Change search
Refine search result
12 1 - 50 of 78
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University Fayoum, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Bjorn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 24, p. 3448-3456Article in journal (Refereed)
    Abstract [en]

    Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.

  • 2.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diner, Colin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jonker, Sybrand
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Asymmetric Allylboration of Indoles and Dihydroisoquinolines with Allylboronic Acids: Stereodivergent Synthesis of up to Three Contiguous Stereocenters2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 46, p. 14417-14421Article in journal (Refereed)
    Abstract [en]

    The catalytic asymmetric allylboration of cyclic imines with gamma,gamma-disubstituted allylboronic acids provides products with adjacent stereocenters in high yield and stereoselectivity. Various electrophiles, including 3,4-dihydroisoquinolines and indoles, were prenylated in a fully stereodivergent fashion by switching the E/Z geometry of the allylboronate and/or the enantiomer of the BINOL catalyst. 3-Methylindole provided products with three adjacent stereocenters with high stereoselectivity in one synthetic operation.

  • 3. Ashour, Radwa M.
    et al.
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Abdel-Khalek, Ahmed A.
    Helaly, O. S.
    Ali, M. M.
    Preparation and characterization of magnetic iron oxide nanoparticles functionalized by L-cysteine: Adsorption and desorption behavior for rare earth metal ions2016In: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 4, no 3, p. 3114-3121Article in journal (Refereed)
    Abstract [en]

    In this work, magnetic iron oxide nanoparticles functionalized with L-cysteine (Cys-Fe3O4 NPs) was synthesized and fully characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infra-red (FTIR), thermogravimetric analysis (TGA) and zeta potential measurements. The synthesized Cys-Fe(3)O(4)NPs has been evaluated as a highly adsorbent for the adsorption of a mixture of four rare earths RE3+ ions (La3+, Nd3+, Gd3+ and Y3+) from digested monazite solutions. The influence of various factors on the adsorption efficiency such as, the contact time, sample pH, temperature, and concentration of the stripping solution were investigated. The results indicate that Cys-Fe3O4 NPs achieve high removal efficiency 96.7, 99.3, 96.5 and 87% for La3+, Nd3+, Gd3+ and Y3+ ions, respectively, at pH = 6 within 15 min, and the adsorbent affinity for metal ions was found to be in order of Nd3+ > La3+ > Gd3+ > Y3+ ions. Using the Langmuir model, a maximum adsorption capacity of La3+, Nd3+, Gd3+ and Y3+ at room temperature was found to be 71.5, 145.5, 64.5 and 13.6 mg g (1), respectively. The Langmuir isotherm and pseudo-second order model fitted much better than the other isotherms and kinetic models. The obtained results for the thermodynamic parameters confirmed the spontaneous and endothermic nature of the process. Moreover, the desorption was carried out with 0.1 M nitric acid solutions. In addition, Cys-Fe3O4 NPs can be used as a highly efficient adsorbent for the adsorption of La3+, Nd3+, Gd3+ and Y3+ ions from digested monazite solutions.

  • 4.
    Belhomme, Marie-Charlotte
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wang, Dong
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Formation of C(sp(3))-C(sp(3)) Bonds by Palladium Catalyzed Cross-Coupling of alpha-Diazoketones and Allylboronic Acids2016In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 18, no 10, p. 2503-2506Article in journal (Refereed)
    Abstract [en]

    Palladium catalyzed cross-coupling of allylboronic acids with a-diazoketones was studied. The reaction selectively affords the linear allylic product. The reaction proceeds with formation of a new C(sp(3))-C(sp(3)) bond. The reaction was performed without an external oxidant, likely without the Pd-catalyst undergoing redox reactions.

  • 5. Bergenstråhle-Wohlert, Malin
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sjöberg, Nils A.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wohlert, Jakob
    On the anomalous temperature dependence of cellulose aqueous solubility2016In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 4, p. 2375-2387Article in journal (Refereed)
    Abstract [en]

    The solubility of cellulose in water-based media is promoted by low temperature, which may appear counter-intuitive. An explanation to this phenomenon has been proposed that is based on a temperature-dependent orientation of the hydroxymethyl group. In this paper, this hypothesis is investigated using molecular dynamics computer simulations and NMR spectroscopy, and is discussed in conjunction with alternative explanations based on solvent–solute and solvent–solvent hydrogen bond formation respectively. It is shown that neither simulations nor experiments lend support to the proposed mechanism based on the hydroxymethyl orientation, whereas the two alternative explanations give rise to two distinct contributions to the hydration free energy of cellooligomers.

  • 6. Berglund, Jennie
    et al.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vilaplana, Francisco
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bergenstråhle-Wohlert, Malin
    Lawoko, Martin
    Henriksson, Gunnar
    Lindström, Mikael
    Wohlert, Jakob
    A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility2016In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 88, no 1, p. 56-70Article in journal (Refereed)
    Abstract [en]

    The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by NMR spectroscopy. Three types of β-(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di- and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated and free energy maps of the φ - ψ space and hydrogen bonding patterns were obtained. The glycosidic linkage between Glc-Glc or Glc-Man (C-type) was the stiffest with mainly one probable conformation; the linkage from Man-Man or Man-Glc (M-type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl-units (X-type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of hemicelluloses’ function both in the cell wall and in technical products.

  • 7.
    Bermejo Gómez, Antonio
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Karolinska Universitetssjukhuset, Sweden; Karolinska Institutet, Sweden.
    Cortés González, Miguel A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Karolinska Institutet, Sweden.
    Lübcke, Marvin
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Karolinska Institutet, Sweden.
    Johansson, Magnus J.
    Halldin, Christer
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Karolinska Insitutet, Sweden.
    Schou, Magnus
    Efficient DBU accelerated synthesis of F-18-labelled trifluoroacetamides2016In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 52, no 97, p. 13963-13966Article in journal (Refereed)
    Abstract [en]

    Nucleophilic F-18-fluorination of bromodifluoromethyl derivatives was performed using [F-18] Bu4NF in the presence of DBU(1,8-diazabicyclo[5.4.0]undec-7-ene). This novel procedure provided a diverse set of [F-18] trifluoroacetamides in good to excellent radiochemical conversions. A mechanism where DBU acts as organomediator in this transformation is proposed.

  • 8.
    Blomberg, Margareta R. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanism of Oxygen Reduction in Cytochrome c Oxidase and the Role of the Active Site Tyrosine2016In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, no 3, p. 489-500Article in journal (Refereed)
    Abstract [en]

    Cytochrome c oxidase, the terminal enzyme in the respiratory chain, reduces molecular oxygen to water and stores the released energy through electrogenic chemistry and proton pumping across the membrane. Apart from the heme-copper binuclear center, there is a conserved tyrosine residue in the active site (BNC). The tyrosine delivers both an electron and a proton during the O-O bond cleavage step, forming a tyrosyl radical. The catalytic cycle then occurs in four reduction steps, each taking up one proton for the chemistry (water formation) and one proton to be pumped. It is here suggested that in three of the reduction steps the chemical proton enters the center of the BNC, leaving the tyrosine unprotonated with radical character. The reproprotonation of the tyrosine occurs first in the final reduction step before binding the next oxygen molecule. It is also suggested that this reduction mechanism and the presence of the tyrosine are essential for the proton pumping. Density functional theory calculations on large cluster models of the active site show that only the intermediates with the proton in the center of the BNC and with an unprotonated tyrosyl radical have a high electron affinity of similar size as the electron donor, which is essential for the ability to take up two protons per electron and thus for the proton pumping. This type of reduction mechanism is also the only one that gives a free energy profile in accordance with experimental observations for the amount of proton pumping in the working enzyme.

  • 9.
    Blomberg, Margareta R. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR)2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 19, p. 1810-1818Article in journal (Refereed)
    Abstract [en]

    Quantum chemical calculations play an essential role in the elucidation of reaction mechanisms for redox-active metalloenzymes. For example, the cleavage and the formation of covalent bonds can usually not be described only on the basis of experimental information, but can be followed by the calculations. Conversely, there are properties, like reduction potentials, which cannot be accurately calculated. Therefore, computational and experimental data has to be carefully combined to obtain reliable descriptions of entire catalytic cycles involving electron and proton uptake from donors outside the enzyme. Such a procedure is illustrated here, for the reduction of nitric oxide (NO) to nitrous oxide and water in the membrane enzyme, cytochrome c dependent nitric oxide reductase (cNOR). A surprising experimental observation is that this reaction is nonelectrogenic, which means that no energy is conserved. On the basis of hybrid density functional calculations a free energy profile for the entire catalytic cycle is obtained, which agrees much better with experimental information on the active site reduction potentials than previous ones. Most importantly the energy profile shows that the reduction steps are endergonic and that the entire process is rate-limited by high proton uptake barriers during the reduction steps. This result implies that, if the reaction were electrogenic, it would become too slow when the gradient is present across the membrane. This explains why this enzyme does not conserve any of the free energy released.

  • 10.
    Bornschein, Christoph
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universität Rostock, Germany.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Beller, Matthias
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Evaluation of Fe and Ru Pincer-Type Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 33, p. 11583-11586Article in journal (Refereed)
    Abstract [en]

    Fe and Ru pincer-type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron-catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec-benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.

  • 11. Bunrit, Anon
    et al.
    Dahlstrand, Christian
    Srifa, Pemikar
    Olsson, Sandra K.
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Tianjin University, China.
    Biswas, Srijit
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Uppsala University, Sweden.
    Nucleophilic Substitution of the Hydroxyl Group in Stereogenic Alcohols with Chirality Transfer2016In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 27, no 2, p. 173-176Article in journal (Refereed)
    Abstract [en]

    A brief overview of the development of direct substitution of the hydroxyl (OH) group of alcohols in our research group is presented. By applying a BrOnsted acid, an intramolecular substitution of the OH group in stereogenic alcohols with chirality transfer was achieved. Noteworthy, the intramolecular substitution has a wide scope in respect to both the nucleophile and also the nucleofuge. A mechanistic study by both experiments and DFT calculations revealed a unique reaction pathway in which the BrOnsted acid operates in a bifunctional manner to promote an S(N)2-type reaction mechanism.

  • 12.
    Bunrit, Anon
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Uppsala University, Sweden.
    Sawadjoon, Supaporn
    Tšupova, Svetlana
    Sjöberg, Per J. R.
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Uppsala University, Sweden.
    A General Route to beta-Substituted Pyrroles by Transition-Metal Catalysis2016In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 81, no 4, p. 1450-1460Article in journal (Refereed)
    Abstract [en]

    An atom-efficient route to pyrroles substituted in the beta-position has been achieved in four high yielding steps by a combination of Pd, Ru, and Fe catalysis with only water and ethene as side-products. The reaction is general and gives pyrroles substituted in the beta-position with linear and branched alkyl, benzyl, or aryl groups in overall good yields. The synthetic route includes a Pd-catalyzed monoallylation step of amines with substituted allylic alcohols that proceeds to yield the monoallylated products in moderate to excellent yields. In a second step, unsymmetrical diallylated aromatic amines are generated from the reaction of a second allylic alcohol with high selectivity in moderate to good yields by control of the reaction temperature. Ru-catalyzed ring-closing metathesis performed on the diallylated aromatic amines yields the pyrrolines substituted in the beta-position in excellent yields. By addition of ferric chloride to the reaction mixture, a selective aromatization to yield the corresponding pyrroles substituted in the beta-position was achieved. A reaction mechanism involving a palladium hydride, generated from insertion of palladium to O-H of an allyl alcohol, that is responsible for the C-O bond cleavage to generate the pi-allyl intermediate is proposed.

  • 13. Das, Biswanath
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Demeshko, Serhiy
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haukka, Matti
    Zeglio, Erica
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meyer, Franc
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 34, p. 13289-13293Article in journal (Refereed)
    Abstract [en]

    The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+).

  • 14.
    Daver, Henrik
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Biswanath
    Nordlander, Ebbe
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Theoretical Study of Phosphodiester Hydrolysis and Transesterification Catalyzed by an Unsymmetric Biomimetic Dizinc Complex2016In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 55, no 4, p. 1872-1882Article in journal (Refereed)
    Abstract [en]

    Density functional theory calculations have been used to investigate the reaction mechanisms of phosphodiester hydrolysis and transesterification catalyzed by a dinuclear zinc complex of the 2-(N-isopropyl-N-((2-pyridyl)methyl)-aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino-methyl)-4-methylphenol (IPCPMP) ligand, mimicking the active site of zinc phosphotriesterase. The substrates bis(2,4)-dinitrophenyl phosphate (BDNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) were employed as analogues of DNA and RNA, respectively. A number of different mechanistic proposals were considered, with the active catalyst harboring either one or two hydroxide ions. It is concluded that for both reactions the catalyst has only one hydroxide bound, as this option yields lower overall energy barriers. For BDNPP hydrolysis, it is suggested that the hydroxide acts as the nucleophile in the reaction, attacking the phosphorus center of the substrate. For HPNP transesterification, on the other hand, the hydroxide is proposed to act as a Bronsted base, deprotonating the alcohol moiety of the substrate, which in turn performs the nucleophilic attack. The calculated overall barriers are in good agreement with measured rates. Both reactions are found to proceed by essentially concerted associative mechanisms, and it is demonstrated that two consecutive catalytic cycles need to be considered in order to determine the rate-determining free energy barrier.

  • 15.
    Erbing, Elis
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Vazquez-Romero, Ana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gómez, Antonio Bermejo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Platero-Prats, Ana E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Carson, Fabian
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tolstoy, Päivi
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    General, Simple, and Chemoselective Catalysts for the Isomerization of Allylic Alcohols: The Importance of the Halide Ligand2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 44, p. 15659-15663Article in journal (Refereed)
    Abstract [en]

    Remarkably simple Ir-III catalysts enable the isomerization of primary and sec-allylic alcohols under very mild reaction conditions. X-ray absorption spectroscopy (XAS) and mass spectrometry (MS) studies indicate that the catalysts, with the general formula [Cp*Ir-III], require a halide ligand for catalytic activity, but no additives or additional ligands are needed.

  • 16.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 14, p. 7727-7741Article in journal (Refereed)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 17.
    Fontana, Carolina
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaccheus, Mona
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Weintraub, Andrej
    Ansaruzzaman, Mohammad
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-160002016In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 432, p. 41-49Article in journal (Refereed)
    Abstract [en]

    The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed D-Glc, D-GalN, D-QuiN and L-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by H-1 and C-13 NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using H-1, C-13, N-15 and P-31 NMR spectroscopy; inter-residue correlations were identified by H-1, C-13-heteronuclear multiple-bond correlation, H-1, H-1-NOESY and H-1, P-31-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: -> 3)-D-Gro-(1-P-6)-beta-D-Glcp-(1 -> 4)-alpha-L-FucpNAc-(1 -> 3)-beta-D-QuipNAc-(1 -> with a side-chain consisting of alpha-D-Glcp-(1 -> 6)-alpha-D-GalpNAc-(1 -> linked to the O3 position of the FucNAc residue.

  • 18. Francois, Camille
    et al.
    Pourchet, Sylvie
    Boni, Gilles
    Fontaine, Stephane
    Gaillard, Yves
    Placet, Vincent
    Galkin, Maxim V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orebom, Alexander
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Plasseraud, Laurent
    Diglycidylether of iso-eugenol: a suitable lignin-derived synthon for epoxy thermoset applications2016In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 73, p. 68732-68738Article in journal (Refereed)
    Abstract [en]

    A novel lignin-based synthon, diglycidylether of iso-eugenol (DGE-isoEu) is used as a prepolymer for the preparation of thermosetting resins. DGE-isoEu is synthesized in a two-step procedure with a satisfactory yield from bio-based iso-eugenol (isoEu, 2-methoxy-4-(1-propenyl)phenol) catalytically fragmented from lignin in an organosolv process. DGE-isoEu was fully characterized by NMR, MS and FTIR. Curing of the DGE-isoEu monomer has then been investigated in the presence of several carboxylic acid derivatives hardeners. The thermal and mechanical properties of each material were recorded showing, in particular, a high T-g and instantaneous modulus values in the range of 78-120 degrees C and 4.6-5.5 GPa, respectively. The lignin derived new materials give very attractive thermo-mechanical properties comparable to that of common BPA-containing epoxy resins.

  • 19.
    Galkin, Maxim V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 13, p. 1544-1558Article, review/survey (Refereed)
    Abstract [en]

    Current processes for the fractionation of lignocellulosic biomass focus on the production of high-quality cellulosic fibers for paper, board, and viscose production. The other fractions that constitute a major part of lignocellulose are treated as waste or used for energy production. The transformation of lignocellulose beyond paper pulp to a commodity (e.g., fine chemicals, polymer precursors, and fuels) is the only feasible alternative to current refining of fossil fuels as a carbon feedstock. Inspired by this challenge, scientists and engineers have developed a plethora of methods for the valorization of biomass. However, most studies have focused on using one single purified component from lignocellulose that is not currently generated by the existing biomass fractionation processes. A lot of effort has been made to develop efficient methods for lignin depolymerization. The step to take this fundamental research to industrial applications is still a major challenge. This review covers an alternative approach, in which the lignin valorization is performed in concert with the pulping process. This enables the fractionation of all components of the lignocellulosic biomass into valorizable streams. Lignocellulose fractions obtained this way (e.g., lignin oil and glucose) can be utilized in a number of existing procedures. The review covers historic, current, and future perspectives, with respect to catalytic lignocellulose fractionation processes.

  • 20.
    Galkin, Maxim V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Smit, Arjan T.
    Subbotina, Elena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Artemenko, Konstantin A.
    Bergquist, Jonas
    Huijgen, Wouter J. J.
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hydrogen-free catalytic fractionation of woody biomass2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 23, p. 3280-3287Article in journal (Refereed)
    Abstract [en]

    The pulping industry could become a biorefinery if the lignin and hemicellulose components of the lignocellulose are valorized. Conversion of lignin into well-defined aromatic chemicals is still a major challenge. Lignin depolymerization reactions often occur in parallel with irreversible condensation reactions of the formed fragments. Here, we describe a strategy that markedly suppresses the undesired condensation pathways and allows to selectively transform lignin into a few aromatic compounds. Notably, applying this strategy to woody biomass at organosolv pulping conditions, the hemicellulose, cellulose, and lignin were separated and in parallel the lignin was transformed into aromatic monomers. In addition, we were able to utilize a part of the lignocellulose as an internal source of hydrogen for the reductive lignin transformations. We hope that the presented methodology will inspire researchers in the field of lignin valorization as well as pulp producers to develop more efficient biomass fractionation processes in the future.

  • 21. Hammarström, Lars G. J.
    et al.
    Harmel, Robert K.
    Granath, Mikael
    Ringom, Rune
    Gravenfors, Ylva
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Färnegårdh, Katarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Science for Life Laboratory (SciLifeLab).
    Svensson, Per H.
    Wennman, David
    Lundin, Göran
    Roddis, Ylva
    Kitambi, Satish S.
    Bernlind, Alexandra
    Lehmann, Fredrik
    Ernfors, Patrik
    The Oncolytic Efficacy and in Vivo Pharmacokinetics of [2-(4-Chlorophenyl)quinolin-4-yl](piperidine-2-yl)methanol (Vacquinol-1) Are Governed by Distinct Stereochemical Features2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 18, p. 8577-8592Article in journal (Refereed)
    Abstract [en]

    Glioblastoma remains an incurable brain cancer. Drugs developed in the past 20 years have not improved the prognosis for patients, necessitating the development of new treatments. We have previously reported the therapeutic potential of the quinoline methanol Vacquinol-1 (1) that targets glioblastoma cells and induces cell death by catastrophic vacuolization. Compound 1 is a mixture of four stereoisomers due to the two adjacent stereogenic centers in the molecule, complicating further development in the preclinical setting. This work describes the isolation and characterization of the individual isomers of 1 and shows that these display stereospecific pharmacokinetic and pharmacodynamic features. In addition, we present a stereoselective synthesis of the active isomers, providing a basis for further development of this compound series into a novel experimental therapeutic for glioblastoma.

  • 22.
    Ilchenko, Nadia O.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cortes, Miguel A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed lodofluorination of Alkenes Using Fluorolodoxole Reagent2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 1, p. 447-450Article in journal (Refereed)
    Abstract [en]

    The application of an air- and moisture-stable fluoroiodane reagent was investigated in the palladium-catalyzed iodofluorination reaction of alkenes. Both the iodo and fluoro substituents arise from the fluoroiodane reagent. In the case of certain palladium catalysts, the alkene substrates undergo allylic rearrangement prior to the iodofluorination process. The reaction is faster for electron-rich alkenes than for electron-deficient ones.

  • 23.
    Jiang, Tuo
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quan, Xu
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhu, Can
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Synthesis of a-Acetoxylated Enones from Alkynes2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 19, p. 5824-5828Article in journal (Refereed)
    Abstract [en]

    We report a palladium-catalyzed oxidative functionalization of alkynes to generate -acetoxylated enones in one step. A range of functional groups are well-tolerated in this reaction. Mechanistic studies, including the use of O-18-labeled DMSO, revealed that the ketone oxygen atom in the product originates from DMSO.

  • 24. Kaderavek, Pavel
    et al.
    Zapletal, Vojtech
    Fiala, Radovan
    Srb, Pavel
    Padrta, Petr
    Precechtelova, Jana Pavlikova
    Soltesova, Maria
    Kowalewski, Jozef
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chmelik, Josef
    Sklenar, Vladimir
    Zidek, Lukas
    Spectral density mapping at multiple magnetic fields suitable for C-13 NMR relaxation studies2016In: Journal of magnetic resonance, ISSN 1090-7807, E-ISSN 1096-0856, Vol. 266, p. 23-40Article in journal (Refereed)
    Abstract [en]

    Standard spectral density mapping protocols, well suited for the analysis of N-15 relaxation rates, introduce significant systematic errors when applied to C-13 relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and C-13 frequencies can be obtained from data acquired at three magnetic fields for uniformly C-13-labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  • 25. Kang, Yu
    et al.
    Gohlke, Ulrich
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Scheidt, Tom
    Kunstrnann, Sonja
    Heinemann, Udo
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Santer, Mark
    Barbirz, Stefanie
    Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions2016In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 29, p. 9109-9118Article in journal (Refereed)
    Abstract [en]

    Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.

  • 26. Kazemi, Masoud
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aqvist, Johan
    Peptide Release on the Ribosome Involves Substrate-Assisted Base Catalysis2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 12, p. 8432-8439Article in journal (Refereed)
    Abstract [en]

    Termination of protein synthesis on the ribosome involves hydrolysis of the ester bond between the P-site tRNA and the nascent peptide chain. This reaction occurs in the peptidyl transferase center and is triggered by the class I release factors RF1 and RF2 in prokaryotes. Peptidyl-tRNA hydrolysis is pH-dependent, and experimental results suggest that an ionizable group with pK(a) > 9 is involved in the reaction. The nature of this group is, however, unknown. To resolve this problem, we conducted density functional theory calculations using a large cluster model of the peptidyl transferase center. Our calculations reveal that peptidyl-tRNA hydrolysis occurs via a base-catalyzed mechanism with a predicted activation energy of 15.8 kcal mol(-1), which is in good agreement with experimental data. In this mechanism, the P-site A76 2'-OH group is deprotonated and acts as the general base by activating the nucleophilic water molecule. The energy cost of deprotonating the 2'-hydroxyl group at pH 7.5 is estimated to be about 8 kcal mo1(-1), on the basis of its experimental plc in aqueous solution, and this step is predicted to be the source of the observed pH dependence. The proposed mechanism is consistent not only with experimentally derived activation energies but also with the observed kinetic solvent isotope effect.

  • 27. Kazemi, Masoud
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åqvist, Johan
    Enzyme catalysis by entropy without Circe effect2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 9, p. 2406-2411Article in journal (Refereed)
    Abstract [en]

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction inwater, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  • 28.
    Kessler, Simon N.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iron-catalyzed Cross-Coupling of Propargyl Carboxylates and Grignard Reagents: Synthesis of Substituted Allenes2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 11, p. 3734-3738Article in journal (Refereed)
    Abstract [en]

    Presented herein is a mild, facile, and efficient iron-catalyzed synthesis of substituted allenes from propargyl carboxylates and Grignard reagents. Only 1-5mol% of the inexpensive and environmentally benign [Fe(acac)(3)] at -20 degrees C was sufficient to afford a broad range of substituted allenes in excellent yields. The method tolerates a variety of functional groups.

  • 29.
    Kessler, Simon N.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hundemer, Fabian
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm Univ, Arrhenius Lab, Dept Organ Chem, SE-10691 Stockholm, Sweden.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Synthesis of Substituted alpha-Allenols via Iron-Catalyzed Cross-Coupling of Propargyl Carboxylates with Grignard Reagents2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 11, p. 7448-7451Article in journal (Refereed)
    Abstract [en]

    alpha-Allenols are attractive and versatile compounds whose preparation can be a nontrivial task. In this Letter, we provide a method for the prompt synthesis of substituted alpha-allenols via a catalytic cross-coupling reaction which makes use of a nontoxic and cost-effective iron catalyst. The catalyst loading is typically as low as 1-5 mol %. The mild reaction conditions (-20 degrees C) and the short reaction time (15 min) allow for the presence of a variety of functional groups. Moreover, the reaction was shown to be scalable up to gram scale and the propargyl substrates are readily accessible by a one-pot synthesis.

  • 30. Kim, Seonghoon
    et al.
    Patel, Dhilon-S.
    Park, Soohyung
    Slusky, Joanna
    Klauda, Jeffery B.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Im, Wonpil
    Bilayer Properties of Lipid A from Various Gram-Negative Bacteria2016In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 111, no 8, p. 1750-1760Article in journal (Refereed)
    Abstract [en]

    Lipid A is the lipid anchor of a lipopolysaccharide in the outer leaflet of the outer membrane of Gram-negative bacteria. In general, lipid A consists of two phosphorylated N-acetyl glucosamine and several acyl chains that are directly linked to the two sugars. Depending on the bacterial species and environments, the acyl chain number and length vary, and lipid A can be chemically modified with phosphoethanolamine, aminoarabinose, or glycine residues, which are key to bacterial pathogenesis. In this work, homogeneous lipid bilayers of 21 distinct lipid A types from 12 bacterial species are modeled and simulated to investigate the differences and similarities of their membrane properties. In addition, different neutralizing ion types (Ca2+, K+, and Na+) are considered to examine the ion's influence on the membrane properties. The trajectory analysis shows that (1) the area per lipid is mostly correlated to the acyl chain number, and the area per lipid increases as a function of the acyl chain number; (2) the hydrophobic thickness is mainly determined by the average acyl chain length with slight dependence on the acyl chain number, and the hydrophobic thickness generally increases with the average acyl chain length; (3) a good correlation is observed among the area per lipid, hydrophobic thickness, and acyl chain order; and (4) although the influence of neutralizing ion types on the area per lipid and hydrophobic thickness is minimal, Ca2+ stays longer on the membrane surface than K+ or Na+, consequently leading to lower lateral diffusion and a higher compressibility modulus, which agrees well with available experiments.

  • 31. Kuttel, Michelle M.
    et al.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    CarbBuilder: Software for building molecular models of complex oligo- and polysaccharide structures2016In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 37, no 22, p. 2098-2105Article in journal (Refereed)
    Abstract [en]

    CarbBuilder is a portable software tool for producing three-dimensional molecular models of carbohydrates from the simple text specification of a primary structure. CarbBuilder can generate a wide variety of carbohydrate structures, ranging from monosaccharides to large, branched polysaccharides. Version 2.0 of the software, described in this article, supports monosaccharides of both mammalian and bacterial origin and a range of substituents for derivatization of individual sugar residues. This improved version has a sophisticated building algorithm to explore the range of possible conformations for a specified carbohydrate molecule. Illustrative examples of models of complex polysaccharides produced by CarbBuilder demonstrate the capabilities of the software. CarbBuilder is freely available under the Artistic License 2.0.

  • 32.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ghanem, Shams
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure-activity relationships and quantum chemical calculations2016In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 6, no 5, p. 1306-1319Article in journal (Refereed)
    Abstract [en]

    Robust catalysts that mediate H2O oxidation are of fundamental importance for the development of novel carbon-neutral energy technologies. Herein we report the synthesis of a group of single-site Ru complexes. Structure-activity studies revealed that the individual steps in the oxidation of H2O depended differently on the electronic properties of the introduced ligand substituents. The mechanistic details associated with these complexes were investigated experimentally along with quantum chemical calculations. It was found that O-O bond formation for the developed Ru complexes proceeds via high-valent Ru-VI species, where the capability of accessing this species is derived from the non-innocent ligand architecture. This cooperative catalytic involvement and the ability of accessing Ru-VI are intriguing and distinguish these Ru catalysts from a majority of previously reported complexes, and might generate unexplored reaction pathways for activation of small molecules such as H2O.

  • 33.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks2016In: The chemical record, ISSN 1527-8999, E-ISSN 1528-0691, Vol. 16, no 2, p. 940-963Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis represents an attractive way of converting solar energy into storable chemical energy. The H2O oxidation half-reaction, which is essential for producing the necessary reduction equivalents, is an energy-demanding transformation associated with a high kinetic barrier. Herein we present a couple of efficient Ru-based catalysts capable of mediating this four-proton-four-electron oxidation. We have focused on the incorporation of negatively charged ligands, such as carboxylate, phenol, and imidazole, into the catalysts to decrease the redox potentials. This account describes our work in designing Ru catalysts based on this idea. The presence of the negatively charged ligands is crucial for stabilizing the metal centers, allowing for light-driven H2O oxidation. Mechanistic details associated with the designed catalysts are also presented.

  • 34.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 37, p. 14421-14461Article in journal (Refereed)
    Abstract [en]

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  • 35. Li, Jia-Qi
    et al.
    Liu, Jianguo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Krajangsri, Suppachai
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chumnanvej, Napasawan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Singh, Thishana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric Hydrogenation of Allylic Alcohols Using Ir-N,P-Complexes2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 12, p. 8342-8349Article in journal (Refereed)
    Abstract [en]

    In this study, a series of gamma,gamma-disubstituted and beta,gamma-disubstituted allylic alcohols were prepared and successfully hydrogenated using suitable N,P-based Ir complexes. High yields and excellent enantioselectivities were obtained for most of the substrates studied. This investigation also revealed the effect of the acidity of the N,P-Ir-complexes on the acid sensitive allylic alcohols. DFT Delta pK(a) calculations were used to explain the effect of the N,P-ligand on the acidity of the corresponding Ir-complex. The selectivity model of the reaction was used to accurately predict the absolute configuration of the hydrogenated alcohols.

  • 36. Liao, Rong-Zhen
    et al.
    Chen, Shi-Lu
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Unraveling the Mechanism and Regioselectivity of the B12-Dependent Reductive Dehalogenase PceA2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 35, p. 12391-12399Article in journal (Refereed)
    Abstract [en]

    PceA is a cobalamin-dependent reductive dehalogenase that catalyzes the dechlorination of perchloroethylene to trichloroethylene and then to cis-dichloroethylene as the sole final product. The reaction mechanism and the regioselectivity of this enzyme are investigated by using density functional calculations. Four different substrates, namely, perchloroethylene, trichloroethylene, cis-dichloroethylene, and chlorotheylene, have been considered and were found to follow the same reaction mechanism pattern. The reaction starts with the reduction of Co-II to Co-I through a proton-coupled electron transfer process, with the proton delivered to a Tyr246 anion. This is followed by concerted C-Cl bond heterolytic cleavage and proton transfer from Tyr246 to the substrate carbon atom, generating a Co-III-Cl intermediate. Subsequently, a one-electron transfer leads to the formation of the Co-II-Cl product, from which the chloride and the dehalogenated product can be released from the active site. The substrate reactivity follows the trend perchloroethylene>trichloroethylene >> cis-dichloroethylene >> chlorotheylene. The barriers for the latter two substrates are significantly higher compared with those for perchloroethylene and trichloroethylene, implying that PceA does not catalyze their degradation. In addition, the formation of cis-dichloroethylene has a lower barrier by 3.8kcalmol(-1) than the formation of trans-dichloroethylene and 1,1-dichloroethylene, reproducing the regioselectivity. These results agree quite well with the experimental findings, which show cis-dichloroethylene as the sole product in the PceA-catalyzed dechlorination of perchloethylene and trichloroethylene.

  • 37. Liao, Rong-Zhen
    et al.
    Santoro, Stefano
    Gotsev, Martin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcelli, Tommaso
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Origins of Stereoselectivity in Peptide-Catalyzed Kinetic Resolution of Alcohols2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 2, p. 1165-1171Article in journal (Refereed)
    Abstract [en]

    The origin of the stereoselectivity of the tetrapeptide-catalyzed kinetic resolution of trans-2-N-acetamidocyclohexanol is investigated by means of density functional theory calculations. Transition states for the functionalization of both (R,R) and (S,S) substrates were optimized considering all possible conformers. Due to the flexibility of the peptidic catalyst, a large number of transition states had to be located, and analysis of the geometries and energies allowed for the identification of the main factors that control the stereo selectivity.

  • 38.
    Lind, Maria E. S.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Quantum Chemical Modeling of Enantioconvergency in Soluble Epoxide Hydrolase2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, no 12, p. 8145-8155Article in journal (Refereed)
    Abstract [en]

    Soluble epoxide hydrolases (sEHs) catalyze the hydrolysis of epoxides to their corresponding vicinal diols. One property of a number of these enzymes is that they can catalyze the hydrolysis of some racemic substrates in an enantioconvergent one-enzyme fashion. Here, we have used the dispersion-corrected B3LYP-D3 density functional theory method to investigate the enantioconvergent conversion of styrene oxide (SO) by sEH from Solanum tuberosum (StEH1). A large cluster model of the active site, consisting of 279 atoms, is designed on the basis of the X-ray crystal structure of StEH1 in complex with the competitive inhibitor valpromide. Different substrate orientations of the two enantiomers of SO are examined, and the full reaction mechanisms for epoxide opening at the two carbons are calculated, including both the alkylation and hydrolysis half-reactions. The calculated overall reaction energy profiles show that the rate-determining step is associated with the dissociation of the covalent intermediate, which is the second step of the hydrolysis half-reaction. The calculations reproduce the experimentally observed regioselectivities for the two enantiomers of the substrate, in that both (S)-SO and (R)-SO are calculated to yield the same (R)-diol product. The obtained energy profiles indicate that the transition states for both the alkylation and hydrolysis half-reactions have to be taken into account in order to understand the stereochemical outcome of the reaction. The transition state structures are analyzed in detail, and several factors that contribute to the selectivity control are identified. In addition, the mechanistic scenario in which the active site His300 residue is in the protonated form is also considered and the implications on the energies and enantioselection are discussed. The current calculations demonstrate the applicability of the quantum chemical cluster methodology in reproducing and rationalizing experimental enantioselectivities, lending further support to its usefulness as a tool in asymmetric biocatalysis. The results presented here can be helpful in the rational engineering of sEHs to obtain variants with refined biocatalytic properties.

  • 39.
    Lundberg, Helena
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic α-Alkylation/Reduction of Ketones with Primary Alcohols To Furnish Secondary Alcohols2016In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, Vol. 48, no 5, p. 644-652Article, review/survey (Refereed)
    Abstract [en]

    The formation of secondary alcohol products via a tandem -alkylation/transfer hydrogenation of ketones with primary alcohols is a little explored reaction with unrealized potential for green synthesis. This review covers the current literature in the field, including asymmetric versions of the reaction, and outlines future possibilities and challenges for the methodology. 1 Introduction 2 Formation of Racemic Alcohols 3 Formation of Enantiomerically Enriched Alcohols 4 Conclusions

  • 40. Margalef, Jèssica
    et al.
    Slagbrand, Tove
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tinnis, Fredrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Umeå University, Sweden.
    Diéguez, Montserrat
    Pàmies, Oscar
    Third-Generation Amino Acid Furanoside-Based Ligands from d-Mannose for the Asymmetric Transfer Hydrogenation of Ketones: Catalysts with an Exceptionally Wide Substrate Scope2016In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 358, no 24, p. 4006-4018Article in journal (Refereed)
    Abstract [en]

    A modular ligand library of -amino acid hydroxyamides and thioamides was prepared from 10 different N-tert-butyloxycarbonyl-protected -amino acids and three different amino alcohols derived from 2,3-O-isopropylidene--d-mannofuranoside. The ligand library was evaluated in the half-sandwich ruthenium- and rhodium-catalyzed asymmetric transfer hydrogenation of a wide array of ketone substrates, including simple as well as sterically demanding aryl alkyl ketones, aryl fluoroalkyl ketones, heteroaromatic alkyl ketones, aliphatic, conjugated and propargylic ketones. Under the optimized reaction conditions, secondary alcohols were obtained in high yields and in enantioselectivities up to >99%. The choice of ligand/catalyst allowed for the generation of both enantiomers of the secondary alcohols, where the ruthenium-hydroxyamide and the rhodium-thioamide catalysts act complementarily towards each other. The catalytic systems were also evaluated in the tandem isomerization/asymmetric transfer hydrogenation of racemic allylic alcohols to yield enantiomerically enriched saturated secondary alcohols in up to 98% ee. Furthermore, the catalytic tandem -alkylation/asymmetric transfer hydrogenation of acetophenones and 3-acetylpyridine with primary alcohols as alkylating and reducing agents was studied. Secondary alcohols containing an elongated alkyl chain were obtained in up to 92% ee.

  • 41.
    Mendoza, Abraham
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Colas, Kilian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Suarez-Pantiga, Samuel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Götz, Daniel C. G.
    Johansson, Magnus J.
    Chemical Innovation through Ligand Total Synthesis2016In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, Vol. 27, no 12, p. 1753-1759Article in journal (Refereed)
    Abstract [en]

    Natural products are an abundant source of synthetic challenges that foster crucial breakthroughs in organic chemistry. Despite the superior complexity of these targets, ligand total synthesis can inspire solutions to unsolved chemical problems and provide access to creative catalyst designs. This Synpacts article presents a comparative analysis of natural and ligand total synthesis to provide a context for our recent research and motivate the importance of future undertakings in this area.

  • 42. Miralles, Nuria
    et al.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fernandez, Elena
    Transition-Metal-Free Borylation of Allylic and Propargylic Alcohols2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 13, p. 4303-4307Article in journal (Refereed)
    Abstract [en]

    The base-catalyzed allylic borylation of tertiary allylic alcohols allows the synthesis of 1,1-disubstituted allyl boronates, in moderate to high yield. The unexpected tandem performance of the Lewis acid-base adduct, [Hbase](+)[MeO-B(2)pin(2)](-) favored the formation of 1,2,3-triborylated species from the tertiary allylic alcohols and 1-propargylic cyclohexanol at 90 degrees C.

  • 43.
    Muheim, Claudio
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Bakali, Amin
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wieslander, Åke
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Daley, Daniel O.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli2016In: Antibiotics, ISSN 0066-4774, E-ISSN 2079-6382, Vol. 5, no 1Article in journal (Refereed)
    Abstract [en]

    WaaG is a glycosyltransferase that is involved in the biosynthesis of lipopolysaccharide in Gram-negative bacteria. Inhibitors of WaaG are highly sought after as they could be used to inhibit the biosynthesis of the core region of lipopolysaccharide, which would improve the uptake of antibiotics. Herein, we establish an activity assay for WaaG using C-14-labeled UDP-glucose and LPS purified from a increment waaG strain of Escherichia coli. We noted that addition of the lipids phosphatidylglycerol (PG) and cardiolipin (CL), as well as the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) increased activity. We then use the assay to determine if three molecular scaffolds, which bind to WaaG, could inhibit its activity in vitro. We show that 4-(2-amino-1,3-thiazol-4-yl)phenol inhibits WaaG (IC50 1.0 mM), but that the other scaffolds do not. This study represents an important step towards an inhibitor of WaaG by fragment-based lead discovery.

  • 44.
    Nagendiran, Anuja
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sörensen, Henrik
    Johansson, Magnus J.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nanopalladium-catalyzed conjugate reduction of Michael acceptors - application in flow2016In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 18, no 9, p. 2632-2637Article in journal (Refereed)
    Abstract [en]

    A continuous-flow approach towards the selective nanopalladium-catalyzed hydrogenation of the olefinic bond in various Michael acceptors, which could lead to a greener and more sustainable process, has been developed. The nanopalladium is supported on aminofunctionalized mesocellular foam. Both aromatic and aliphatic substrates, covering a variation of functional groups such as acids, aldehydes, esters, ketones, and nitriles were selectively hydrogenated in high to excellent yields using two different flow-devices (H-Cube (R) and Vapourtec). The catalyst was able to hydrogenate cinnamaldehyde continuously for 24 h (in total hydrogenating 19 g cinnanmaldehyde using 70 mg of catalyst in the H-cube (R)) without showing any significant decrease in activity or selectivity. Furthermore, the metal leaching of the catalyst was found to be very low (ppb amounts) in the two flow devices.

  • 45.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stellenbosch University, South Africa.
    Arylation with Diaryliodonium Salts2016In: Hypervalent Iodine Chemistry / [ed] Thomas Wirth, Springer, 2016, p. 135-166Chapter in book (Refereed)
    Abstract [en]

    This chapter focuses on recent developments in metal-free and metal-catalyzed arylations with diaryliodonium salts (diaryl-λ3-iodanes). Synthetic routes to diaryliodonium salts are briefly described, and chemoselectivity trends with unsymmetric iodonium salts are discussed.

  • 46.
    Pascanu, Vlad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Processes Mediated by Metal−Organic Frameworks: Reactivity and Mechanistic Studies2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis describes the development of heterogeneous catalytic methodologies using metal−organic frameworks (MOFs) as porous matrices for supporting transition metal catalysts. A wide spectrum of chemical reactions is covered. Following the introductory section (Chapter 1), the results are divided between one descriptive part (Chapter 2) and four experimental parts (Chapters 3–6).

    Chapter 2 provides a detailed account of MOFs and their role in heterogeneous catalysis. Specific synthesis methods and characterization techniques that may be unfamiliar to organic chemists are illustrated based on examples from this work.

    Pd-catalyzed heterogeneous C−C coupling and C−H functionalization reactions are studied in Chapter 3, with focus on their practical utility. A vast functional group tolerance is reported, allowing access to substrates of relevance for the pharmaceutical industry. Issues concerning the recyclability of MOF-supported catalysts, leaching and operation under continuous flow are discussed in detail.

    The following chapter explores puzzling questions regarding the nature of the catalytically active species and the pathways of deactivation for Pd@MOF catalysts. These questions are addressed through detailed mechanistic investigations which include in situ XRD and XAS data acquisition. For this purpose a custom reaction cell is also described in Chapter 4.

    The scope of Pd@MOF-catalyzed reactions is expanded in Chapter 5. A strategy for boosting the thermal and chemical robustness of MOF crystals is presented. Pd@MOF catalysts are coated with a protecting SiO2 layer, which improves their mechanical properties without impeding diffusion. The resulting nanocomposite is better suited to withstand the harsh conditions of aerobic oxidation reactions. In this chapter, the influence of the nanoparticles’ geometry over the catalyst’s selectivity is also investigated.

    While Chapters 3–5 dealt with Pd-catalyzed processes, Chapter 6 introduces hybrid materials based on first-row transition metals. Their reactivity is explored towards light-driven water splitting. The heterogenization process leads to stabilized active sites, facilitating the spectroscopic probing of intermediates in the catalytic cycle.

  • 47. Patel, Dhilon S.
    et al.
    Park, Soohyung
    Wu, Emilia L.
    Yeom, Min Sun
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Klauda, Jeffery B.
    Im, Wonpil
    Influence of Ganglioside GM1 Concentration on Lipid Clustering and Membrane Properties and Curvature2016In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 111, no 9, p. 1987-1999Article in journal (Refereed)
    Abstract [en]

    Gangliosides are a class of glycosphingolipids (GSLs) with amphiphilic character that are found at the outer leaflet of the cell membranes, where their ability to organize into special domains makes them vital cell membrane components. However, a molecular understanding of GSL-rich membranes in terms of their clustered organization, stability, and dynamics is still elusive. To gain molecular insight into the organization and dynamics of GSL-rich membranes, we performed all-atom molecular-dynamics simulations of bicomponent ganglioside GM1 in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers with varying concentrations of GM1 (10%, 20%, and 30%). Overall, the simulations show very good agreement with available experimental data, including x-ray electron density profiles along the membrane normal, NMR carbohydrate proton-proton distances, and x-ray crystal structures. This validates the quality of our model systems for investigating GM1 clustering through an ordered-lipid-cluster analysis. The increase in GM1 concentration induces tighter lipid packing, driven mainly by inter-GM1 carbohydrate-carbohydrate interactions, leading to a greater preference for the positive curvature of GM1-containing membranes and larger cluster sizes of ordered-lipid clusters (with a composite of GM1 and POPC). These clusters tend to segregate and forma large percolated cluster at a 30% GM1 concentration at 293 K. At a higher temperature of 330 K, however, the segregation is not maintained.

  • 48. Patel, Dhilon S.
    et al.
    Re, Suyong
    Wu, Emilia L.
    Qi, Yifei
    Klebba, Phillip E.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Yeom, Min Sun
    Sugita, Yuji
    Im, Wonpil
    Dynamics and Interactions of OmpF and LPS: Influence on Pore Accessibility and Ion Permeability2016In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 110, no 4, p. 930-938Article in journal (Refereed)
    Abstract [en]

    The asymmetric outer membrane of Gram-negative bacteria is formed of the inner leaflet with phospholipids and the outer leaflet with lipopolysaccharides (LPS). Outer membrane protein F (OmpF) is a trimeric porin responsible for the passive transport of small molecules across the outer membrane of Escherichia coli. Here, we report the impact of different levels of heterogeneity in LPS environments on the structure and dynamics of OmpF using all-atom molecular dynamics simulations. The simulations provide insight into the flexibility and dynamics of LPS components that are highly dependent on local environments, with lipid A being the most rigid and O-antigen being the most flexible. Increased flexibility of O-antigen polysaccharides is observed in heterogeneous LPS systems, where the adjacent O-antigen repeating units are weakly interacting and thus more dynamic, compared to homogeneous LPS systems in which LPS interacts strongly with each other with limited overall flexibility due to dense packing. The model systems were validated by comparing molecular-level details of interactions between OmpF surface residues and LPS core sugars with experimental data, establishing the importance of LPS core oligosaccharides in shielding OmpF surface epitopes recognized by monoclonal antibodies. There are LPS environmental influences on the movement of bulk ions (K+ and Cl-), but the ion selectivity of OmpF is mainly affected by bulk ion concentration.

  • 49.
    Pendrill, Robert
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Volpato, Andrea
    Zerbetto, Mirco
    Polimeno, Antonino
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and C-13 NMR spin relaxation: conformational preferences of alpha-L-Rhap-alpha-(1 -> 2)-alpha-L-Rhap-OMe in water and dimethyl sulfoxide solutions2016In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 4, p. 3086-3096Article in journal (Refereed)
    Abstract [en]

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide alpha-L-Rhap-alpha-(1 -> 2)-alpha-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-C-13]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)J(CH) and (3)J(CC) coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the psi torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The C-13 NMR spin relaxation parameters T-1, T-2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d(6) at two magnetic field strengths, with standard deviations <= 1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed C-13 relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of C-13 relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.

  • 50.
    Peters, Byron K.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liu, Jianguo
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Margarita, Cristiana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kerdphon, Sutthichat
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orebom, Alexander
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Morsch, Thomas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantio- and Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted Cycloalkenes2016In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 138, no 36, p. 11930-11935Article in journal (Refereed)
    Abstract [en]

    A number of cyclic olefins Were prepared and evaluated for the asymmetric hydrogenation reaction using novel N,P-ligated iridium imidazote-based Catalysts (Crabtree type). The diversity of these cyclic olefins spanned those having little functionality to others bearing strongly coordinating substituents and heterocycles. Excellent enantioselectivities were observed both for substrates having little functionality (up to >99% ee) and for substrates possessing functional groups several carbons away from the olefin. Substrates having functionalities such as carboxyl groups, alcohols, or heterocycles in the vicinity of the C=C bond were hydrogenated in high enantiomeric excess (up to >99% ee). The hydrogenation was also found to be regioselective, and by controlling the reaction conditions, selective hydrogenation of one of two trisubstituted olefins can be achieved: Furthermore, trisubstituted olefins can be selectively hydrogenated in the presence of tetrasubstituted olefins.

12 1 - 50 of 78
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf