Change search
Refine search result
123 1 - 50 of 105
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Substituent Effects in Molecular Ruthenium Water Oxidation Catalysts Based on Amide Ligands2017In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 9, no 9, p. 1583-1587Article in journal (Refereed)
    Abstract [en]

    The production of clean and sustainable energy is considered as one of the most urgent issues for our society. Mastering the oxidation of water to dioxygen is essential for the production of solar fuels. A study of the influence of the substituents on the catalytic activity of a series of mononuclear Ru complexes (2a-e) based on a tetradentate ligand framework is presented. At neutral pH, using [Ru(bpy)(3)](PF6)(3) (bpy=2,2'-bipyridine) as the terminal oxidant, a good correlation between the turnover frequency (TOF) and the Hammett sigma(meta) parameters was obtained. Additionally, a general pathway for the deactivation of Ru-based catalysts 2a-e during the catalytic oxidation of water through poisoning by carbon monoxide was demonstrated. These results highlight the importance of ligand design for fine-tuning the catalytic activity of water oxidation catalysts.

  • 2. Abrahamsson, Maria
    et al.
    Lundqvist, Maria J.
    Wolpher, Henriette
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Bergquist, Jonas
    Rasmussen, Torben
    Becker, Hans-Christian
    Hammarström, Leif
    Norrby, Per-Ola
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Petter
    Steric influence on the excited-state lifetimes of ruthenium complexes with bipyridyl-alkanylene-pyridyl ligands2008In: Inorganic Chemistry, ISSN 0020-1669, Vol. 47, no 9, p. 3540-3548Article in journal (Refereed)
  • 3. Abrahamsson, Maria
    et al.
    Wolpher, Henriette
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Larsson, Jan
    Kritikos, Mikael
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Norrby, Per-Ola
    Bergquist, Jonas
    Sun, Licheng
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammarström, Leif
    A New Strategy for Improvement of Photophysical Properties in Ruthenium(II) Polypyridyl Complexes. Synthesis, Photophysical and Electrochemical characterisation of Six Mononuclear Ruthenium(II) Bisterpyridine Type Complexes2005In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 44, no 9, p. 3215-3225Article in journal (Refereed)
    Abstract [en]

    The synthesis and characterization of six ruthenium(II) bistridentate polypyridyl complexes is described. These were designed on the basis of a new approach to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. By the use of a bipyridylpyridyl methane ligand in place of terpyridine, the coordination environment of the metal ion becomes nearly octahedral and the rate of deactivation via ligand-field (i.e., metal-centered) states was reduced as shown by temperature-dependent emission lifetime studies. Still, the possibility to make quasi-linear donor−ruthenium−acceptor triads is maintained in the complexes. The most promising complex shows an excited-state lifetime of τ = 15 ns in alcohol solutions at room temperature, which should be compared to a lifetime of τ = 0.25 ns for [Ru(tpy)2]2+. The X-ray structure of the new complex indeed shows a more octahedral geometry than that of [Ru(tpy)2]2+. Most importantly, the high excited-state energy was retained, and thus, so was the potential high reactivity of the excited complex, which has not been the case with previously published strategies based on bistridentate complexes.

  • 4.
    Anderlund, Magnus F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Högblom, Joakim
    Shi, Wei
    Huang, Ping
    Eriksson, Lars
    Weihe, Högni
    Styring, Stenbjörn
    Åkermark, Björn
    Magnuson, Ann
    Synthesis, Structure and Redox Chemistry of a Dinuclear Manganese Complex with a Novel Unsymmetric N5O2 LigandManuscript (Other academic)
  • 5.
    Anderlund, Magnus F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zheng, J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ghiladi, M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kritikos, Mikael
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Rivière, Erik
    Sun, Licheng
    Girerd, Jean-Jaques
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A New, Dinuclear High Spin Manganese(III) Complex with Bridging Phenoxy and Methoxy Groups. Structure and Magnetic Properties2006In: Inorganic Chemistry Communications, ISSN 1387-7003, E-ISSN 1879-0259, Vol. 9, no 12, p. 1195-1198Article in journal (Refereed)
    Abstract [en]

    A new μ-phenoxy-μ-metoxy di-manganese(III) complex with the trisphenolic ligand, 2,6-bis[((2-hydroxybenzyl)(2-pyridylmethyl)amino)methyl]-4-methylphenol, was isolated as a perchlorate salt. The X-ray structure shows that the two manganese(III) ions are in a distorted octrahedral enviroment with approximately perpendicular Jahn–Teller axes. Investigation of the molar magnetic susceptibility reveals a ferromagnetic coupling between the two high-spin manganese(III) ions. Fitting of the data led to g = 2 and J = 12.5 cm−1

  • 6. Andersson, Samir
    et al.
    Zou, Dapeng
    Zhang, Rong
    Sun, Shiguo
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Selective positioning of CB[8] on two linked viologens and electrochemically driven movement of the host molecule2009In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 8, p. 1163-1172Article in journal (Refereed)
  • 7.
    Arafa, Wael A. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Berends, Hans-Martin
    Messinger, Johannes
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity2014In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 24, p. 11950-11964Article in journal (Refereed)
    Abstract [en]

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O-2 and solar fuels, such as H-2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn-2 (II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.

  • 8. Berggren, Gustav
    et al.
    Kaynak, Filiz Betul
    Anderlund, Magnus F.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Åkermark, Björn
    Department of Organic Chemistry.
    Tetraethylammonium [12,12-diethyl-2,2,9,9-tetramethyl-1,4,7,10-tetraza-5,6-benzotridecane-3,8,11,13-tetra-one(4-)]oxidomanganate(V)2007In: Acta Crystallographica Section E, ISSN 1600-5368, Vol. E63, p. m2672-m2673Article in journal (Refereed)
  • 9. Borgström, Magnus
    et al.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lomoth, Reiner
    Berglund-Baudin, Helena
    Wallin, Staffan
    Sun, Licheng
    Åkermark, Björn
    Hammarström, Leif
    Electron Donor-Acceptor Dyads and Triads Based on Tris(bipyridine)ruthenium(II) and Benzoquinone: Synthesis, Characterization, and Photoinduced Electron Transfer Reactions2003In: Inorganic Chemistry, ISSN 0020-1669, Vol. 42, no 17, p. 5173-5184Article in journal (Refereed)
  • 10. Borgström, Magnus
    et al.
    Shaikh, Nizamuddin
    Johansson, Olof
    Anderlund, Magnus F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Styring, Stenbjörn
    Åkermark, Björn
    Magnuson, Ann
    Hammarström, Leif
    Light Induced Magnanese Oxidation and Long-lived Charge Separation in a Mn2II,II-RuII-acceptor triadManuscript (Other academic)
  • 11. Das, Biswanath
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Demeshko, Serhiy
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haukka, Matti
    Zeglio, Erica
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meyer, Franc
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 34, p. 13289-13293Article in journal (Refereed)
    Abstract [en]

    The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+).

  • 12.
    Ekström, Jesper
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Abrahamsson, Maria
    Olson, Carol
    Bergquist, Jonas
    Kanyak, Feliz B.
    Eriksson, Lars
    Sun, Licheng
    Åkermark, Björn
    Becker, Hans-Christian
    Hammarström, Leif
    Ott, Sascha
    Bio Inspired Side-on Attachment of a Ruthenium Photo-sensitizer to an Iron Hydrogenase Active Site Model2006In: Dalton Transactions, ISSN 1477-9226, no 38, p. 4599-4606Article in journal (Refereed)
  • 13.
    Fryxelius, Jacob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Anderlund, Magnus
    Xu, Yunhua
    Huang, Ping
    Magnuson, Ann
    Sun, Licheng
    Åkermark, Björn
    A Tetranuclear Mn Dimer of DimersManuscript (Other academic)
  • 14.
    Fryxelius, Jacob
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pica, Delphine
    Eriksson, Lars
    Åkermark, Björn
    Preparation of Copper(II) Complexes of a Mixed Amide-Phenolate LigandIn: Inorganic Chemistry CommunicationsArticle in journal (Refereed)
  • 15. Gao, Weiming
    et al.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liu, Jianhui
    Chen, Changneng
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Weng, Linhong
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction2007In: Inorganic Chemistry, ISSN 0020-1669, Vol. 46, no 6, p. 1981-1991Article in journal (Refereed)
  • 16. Gao, Weiming
    et al.
    Liu, Jianhui
    Jiang, Weina
    Wang, Mei
    Weng, Linhong
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    An azadithiolate bridged Fe2S2 complex as active site model of FeFe-hydrogenase covalently linked to a Re(CO)3(bpy)(py) photosensitizer aiming for light-driven hydrogen production2008In: Comptes Rendus Chimie, ISSN 1631-0748, Vol. 11, no 8, p. 915-921Article in journal (Refereed)
  • 17. Gao, Weiming
    et al.
    Liu, Jianhui
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Bidentate phosphine ligand based Fe2S2-containing macromolecules: synthesis, characterization, and catalytic electrochemical hydrogen production2006In: Inorganic Chemistry, ISSN 0020-1669, Vol. 45, no 23, p. 9169-9171Article in journal (Refereed)
  • 18. Gao, Weiming
    et al.
    Liu, Jianhui
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Facile and highly efficient light-induced PR3/CO ligand exchange: a novel approach to the synthesis of [(mu-SCH2NnPrCH2S)Fe2(CO)4(PR3)2]2007In: Journal of Organometallic Chemistry, ISSN 0022-328X, Vol. 692, p. 1579-1583Article in journal (Refereed)
  • 19.
    Gao, Weiming
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Romare, Kristina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Royal Institute of Technology (KTH), Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of a [3Fe2S] cluster with low redox potential from [2Fe2S] hydrogenase models: electrochemical and photochemical generation of hydrogen2011In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 2011, no 7, p. 1100-1105Article in journal (Refereed)
    Abstract [en]

    In the attempted replacement of carbon monoxide by the bis(phosphane) dppv in a dinuclear [2Fe2S] complex, a trinuclear [3Fe2S] complex with two bis(phosphane) ligands was unexpectedly obtained. On protonation, this gave a bridged hydride complex with an unusually low potential for the reduction of protons to molecular hydrogen. The redox potential also appears sufficiently positive for direct electron transfer from an excited [Ru(bpy)(3)](2+) sensitizer.

  • 20.
    Gao, Weiming
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Åkermark, Torbjörn
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Attachment of a hydrogen-bonding carboxylate side chain to an [FeFe]-hydrogenase model complex: Influence on the catalytic mechanism2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 8, p. 2537-2546Article in journal (Refereed)
    Abstract [en]

    Azapropanedithiolate (adt)-bridged model complexes of [FeFe]-hydrogenase bearing a carboxylic acid functionality have been designed with the aim of decreasing the potential for reduction of protons to hydrogen. Protonation of the bisphosphine complexes 46 has been studied by in situ IR and NMR spectroscopy, which revealed that protonation with triflic acid most likely takes place first at the N-bridge for complex 4 but at the FeFe bond for complexes 5 and 6. Using an excess of acid, the diprotonated species could also be observed, but none of the protonated species was sufficiently stable to be isolated in a pure state. Electrochemical studies have provided an insight into the catalytic mechanisms under strongly acidic conditions, and have also shown that complexes 3 and 6 are electro-active in aqueous solution even in the absence of acid, presumably due to hydrogen bonding. Hydrogen evolution, driven by visible light, has been observed for three-component systems consisting of [Ru(bpy)3]2+, complex 1, 2, or 3, and ascorbic acid in CH3CN/D2O solution by on-line mass spectrometry.

  • 21.
    Gao, Yan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liu, Jianhui
    Jiang, Wenfeng
    Xia, Ming
    Zhang, Wei
    Li, Minna
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Synthesis and photophysical and electrochemical properties of a binuclear Ru(bpy)3-Cu(III) corrole complex2007In: Journal of Porphyrins and Phthalocyanines, ISSN 1088-4246, Vol. 11, no 5-6, p. 463-469Article in journal (Refereed)
  • 22. Gao, Yan
    et al.
    Liu, Jianhui
    Na, Yong
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Synthesis and characterization of manganese and copper corrole xanthene complexes as catalysts for water oxidation2007In: Tetrahedron, ISSN 0040-4020, Vol. 63, no 9, p. 1987-1994Article in journal (Refereed)
  • 23.
    Gao, Yan
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Liu, Jianhui
    Sun, Licheng
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nucleophilic attack of hydroxide on a MnV oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II2009In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 131, no 25, p. 8726-8727Article in journal (Refereed)
  • 24.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, p. 293-299Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 25. Huang, Yong
    et al.
    Gao, Weiming
    Åkermark, Torbjörn
    Li, Mingrun
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    An Air-Stable Fe3S4 Complex with Properties Similar to Those of the HOXair State of the Diiron Hydrogenases2012In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, no 27, p. 4259-4263Article in journal (Refereed)
    Abstract [en]

    A Fe3S4 complex bridged by azapropanedithiolate (adt), complex 6, was prepared as a potential model of the HOXair state of [FeFe]-hydrogenases. Complex 6 was characterized by IR and 1H NMR spectroscopy, and its structure was determined by X-ray crystallography. The electrochemical studies show that complex 6 is redox-active under acidic conditions, which provides insight into the catalytic mechanism. Hydrogen evolution, driven by visible light, was observed in CH3CN/D2O solution by online mass spectroscopy.

  • 26.
    Iqbal, M. Naeem
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Abdelhamid, Hani Nasser
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Olsén, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mesoporous Ruthenium Oxide: A Heterogeneous Catalyst for Water Oxidation2017In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 11, p. 9651-9656Article in journal (Refereed)
    Abstract [en]

    Herein we report the synthesis of mesoporous ruthenium oxide (MP-RuO2) using a template-based approach. The catalytic efficiency of the prepared MP-RuO2 was compared to commercially available ruthenium oxide nanoparticles (C-RuO2) as heterogeneous catalysts for water oxidation. The results demonstrated superior performance of MP-RuO2 for oxygen evolution compared to the C-RuO2 with respect to recyclability, amount of generated oxygen, and stability over several catalytic runs.

  • 27. Jiang, Shi
    et al.
    Liu, Jianhui
    Shi, Yu
    Wang, Zhen
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Fe-S complexes containing five-membered heterocycles: novel models for the active site of hydrogenases with unusual low reduction potential2007In: Dalton Transactions, ISSN 1477-9226, no 8, p. 896-902Article in journal (Refereed)
  • 28. Jiang, Shi
    et al.
    Liu, Jianhui
    Shi, Yu
    Wang, Zhen
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Licheng
    Preparation, characteristics and crystal structures of novel N-heterocyclic carbene substituted furan- and pyridine-containing azadithiolate Fe-S complexes2007In: Polyhedron, ISSN 0277-5387, Vol. 26, no 7, p. 1499-1504Article in journal (Refereed)
  • 29.
    Johansson, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borgström, Magnus
    Lomoth, Reiner
    Palmblad, Magnus
    Bergquist, Jonas
    Hammarström, Leif
    Sun, Licheng
    Åkermark, Björn
    Electron Donor-Acceptor Dyads Based on Ruthenium(II) Bipyridine and Terpyridine Complexes Bound to Naphthalenediimide2003In: Inorganic Chemistry, ISSN 0020-1669, Vol. 42, no 9, p. 2908-2918Article in journal (Refereed)
  • 30.
    Johansson, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lomoth, Reiner
    Sun, Licheng
    Åkermark, Björn
    Linkage Isomerism in a Bistridentate Ruthenium(II) ComplexManuscript (Other academic)
  • 31. Johansson, Olof
    et al.
    Wolpher, Henriette
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Borgström, Magnus
    Hammarström, Leif
    Bergquist, Jonas
    Sun, Licheng
    Åkermark, Björn
    Intramolecular charge separation in a hydrogen bonded tyrosine-ruthenium(II)-naphtalene diimide triad2004In: Chemical Communications, ISSN 1359-7345, no 2, p. 194-195Article in journal (Refereed)
  • 32.
    Johansson, Olof
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wolpher, Henriette
    Borgström, Magnus
    Hammarström, Leif
    Bergquist, Jonas
    Sun, Licheng
    Åkermark, Björn
    Intramolecular charge separation in a hydrogen bonded tyrosune-ruthenium(II) baphthalene diimide triad2004In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, p. 194-195Article in journal (Refereed)
  • 33.
    Johnston, Eric V
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Novel dinuclear Ru-complex for water oxidation2010In: Abstracts of Papers, 240th ACS National Meeting, Boston, MA, United States, August 22-26, 2010 (2010), American Chemical Society , 2010Conference paper (Other academic)
  • 34.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lindberg, Staffan A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient reoxidation of palladium by a hybrid catalyst in aerobic palladium-catalyzed carbocyclization of enallenes2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 28, p. 6799-6801Article in journal (Refereed)
  • 35.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tran, Lien-Hoa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient aerobic ruthenium-catalyzed oxidation of secondary alcohols by the use of a hybrid electron transfer catalyst2010In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 10, p. 1971-1976Article in journal (Refereed)
    Abstract [en]

    Biomimetic aerobic oxidation of secondary alcohols has been performed using hybrid catalyst 1 and Shvo's catalyst 2. This combination allows mild reaction conditions and low catalytic loading, due to the efficiency of intramolecular electron transfer. By this method a wide range of different alcohols have been converted into their corresponding ketones. Oxidation of benzylic as well as aliphatic, electron-rich, electron-deficient and sterically hindered alcohols could be oxidized in excellent yield and selectivity. Oxidation of (S)-1-phenyl-ethanol showed that no racemization occurred during the course of the reaction, indicating that the hydride 2b adds to the quinone much faster than it re-adds to the ketone product. The kinetic deuterium isotope effect of the oxidation was determined by the use of 1-phenylethanol (3a) and 1-deuterio-1-phenylethanol (3a-d1) in parallel and competitive manner, which gave the same isotope effect within experimental error (k(H)/k(D) approximate to 2.8). This indicates that there is no strong coordination of the substrate to the catalyst.

  • 36.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tran, Lien-Hoa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient synthesis of hybrid (hydroquinone-Schiff base)cobalt oxidation catalysts2009In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 23, p. 3973-3976Article in journal (Refereed)
    Abstract [en]

    Hybrid catalysts A and B have recently been found to efficiently transfer electrons from a metal catalyst to molecular oxygen in biomimetic oxidations. In the present work hybrid catalysts A and B were synthesized in high yield from inexpensive starting materials. The key step is an efficient Suzuki cross-coupling, which allows the use of unprotected aldehyde 5. The new synthesis of the title hybrid catalysts is easy to carry out and can be scaled up.

  • 37. Karlsson, Erik A.
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Becerril, Valeria Saavedra
    Abrahamsson, Maria
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and electron transfer processes in a new family of coupled Mn2–Ru complexesManuscript (preprint) (Other academic)
  • 38.
    Karlsson, Erik A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Becerril, Valeria Saavedra
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abrahamsson, Maria
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and Electron-Transfer Processes in a New Family of Ligands for Coupled Ru-Mn2 Complexes2014In: ChemPlusChem, ISSN 2192-6506, Vol. 79, no 7, p. 936-950Article in journal (Refereed)
    Abstract [en]

    A series of [Ru(bpy)(3)](2+)-type (bpy= 2,2'-bipyridine) photosensitisers have been coupled to a ligand for Mn, which is expected to give a dinuclear complex that is active as a water oxidation catalyst. Unexpectedly, photophysical studies showed that the assemblies had very short lived excited states and that the decay patterns were complex and strongly dependent on pH. One dyad was prepared that was capable of catalysing chemical water oxidation by using [Ru(bpy)(3)](3+) as an oxidant. However, photochemical water oxidation in the presence of an external electron acceptor failed, presumably because the short excited-state lifetime precluded initial electron transfer to the added acceptor. The photophysical behaviour could be explained by the presence of an intricate excited-state manifold, as also suggested by time-dependent DFT calculations.

  • 39.
    Karlsson, Erik A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hansson, Örjan
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Photosensitized water oxidation by use of a bioinspired manganese catalyst2011In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 50, no 49, p. 11715-11718Article in journal (Refereed)
  • 40. Kleimark, Jonatan
    et al.
    Johansson, Charlotte
    Olsson, Susanne
    Håkansson, Mikael
    Hansson, Sverker
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Norrby, Per-Ola
    Sterically goverend selectivity in palladium-assisted allylic alkylation2011In: Organometallics, ISSN 0276-7333, E-ISSN 1520-6041, Vol. 30, p. 230-238Article in journal (Refereed)
    Abstract [en]

    The selectivity in the Pd-assisted allylic alkylation has been investigated in a system with a ligand tethered to the allylic moiety. Isolation of (η3-allyl)Pd complexes and stoichiometric reaction with malonate nucleophiles allowed separation of various factors influencing the regioselectivity in a system that cannot undergo apparent rotation. Unexpectedly, trans effects were found to have only a minor influence on the selectivity, whereas changing the tether length could shift the preference from favored internal to dominant terminal attack. DFT-assisted analysis revealed that the dominant selectivity-determiningfactors are the forced rotation of the allylic moiety and an important steric repulsion from a syn-alkyl substituent

  • 41.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Shariatgorji, Mohammadreza
    Ilag, Leopold
    Stockholm University, Faculty of Science, Department of Analytical Chemistry.
    Hansson, Örjan
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Light-Induced Water Oxidation by a Ru-complex Containing a Bio-Inspired Ligand2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 28, p. 7953-7959Article in journal (Refereed)
    Abstract [en]

    The new Ru-complex 8 containing the bio-inspired ligand 7 was successfully synthesized and characterized. Complex 8 could efficiently catalyze water oxidation using CeIV and RuIII as chemical oxidants. More importantly, this complex has sufficiently low overpotential to utilize ruthenium polypyridyl-type complexes as photosensitizers.

  • 42.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Artificial Photosynthesis: Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation2014In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 47, no 1, p. 100-111Article, review/survey (Refereed)
    Abstract [en]

    Human society faces a fundamental challenge as energy consumption is projected to increase due to population and economic growth as fossil fuel resources decrease. Therefore the transition to alternative and sustainable energy sources is of the Utmost importance. The conversion of solar energy into chemical energy, by splitting H2O to generate molecular O-2 and H-2, could contribute to solving the global energy problem. Developing such a system will require the combination of several complicated processes, such as light-harvesting, charge separation, electron transfer, H2O oxidation, and reduction of the generated protons. The primary processes of charge separation and catalysis, which occur in the natural photosynthetic machinery, provide us with an excellent blueprint for the design of such systems. This Account describes our efforts to construct supramolecular assemblies capable of carrying out photoinduced electron transfer and to develop artificial water oxidation catalysts (WOCs). Early work in our group focused on linking a ruthenium chromophore to a manganese-based oxidation catalyst. When we incorporated a tyrosine unit into these supramolecular assemblies, we could observe fast intramolecular electron transfer from the manganese centers, via the tyrosine moiety, to the photooxidized ruthenium center, which clearly resembles the processes occurring in the natural system. Although we demonstrated multi-electron transfer in our artificial systems, the bottleneck proved to be the stability of the WOCs. Researchers have developed a number of WOCs, but the majority can only catalyze H2O oxidation in the presence of strong oxidants such as Ce-IV, which is difficult to generate photochemically. By contrast, illumination of ruthenium(II) photosensitizers in the presence of a sacrificial acceptor generates [Ru(bpy)(3)](3+)-type oxidants. Their oxidation potentials are significantly lower than that of Ce-IV, but our group recently showed that incorporating negatively charged groups into the ligand backbone could decrease the oxidation potential of the catalysts and, at the same time, decrease the potential for H2O oxidation. This permitted us to develop both ruthenium- and manganese-based WOCs that can operate under neutral conditions, driven by the mild oxidant [Ru(bpy)(3)](3+). Many hurdles to the development of viable systems for the production of solar fuels remain. However, the combination of important features from the natural photosynthetic machinery and novel artificial components adds insights into the complicated catalytic processes that are involved in splitting H2O.

  • 43.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular Single-site Ruthenium Complexes Containing a Basic Site: The Use of Structure-activity RelationshipsManuscript (preprint) (Other academic)
    Abstract [en]

    A series of single-site ruthenium(III) complexes (2a-d) were synthesized and characterized, and employed in the oxidation of H2O. A linear free-energy relationship study was conducted in order to establish a correlation between the electrochemical properties and the electronic parameters of the introduced substituents in complexes 2a-d.

  • 44.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ghanem, Shams
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure-activity relationships and quantum chemical calculations2016In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 6, no 5, p. 1306-1319Article in journal (Refereed)
    Abstract [en]

    Robust catalysts that mediate H2O oxidation are of fundamental importance for the development of novel carbon-neutral energy technologies. Herein we report the synthesis of a group of single-site Ru complexes. Structure-activity studies revealed that the individual steps in the oxidation of H2O depended differently on the electronic properties of the introduced ligand substituents. The mechanistic details associated with these complexes were investigated experimentally along with quantum chemical calculations. It was found that O-O bond formation for the developed Ru complexes proceeds via high-valent Ru-VI species, where the capability of accessing this species is derived from the non-innocent ligand architecture. This cooperative catalytic involvement and the ability of accessing Ru-VI are intriguing and distinguish these Ru catalysts from a majority of previously reported complexes, and might generate unexplored reaction pathways for activation of small molecules such as H2O.

  • 45.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation2014In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 114, no 24, p. 11863-12001Article, review/survey (Refereed)
  • 46.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks2016In: The chemical record, ISSN 1527-8999, E-ISSN 1528-0691, Vol. 16, no 2, p. 940-963Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis represents an attractive way of converting solar energy into storable chemical energy. The H2O oxidation half-reaction, which is essential for producing the necessary reduction equivalents, is an energy-demanding transformation associated with a high kinetic barrier. Herein we present a couple of efficient Ru-based catalysts capable of mediating this four-proton-four-electron oxidation. We have focused on the incorporation of negatively charged ligands, such as carboxylate, phenol, and imidazole, into the catalysts to decrease the redox potentials. This account describes our work in designing Ru catalysts based on this idea. The presence of the negatively charged ligands is crucial for stabilizing the metal centers, allowing for light-driven H2O oxidation. Mechanistic details associated with the designed catalysts are also presented.

  • 47.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 37, p. 14421-14461Article in journal (Refereed)
    Abstract [en]

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  • 48.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences .
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Tailor-Made Molecular Ruthenium Catalyst for the Oxidation of Water and Its Deactivation through Poisoning by Carbon Monoxide2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 15, p. 4189-4193Article in journal (Refereed)
  • 49.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karim, Shams R.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Tobias
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water Oxidation by Single-Site Ruthenium Complexes: Using Ligands as Redox and Proton Transfer Mediators2012In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 51, no 46, p. 11589-11593Article in journal (Refereed)
  • 50.
    Laine, Tanja M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Huazhong University of Science & Technology, People's Republic of China.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 28, p. 10039-10048Article in journal (Refereed)
    Abstract [en]

    Insight into how H2O is oxidized to O-2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar-to-fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru-based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high-resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non-innocent behavior, in which metal-ligand cooperation is an important part during the four-electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non-innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O.

123 1 - 50 of 105
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf