probes to expand the repertoire of tools for structure function studies on glycans in solution. To this end, we present the facile detection and assignment of hydroxyl groups in a Wide range of sample concentrations (0.5-1700 mM) and temperatures, ranging from -5 to 25 degrees C.,We then exploit this information to directly detect hydrogen bonds, well-known for their importance in molecular structural determination through NMR. Via HSQC-TOCSY, we were able to determine the directionality; of these hydrogen bonds in sucrose Furthermore, by means Of molecular dynamics simulations in conjunction with NMR, we establish that one Out of the three detected hydrogen bonds arises from intermolecular interactions. This finding may shed light on glycan glycan interactions and glycan recognition by proteins.

  • 2. Harper, James K.
    et al.
    Tishler, Derek
    Richardson, David
    Lokvam, John
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Solid-State NMR Characterization of the Molecular Conformation in Disordered Methyl alpha-L-Rhamnofuranoside2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 26, p. 5534-5541Article in journal (Refereed)
    Abstract [en]

    A combination of solid-state C-13 NMR tensor data and DFT computational methods is utilized to predict the conformation in disordered methyl alpha-L-rhamnofuranoside. This previously uncharacterized solid is found to be crystalline and consists of at least six distinct conformations that exchange on the kHz time scale. A total of 66 model structures were evaluated, and six were identified as being consistent with experimental C-13 NMR data. All feasible structures have very similar carbon and oxygen positions and differ most significantly in OH hydrogen orientations. A concerted rearrangement of OH hydrogens is proposed to account for the observed dynamic disorder. This rearrangement is accompanied by smaller changes in ring conformation and is slow enough to be observed on the NMR time scale due to severe steric crowding among ring substituents. The relatively minor differences in non-hydrogen atom positions in the final structures suggest that characterization of a complete crystal structure by X-ray powder diffraction may be feasible.

  • 3.
    Kapla, Jon
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stevensson, Baltzar
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wohlert, Jakob
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Maliniak, Arnold
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Molecular dynamics simulations and NMR spectroscopy studies of trehalose-lipid bilayer systems2015In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, no 34, p. 22438-22447Article in journal (Refereed)
    Abstract [en]

    The disaccharide trehalose (TRH) strongly affects the physical properties of lipid bilayers. We investigate interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH using NMR spectroscopy and molecular dynamics (MD) computer simulations. We compare dipolar couplings derived from DMPC/TRH trajectories with those determined (i) experimentally in TRH using conventional high-resolution NMR in a weakly ordered solvent (bicelles), and (ii) by solid-state NMR in multilamellar vesicles (MLV) formed by DMPC. Analysis of the experimental and MD-derived couplings in DMPC indicated that the force field used in the simulations reasonably well describes the experimental results with the exception for the glycerol fragment that exhibits significant deviations. The signs of dipolar couplings, not available from the experiments on highly ordered systems, were determined from the trajectory analysis. The crucial step in the analysis of residual dipolar couplings (RDCs) in TRH determined in a bicelle-environment was access to the conformational distributions derived from the MD trajectory. Furthermore, the conformational behavior of TRH, investigated by J-couplings, in the ordered and isotropic phases is essentially identical, indicating that the general assumptions in the analyses of RDCs are well founded.

  • 4.
    Pendrill, Robert
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sørensen, Ole W.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Suppressing one-bond homonuclear 13C,13C scalar couplings in the J-HMBC NMR experiment: application to 13C site-specifically labeled oligosaccharides2014In: Magnetic Resonance in Chemistry, ISSN 0749-1581, E-ISSN 1097-458X, Vol. 52, no 3, p. 82-86Article in journal (Refereed)
    Abstract [en]

    Site-specific C-13 isotope labeling is a useful approach that allows for the measurement of homonuclear C-13,C-13 coupling constants. For three site-specifically labeled oligosaccharides, it is demonstrated that using the J-HMBC experiment for measuring heteronuclear long-range coupling constants is problematical for the carbons adjacent to the spin label. By incorporating either a selective inversion pulse or a constant-time element in the pulse sequence, the interference from one-bond C-13,C-13 scalar couplings is suppressed, allowing the coupling constants of interest to be measured without complications. Experimental spectra are compared with spectra of a nonlabeled compound as well as with simulated spectra. The work extends the use of the J-HMBC experiments to site-specifically labeled molecules, thereby increasing the number of coupling constants that can be obtained from a single preparation of a molecule.

  • 5.
    Šoltésová, Mária
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Charles University in Prague.
    Kowalewski, Jozef
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamics of exocyclic groups in the Escherichia coli O91 O-antigen polysaccharide in solution studied by carbon-13 NMR relaxation2013In: Journal of Biomolecular NMR, ISSN 0925-2738, E-ISSN 1573-5001, Vol. 57, no 1, p. 37-45Article in journal (Refereed)
    Abstract [en]

    Carbon-13 relaxation data are reported for exocyclic groups of hexopyranosyl sugar residues in the repeating unit within the Escherichia coli O91 O-antigen polysaccharide in a dilute D2O solution. The measurements of T 1, T 2 and heteronuclear nuclear Overhauser enhancements were carried out at 310 K at two magnetic fields (16.4 T, 21.1 T). The data were analyzed using the standard and extended Lipari–Szabo models, as well as a conformational jump model. The extended version of the Lipari–Szabo and the two-site jump models were most successful for the hydroxymethyl groups of Gal and GlcNAc sugar residues. Different dynamics was found for the hydroxymethyl groups associated with different configurations (d-gluco, d-galacto) of the sugar residues, the latter being faster than the former.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf