Change search
Refine search result
1 - 28 of 28
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Alkene and Imino Reductions by Organocatalysis2008In: Modern Reduction Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2008, p. 341-361Chapter in book (Refereed)
  • 2.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Product Class 2: Epoxides (Oxiranes): Synthesis from Alkenes by Metal-Mediated Oxidation2008In: Houben-Weyl Methods of Molecular Transformations: Compounds with One Saturated Carbon-Heteroatom Bond, Georg Thieme Verlag KG, Stuttgart , 2008, p. 227-276Chapter in book (Refereed)
  • 3.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed epoxidation of alkenes2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 37-84Chapter in book (Other academic)
  • 4.
    Bouma, M. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    7.07 α-Oxygenation of Carbonyl Compounds2014In: Comprehensive Organic Synthesis II (Second Edition) / [ed] Paul Knochel and Gary A. Molander, Amsterdam: Oxford: Elsevier , 2014, 2nd, p. 213-241Chapter in book (Refereed)
    Abstract [en]

    Abstract The chapter describes synthetically useful strategies for α-oxygenation of carbonyl compounds, with special emphasis on recent methods for catalytic and asymmetric reactions. The oxidation of enolates, enols, enol ethers, and α,β-unsaturated compounds is discussed in detail. Classical oxidation reagents like metal oxides, molecular oxygen, peroxides, and peracids are covered, with asymmetric dihydroxylation of enol ethers giving the highest enantioselectivities together with organocatalytic methods using peroxides. Oxaziridines, nitrosoarenes, and hypervalent iodine compounds are more recently developed α-oxygenation alternatives that allow metal-free oxidations under mild conditions. The combination of nitrosoarenes with organocatalysis is currently the best method for enantioselective α-oxygenations. The area of asymmetric α-oxygenations with hypervalent iodine compounds is currently under development, and high enantioselectivities have only been achieved in intramolecular reactions and epoxidations.

  • 5.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry. -.
    Asymmetric Catalysis via Dynamic Kinetic Resolution2007In: Asymmetric Synthesis - The Essentials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2007, p. 171-175Chapter in book (Refereed)
    Abstract [en]

    -

  • 6.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective oxidation of amines and sulfides2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 277-313Chapter in book (Other academic)
  • 7.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric bifunctional catalysis using heterobimetallic and multimetallic systems in enantioselective conjugate additions2010In: Catalytic Asymmetric Conjugate Reactions / [ed] Armando Córdova, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 1, p. 169-190Chapter in book (Other academic)
  • 8.
    Córdova, Armando
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rios, Ramón
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Direct Catalytic Asymmetric Mannich Reactions and Surroundings2008In: Amino Group Chemistry. From Synthesis to the Life Sciences., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2008, p. 185-205Chapter in book (Refereed)
  • 9.
    Jansson, Jennie L. M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Maliniak, Arnold
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conformational Dynamics of Oligosaccharides: NMR Techniques and Computer Simulations2006In: NMR Spectroscopy and Computer Modeling of Carbohydrates: Recent Advances / [ed] Johannes F. G Vliegenthar & Robert J. Woods, American Chemical Society (ACS), 2006, p. 20-39Chapter in book (Refereed)
    Abstract [en]

    NMR spectroscopy techniques in conjunction with molecular dynamics simulations facilitate description of conformation and dynamics of oligosaccharides in solution. Herein we describe approaches based on hetero-nuclear carbon-proton spin-spin coupling constants useful for assessing conformational preferences at the glycosidic linkage, exemplified for á-cyclodextrin. Furthermore, we utilize hetero-nuclear carbon-proton residual dipolar couplings together with molecular dynamics simulations in the analysis of the conformational dynamics of the milk oligosaccharide Lacto-N-neotetraose.

  • 10.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oxidation of carbonyl compounds2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 353-369Chapter in book (Other academic)
  • 11.
    Maliniak, Arnold
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Analysis of Carbohydrates by Nuclear Magnetic Resonance Spectroscopy and Molecular Simulations: Application to Human Milk Oligosaccharides2014In: FOOD OLIGOSACCHARIDES: PRODUCTION, ANALYSIS AND BIOACTIVITY, OXFORD: BLACKWELL SCIENCE PUBL , 2014, p. 320-349Chapter in book (Refereed)
  • 12.
    Martín-Matute, Belén
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic deracemization processes2008In: Organic Synthesis with Enzymes in Non-Aqueous Media, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2008, p. 113-144Chapter in book (Refereed)
  • 13.
    Martín-Matute, Belén
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic kinetic resolutions2008In: Asymmetric Organic Synthesis with Enzymes, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2008, p. 89-113Chapter in book (Refereed)
  • 14.
    Martín-Matute, Belén
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mitchell, Terence N.
    6. Organotin Reagents in Cross-Coupling Reactions2014In: Metal-Catalyzed Cross-Coupling Reactions and More / [ed] Armin de Meijere, Stefan Bräse, Martin Oestreich, Weinheim: Wiley-VCH Verlagsgesellschaft, 2014, 1, p. 423-474Chapter in book (Refereed)
  • 15.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stellenbosch University, South Africa.
    Arylation with Diaryliodonium Salts2016In: Hypervalent Iodine Chemistry / [ed] Thomas Wirth, Springer, 2016, p. 135-166Chapter in book (Refereed)
    Abstract [en]

    This chapter focuses on recent developments in metal-free and metal-catalyzed arylations with diaryliodonium salts (diaryl-λ3-iodanes). Synthetic routes to diaryliodonium salts are briefly described, and chemoselectivity trends with unsymmetric iodonium salts are discussed.

  • 16.
    Olofsson, Berit
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Somfai, Peter
    Organisk kemi, KTH.
    Vinylepoxides in Organic Synthesis2006In: Aziridines and Epoxides in Organic Synthesis, Wiley-VCH: Weinheim , 2006, p. 315-347Chapter in book (Refereed)
    Abstract [en]

    Vinylepoxides have become important intermediates in organic synthesis. The main reason for this is the development of selective methods for their subsequent transformations. As vinylepoxides are a special type of allylic electrophiles, it is necessary to control both the regioselectivity and the diastereoselectivity in their reactions with nucleophiles. The practical usefulness of vinylepoxides in synthesis will, however, always be dictated by their availability. Several methods for the asymmetric preparation of vinyloxiranes have been developed and it can be expected that the use of these compounds in organic synthesis will increase. This chapter starts with a discussion of the available techniques for preparing vinylepoxides, with emphasis on asymmetric methods. In the second part various transformations of vinylepoxides are summarized.

  • 17.
    Pilarski, Lukasz T.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diphenyliodonium hexafluorophosphate2011In: Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, 2011Chapter in book (Refereed)
  • 18. Samec, Joseph S. M.
    et al.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    1-Hydroxytetraphenylcyclopentadienyl-(tetraphenyl-2,4-cyclopentadien-1-one)-μ-hydrotetracarbonyldiruthenium(II)2009In: Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd. , 2009, 2, p. 5557-5564Chapter in book (Other academic)
  • 19.
    Selander, Nicklas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    [2,6-Bis[(phenylseleno-κSe)methyl]phenyl-κC]chloropalladium2009In: Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd. , 2009Chapter in book (Other academic)
  • 20.
    Selander, Nicklas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient synthesis of α-amino acids via organoboronate reagents2009In: Asymmetric Synthesis and Application of α-Amino Acids / [ed] Vadim A. Soloshonok and Kunisuke Izawa, Washington, DC, USA: American Chemical Society , 2009, p. 190-202Chapter in book (Other academic)
  • 21.
    Ståhle, Jonas
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    NMR Chemical Shift Predictions and Structural Elucidation of Oligo- and Polysaccharides by the Computer Program CASPER2017In: NMR in Glycoscience and Glycotechnology / [ed] Koichi Kato, Thomas Peters, Royal Society of Chemistry, 2017, p. 335-352Chapter in book (Refereed)
    Abstract [en]

    Glycans are often linked to proteins or lipids in the form of glycoconjugates but these highly complex molecules also have biological functions as oligosaccharides per se. The limited dispersion in NMR spectra of carbohydrates makes their analysis and interpretation very cumbersome. The computer program CASPER, which is a web-based tool, facilitates prediction 1H and 13C NMR chemical shifts of oligo- or polysaccharide structures defined by the user, makes it possible to carry out an NMR-based sugar analysis including determination of absolute configuration and to perform structure elucidation of unknown glycans using unassigned NMR spectra as input to the program. The output from the program contains, inter alia, tentatively assigned NMR resonances, proposed sugar components, structural suggestions ranked according to the similarity between their predicted chemical shifts and the experimental data as well as 3D structures in pdb-format generated seamlessly by the CarbBuilder program as a part of the CASPER-GUI.

  • 22.
    Szabo, Kalman J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pincer complexes as catalysts in organic chemistry2013In: Organometallic pincer chemistry / [ed] VanKoten, G., Milstein, D., Berlin, Heidelberg: Springer Berlin/Heidelberg, 2013, p. 203-241Chapter in book (Refereed)
    Abstract [en]

    Application of pincer complexes in catalytic applications is a rapidly expanding field in organic synthesis. This chapter is mainly focused on selective formation of carbon carbon, carbon nitrogen, and carbon metal (C B, C Si, and S-Sn) bonds, as well as transfer hydrogenation reactions. The described pincer-complex catalyzed processes are more efficient and more selective than the corresponding transformations catalyzed by metal salts and added ligands. Some of the described pincer-complex catalyzed reactions are not amenable by traditional metal catalysts at all. It has been demonstrated that the superiority of pincer-complex catalysts over the traditional ones is based on the high stability and well-defined structure and stoichiometry of these species. These properties of pincer complexes allow a rational design of active and highly selective catalysts.

  • 23.
    Szabó, Kálmán
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and Transformation of Allyl- and Allenyl-Metal Species by Pincer Complex Catalysis2007In: The Chemistry of Pincer Compounds, Elsevier B.V. , 2007, p. 25-43Chapter in book (Refereed)
  • 24.
    Wallner, Olov A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Potassium Trifluoro-2-propenylborate2007In: Encyclopedia of Reagents for Organic Synthesis, Wiley , 2007Chapter in book (Refereed)
  • 25.
    Wettergren, Jenny
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    In Situ Formation of Ligand and Catalyst: Application in Ruthenium-Catalyzed Enantioselective Reduction of Ketones2007In: Regio- and Stereo-Controlled Oxidations and Reductions, Wiley, England , 2007, p. 121-124Chapter in book (Refereed)
  • 26.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    General NMR Spectroscopy of Carbohydrates and Conformational Analysis in Solution2007In: Molecular Interactions Biochemistry of Glycans, Elsevier Ltd , 2007, p. 101-132Chapter in book (Refereed)
  • 27.
    Zhao, Gui-Ling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric Baylis–Hillman reactions and surroundings2010In: Catalytic Asymmetric Conjugate Reactions / [ed] Armando Córdova, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 1, p. 393-438Chapter in book (Other academic)
  • 28.
    Zhao, Gui-Ling
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    ECAs of organolithium reagents, Grignard reagents, and examples of Cu-catalyzed ECAs2010In: Catalytic Asymmetric Conjugate Reactions / [ed] Armando Córdova, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 1, p. 145-167Chapter in book (Other academic)
1 - 28 of 28
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf