Change search
Refine search result
12 1 - 50 of 91
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Alexakis, A.
    et al.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krause, N.
    Pàmies, O.
    Diéguez, M.
    Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions2008In: Chemical Reviews, ISSN 0009-2665, Vol. 108, no 8, p. 2796-2823Article in journal (Refereed)
  • 2. Berner, Simon
    et al.
    Lidbaum, Hans
    Ledung, Greger
    Åhlund, John
    Nilson, Katharina
    Schiessling, Joachim
    Gelius, Ulrik
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Puglia, Carla
    Oscarsson, Sven
    Electronic and structural studies of immobilized thiol-derivatized cobalt porphyrins on gold surfaces2007In: Applied Surface Science, ISSN 0169-4332, Vol. 253, no 18, p. 7540-7548Article in journal (Refereed)
  • 3. Bogár, Krisztián
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogenized Wilkinson´s Catalyst for Transfer Hydrogenation of Carbonyl CompoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Combining the advantages of homogeneous and heterogeneous catalysis is possible by heterogenization of homogeneous transition metal complexes based on a grafting/anchoring technique. Wilkinson’s catalyst ((RhCl(PPh3)3) immobilized on common silica showed high activity and selectivity in transfer hydrogenation reactions of different carbonyl compounds in isopropanol. Reactions conducted at reflux in isopropanol afforded the corresponding carbinols in high yields in short reaction times. The heterogeneous feature of the catalyst allows easy recovery and efficient reuse in the same reaction up to 5 times without loss of catalytic activity.

  • 4. Bogár, Krisztián
    et al.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac)-1-phenylethanol2007In: Beilstein Journal of Organic Chemistry, ISSN 1860-5397, Vol. 3, p. artikel nr 50-Article in journal (Refereed)
  • 5.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dynamic Kinetic Asymmetric Transformation of 1,4-diols and Preparation of Trans-2,5-Disubstituted pyrrolidines2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 26, p. 3237-3240Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,4-diols is carried out with Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase II (PS-C II), and a ruthenium catalyst. A β-chloro-substituted 1,4-diol is successfully transformed into an optically pure 1,4-diacetate, which is a highly useful synthetic intermediate. The usefulness of the optically pure 1,4-diacetates is demonstrated by the synthesis of enantiopure 2,5-disubstituted pyrrolidines.

  • 6.
    Borén, Linnéa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Xu, Yongmei
    Córdova, Armando
    Bäckvall, Jan-Erling
    (S)-Selective Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Secondary Alcohols2006In: Chemistry: a European Journal, ISSN 0947-6539, Vol. 12, no 1, p. 225-232Article in journal (Refereed)
  • 7.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry. -.
    Asymmetric Catalysis via Dynamic Kinetic Resolution2007In: Asymmetric Synthesis - The Essentials, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2007, p. 171-175Chapter in book (Refereed)
    Abstract [en]

    -

  • 8.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic asymmetric synthesis via combined metal and enzyme catalysis2009In: 3rd Hellenic Symposium on Organic Synthesis, October 15-17, 2009, Athens, Greece: Abstracts of papers, Athens, 2009Conference paper (Other academic)
  • 9.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Modern Oxidation Methods2010Collection (editor) (Other academic)
  • 10.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium- and ruthenium-catalyzed redox reactions in selective organic synthesis2009In: Abstract of LOST II Symposium in honour of Prof. Alain Krief, March 18-20, 2009, Namur, Belgium, 2009Conference paper (Other academic)
  • 11.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pd- and Ru-catalyzed redox reactions in catalysis. Application to the combination with enzyme catalysis2009In: Abstract of 42nd Jahrestreffen Deutscher Katalytiker, March 11-13, 2009, Weimar, Germany, 2009Conference paper (Other academic)
  • 12.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Preface2010In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 53, no 13-14, p. 831-831Article in journal (Refereed)
  • 13.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Recent advances in the combination of metal and enzyme catalysis2009In: Abstract of the 10th Netherlands Catalysis and Chemistry Conference (NCCC-X), March 2-4, 2009, Noordwijkerhout, the Netherlands, 2009Conference paper (Other academic)
  • 14.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective oxidation of amines and sulfides2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 277-313Chapter in book (Other academic)
  • 15. Carballeira, José Daniel
    et al.
    Krumlinde, Patrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bocola, Marco
    Vogel, Andreas
    Reetz, Manfred T.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution and axial chirality: optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene2007In: Chemical Communications, ISSN 1359-7345, Vol. 20, p. 1913-1915Article in journal (Refereed)
  • 16.
    Csjernyik, Gábor
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Notheisz, Ferenc
    Zsigmond, Ágnes
    Ruthenium-Catalyzed Aerobic Oxidation of Alcohols on Zeolite-Encapsulated Cobalt Salophen Catalyst2002In: Topics in catalysis, ISSN 1022-5528, Vol. 19, no 1, p. 119-124Article in journal (Refereed)
  • 17.
    Csjernyik, Gábor
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Éll, Alida H
    Fadini, Luca
    Pugin, Benoit
    Efficient Ruthenium-Catalyzed Aerobic Oxidation of Alcohols Using a Biomimetic Coupled Catalytic System2002In: Journal of Organic Chemistry, ISSN 0022-3263, Vol. 67, no 5, p. 1657-1662Article in journal (Refereed)
  • 18.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic kinetic resolution of primary allenic alcohols. Application to the total synthesis and stereochemical assignment of striatisporolide A2009In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 7, no 17, p. 3379-3381Article in journal (Refereed)
  • 19.
    Deska, Jan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    del Pozo Ochoa, Carolina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemoenzymatic dynamic kinetic resolution of axially chiral allenes2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 15, p. 4447-4451Article in journal (Refereed)
    Abstract [en]

    Dimeric palladium bromide complexes bearing monodentate N-heterocyclic carbene ligands have been identified as efficient catalysts for the chemoselective racemization of axially chiral allenyl alcohols. In combination with porcine pancreatic lipase as biocatalyst, a dynamic kinetic resolution has been developed, giving access to optically active allenes in good yield and high enantiomeric purity (

  • 20.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 21.
    Engström, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nyhlén, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective Kinetic Resolution of p-Nitrophenyl 2-Phenylpropanoate by a Variant of Candida antarctica Lipase A Developed by Directed Evolution2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 20, p. 7038-7042Article in journal (Refereed)
    Abstract [en]

    A variant of Candida antarctica lipase A (CalA) was developed for the hydrolysis of α-substituted p-nitrophenyl esters by directed evolution. The E values of this variant for 7 different esters was 45−276, which is a large improvement compared to 2−20 for the wild type. The broad substrate scope of this enzyme variant is of synthetic use, and hydrolysis of the tested substrates proceeded with an enantiomeric excess between 95−99%. A 30-fold increase in activity was also observed for most substrates. The developed enzyme variant shows (R)-selectivity, which is reversed compared to the wild type that is (S)-selective for most substrates.

  • 22.
    Ericsson, Daniel J.
    et al.
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Kasrayan, Alex
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Patrik
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Bergfors, Terese
    1Department of Cell and Molecular Biology, Uppsala University, Biomedical Center.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mowbray, Sherry L.
    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center.
    X-Ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation2008In: Journal of Molecular Biology, ISSN 0022-2836, Vol. 376, no 1, p. 109-119Article in journal (Refereed)
    Abstract [en]

    In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-Å resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic α/β hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation

  • 23. Eriksson, Kristofer L.E.
    et al.
    Chow, Winnie W.Y.
    Puglia, Carla
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Göthelid, Emmanuelle
    Oscarsson, Sven
    Performance of a biomimetic oxidation catalyst immobilized on silicon wafers: comparison with its gold congener2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 21, p. 16349-16354Article in journal (Refereed)
    Abstract [en]

    With the aim of extending the usefulness of an existing biomimetic catalytic system, cobalt porphyrin catalytic units with thiol linkers were heterogenized via chemical grafting to silicon wafers and utilized for the catalytic oxidation of hydroquinone to p-benzoquinone. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the morphology and composition of the heterogeneous catalyst. The results of the catalytic oxidation of hydroquinone obtained with porphyrins grafted on silicon were compared with those obtained earlier with the same catalyst in homogeneous phase and immobilized on gold. It was found that the catalysis could run over 400 h, without showing any sign of deactivation. The measured catalytic activity is at least 10 times higher than that measured under homogeneous conditions, but also 10 times lower than that observed with the catalytic unit immobilized on gold. The reasons of this discrepancy are discussed in term of substrate influence and overlayer organization. The silicon-immobilized catalyst has potential as an advanced functional material with applications in oxidative heterogeneous catalysis of organic reactions, as it combines long-term relatively high activity with low cost.

  • 24.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pàmies, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized γ-Hydroxy Amides2005In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 70, no 7, p. 2582-2587Article in journal (Refereed)
    Abstract [en]

    An efficient kinetic resolution of racemic gamma-hydroxy amides 1 was performed via Pseudomas cepacia lipase (PS-C)-catalyzed transesterification. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity (E values of up to > 250). The combination of enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution. The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution yields the corresponding acetates in good yield and good to high enantioselectivity (ee's up to 98%). The synthetic utility of this procedure was illustrated by the practical synthesis of the versatile intermediate gamma-lactone (R)-5-methyltetrahydrofuran-2-one.

  • 25.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Highly Efficient Ru-catalyzed Transfer Hydrogenation/Hydrogenation Procedure for 1,3-Cycloalkandiols using Controlled Microwave HeatingManuscript (Other academic)
  • 26.
    Fransson, Ann-Britt L.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Xu, Yongmei
    Leijondahl, Karin
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzymatic Resolution, Desymmetrization and Dynamic Kinetic Asym-metric Transformation of 1,3-Cycloalkanediols2006In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
    Abstract [en]

    An efficient desymmetrization of cis-1,3-cyclohexanediol to (1S,3R)-3-(acetoxy)-1-cyclohexanol ((R,S)-2a) was performed via Candida antarctica lipase B (CALB)-catalyzed transesterification, in high yield (up to 93%) and excellent enantioselectivity (ee's up to >99.5%). (R,R)-Diacetate ((R,R)-3a) was obtained in a DYKAT process at room temperature from (1S,3R)-3-acetoxy-1-cyclohexanol ((R,S)-2a), in a high trans/cis ratio (91:9) and in excellent enantioselectivity of >99%. Metal- and enzyme-catalyzed dynamic transformation of cis/trans-1,3-cyclohexanediol using PS-C gave a high diastereoselectivity for cis-diacetate (cis/trans = 97:3). The (1R,3S)-3-acetoxy-1-cyclohexanol (ent-(R,S)-2a) was obtained from cis-diacetate by CALB-catalyzed hydrolysis in an excellent yield (97%) and selectivity (>99% ee). By deuterium labeling it was shown that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate.

  • 27. Fransson, Ann-Britt
    et al.
    Xu, Yongmei
    Leijondahl, Karin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Enzymatic resolution, desymmetrization and dynamic kinetic asymmetric transformation of 1,3-cycloalkanediols2006In: Journal of organic chemistry, ISSN 0022-3263, Vol. 71, no 17, p. 6309-6316Article in journal (Refereed)
  • 28.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Guðmundsson, Arnar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bajnóczi, Éva
    Ning, Yuan
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    In-Situ Structure Determination of a Ruthenium Racemization Catalyst and its Activated Intermediates using X-ray Absorption SpectroscopyManuscript (preprint) (Other academic)
  • 29.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Görbe, Tamás
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    de Gonzalo Calvo, Gonzalo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yuan, Ning
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Schreiber, Cynthia
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shchukarev, Andrey
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Persson, Ingmar
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application and further structure elucidation of Pd(0)-CalB CLEA biohybrid catalyst- Chemoenzymatic dynamic kinetic resolution of primary benzylic aminesManuscript (preprint) (Other academic)
  • 30.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, p. 293-299Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 31.
    Guðmundsson, Arnar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Khanh Mai, Binh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hobiger, Viola
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yang, Bin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron Catalyzed Cyclization of N-protected a-Allenic Amines to 2,3-dihydropyrrolesManuscript (preprint) (Other academic)
  • 32.
    Görbe, Tamás
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Löfgren, Johanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oschmann, Michael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    S. Humble, Maria
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transesterification of tert-Alcohols by Engineered Candida antarctica Lipase AManuscript (preprint) (Other academic)
  • 33.
    Hoben, Christine E.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kanupp, Lisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Practical chemoenzymatic dynamic kinetic resolution of primary amines via transfer of a readily removable benzyloxycarbonyl group2008In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 49, no 6, p. 977-979Article in journal (Refereed)
  • 34.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mild and Efficient Palladium(II)-Catalyzed Racemization of Allenes2004In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 8, p. 964-965Article in journal (Refereed)
    Abstract [en]

    Allenes undergo racemization in the presence of catalytic amounts of Pd(OAc)2/LiBr under mild conditions; the reaction proceeds via a bromopalladation–debromopalladation sequence and tolerates various functional groups.

     

  • 35.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Palladium(II)-Catalyzed SN2' Reactions of α-Allenic Acetates: Stereoconvergent Synthesis of (Z,E)-2-Bromo-1,3-dienes2001In: Journal of Organic Chemistry, Vol. 66, no 24, p. 8120-8126Article in journal (Refereed)
  • 36.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Benner, Jessica
    Simple, Enantiocontrolled Synthesis of 3-Pyrrolines from α-Amino Allenes2004In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2004, no 15, p. 3240-3243Article in journal (Refereed)
    Abstract [en]

    Cyclization of -amino allenes in the presence of N-bromosuccinimide afforded pyrrolines in good yields. The products were obtained with high enantiomeric excesses when optically active allenes were used as substrates. The synthesis of a 2,5-dehydroprolinol derivative is also presented.

  • 37.
    Horváth, Attila
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jonasson, Catrin
    Bäckvall, Jan-Erling
    Intramolecular Palladium(II)-Catalyzed 1,2-Addition to Allenes2000In: Journal of the American Chemical Society, ISSN 0002-7863, Vol. 122, no 40, p. 9600-9609Article in journal (Refereed)
  • 38. Johansson, Mikael
    et al.
    Lindén, Auri
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Osmium-Catalyzed Dihydroxylaition of Alkenes by H2O2 in Room Temperature Ionic Liquid co-Catalyzed by VO(acac)2 or MeReO32005In: Journal of Organometallic Chemistry, ISSN 0022-328X, Vol. 690, no 15, p. 3614-3619Article in journal (Refereed)
  • 39.
    Johnston, Eric V
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective synthesis of (R)-bufuralol via dynamic kinetic resolution in the key step2010In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 75, no 13, p. 4596-4599Article in journal (Refereed)
    Abstract [en]

    An enantioselective synthesis of (R)-bufuralol via a ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR) has been achieved. The synthesis starts from readily available 2-ethylphenol and provides (R)-bufuralol in high ee and a good overall yield of 31%.

  • 40.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oxidation of carbonyl compounds2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 353-369Chapter in book (Other academic)
  • 41.
    Kasrayan, Alex
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bocola, Marco
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lavén, Gaston
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Prediction of the Candida antarctica lipase A protein structure by comparative modeling and site-directed mutagenesis2007In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 8, no 12, p. 1409-1415Article in journal (Refereed)
    Abstract [en]

    A number of model structures of the CalA suggested by comparative modeling were tested by site-directed mutagenesis. Enzyme variants were created where amino acids predicted to play key roles for the lipase activity in the different models were replaced by an inert amino acid (alanine). The results from activity measurements of the overproduced and purified mutant enzymes indicate a structure where the active site consists of amino acid residues Ser184, His366, and Asp334 and in which there is no lid. This model can be used for future targeted modifications of the enzyme to obtain new substrate acceptance, better thermostability, and higher enantioselectivity.

  • 42.
    Krumlinde, Patrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric synthesis of bicyclic diol derivatives through metal and enzyme catalysis: Application to the formal synthesis of sertraline2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 13, p. 4031-4036Article in journal (Refereed)
    Abstract [en]

    Enzyme- and ruthenium-catalyzed dynamic kinetic asymmetric transformation (DYKAT) of bicyclic diols to their diacetates was highly enantio- and diastereoselective to give the corresponding diacetates in high yield with high enantioselectivity (99.9 % ee). The enantiomerically pure diols are accessible by simple hydrolysis (NaOH, MeOH), but an alternative enzyme-catalyzed ester cleavage was also used to give the trans-diol (R,R)-1 b in extremely high diastereomeric purity (trans/cis=99.9:0.1, >99.9 % ee). It was demonstrated that the diols can be selectively oxidized to the ketoalcohols in a ruthenium-catalyzed Oppenauer-type reaction. A formal enantioselective synthesis of sertraline from a simple racemic cis/trans diol 1 b was demonstrated.

  • 43.
    Krumlinde, Patrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bogár, Krisztián
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of a neonicotinoide pesticide derivative via chemoenzymatic dynamic kinetic resolution2009In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 74, no 19, p. 7407-7410Article in journal (Refereed)
  • 44.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Braun, Roland
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation: Useful synthetic intermediates for the preparation of chiral heterocycles2008Conference paper (Other academic)
  • 45.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Braun, Roland
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantiopure 1,5-diols from dynamic kinetic asymmetric transformation: Useful synthetic intermediates for the preparation of heterocycles2008In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 10, no 10, p. 2027-2030Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of a series of 1,5-diols has been performed in the presence of Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase H (PS-C II), and ruthenium catalyst 4. The resulting optically pure 1,5-diacetates are useful synthetic intermediates, which was demonstrated by the syntheses of both an enantiopure 2,6-disubstituted piperidine and an enantiopure 3,5-disubstituted morpholine.

  • 46.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borén, Linnéa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Braun, Roland
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enzyme- and ruthenium-catalyzed dynamic kinetic asymmetric transformation of 1,5-diols: Application to the synthesis of (+)-Solenopsin A2009In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 74, no 5, p. 1988-1993Article in journal (Refereed)
    Abstract [en]

    Dynamic kinetic asymmetric transformation (DYKAT) of 1,5-diols via combined lipase and ruthenium catalysis provides enantiomerically pure diacetates in high diastereoselectivity, which can serve as intermediates in natural product synthesis. This is demonstrated by the synthesis of (+)-Solenopsin A.

  • 47.
    Leijondahl, Karin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fransson, Ann-Britt
    Bäckvall, Jan-Erling
    Ruthenium-catalyzed transfer hydrogenation/hydrogenation of 1,3-cycloalkanediones to 1,3-cycloalkanediols using microwave heating2006In: Journal of organic chemistry, ISSN 0022-3263, Vol. 71, no 22, p. 8622-8625Article in journal (Refereed)
  • 48.
    Lindén, Auri
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hermanns, Nina
    Ott, Sascha
    Krüger, Lars
    Bäckvall, Jan-Erling
    Preparation and Properties of N,N,N-1,3,5-Trialkylated Flavin Derivatives and Their Activity as Redox Catalysts2005In: Chemistry - A European Journal, ISSN 0947-6539, Vol. 11, no 1, p. 112-119Article in journal (Refereed)
  • 49.
    Lindén, Auri
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Mikael
    Hermanns, Nina
    Bäckvall, Jan-Erling
    Efficient and Selective Sulfoxidation by Hydrogen Peroxide Using Recyclable Flavin-Catalyst-[BMIm]PF6 SystemManuscript (Other academic)
  • 50.
    Lindén, Auri
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krüger, Lars
    Bäckvall, Jan-Erling
    Highly Selective Sulfoxidation of Allylic and Vinylic Sulfides by Hydrogen Peroxide Using a Flavin as Catalyst2003In: Journal of Organic Chemistry, ISSN 0022-3263, Vol. 68, no 15, p. 5890-5896Article in journal (Refereed)
12 1 - 50 of 91
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf