Change search
Refine search result
123 1 - 50 of 108
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic alpha-Hydroxy Ketones2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 8, p. 2256-2259Article in journal (Refereed)
    Abstract [en]

    A ruthenium complex formed from commercially available [Ru(p-cymene)Cl-2](2) and 1,4-bis(diphenylphosphino)butane catalyzes the racemization of aromatic alpha-hydroxy ketones very efficiently at room temperature. The racemization is fully compatible with a kinetic resolution catalyzed by a lipase from Pseudomonas stutzeri. This is the first example of dynamic kinetic resolution of alpha-hydroxy ketones at ambient temperature in which the metal and enzyme catalysts work in concert in one pot at room temperature to give quantitative yields of esters of alpha-hydroxy ketones with very high enantioselectivity.

  • 2.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-catalyzed Allylic C-H and C-OH Functionalization. Reactions of the Obtained Allylboronic Acids2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    This thesis is focused on the studies of two major transformations. The first transformation deals with the development of palladium-catalyzed selective allylic trifluoroacetoxylation reactions based on C-H functionalization, whereas the second comprises the synthesis and isolation of allylboronic acids using diboronic acid B2(OH)4 as boron source. Both reactions proceed with a very high regio- and stereoselectivity. The mechanistic studies of the allylic C-H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium intermediate.

    The reactivity of the allylboronic acids was studied with ketone and imine substrates. Unlikeother boronates (such as allyl-Bpin derivatives), allylboronic acids react with ketones and imines without any additives under neutral and mild conditions (typically at room temperature). The regio- and stereoselectivity of this reaction is remarkably high. Using functionalized allylboronic acids (prepared in the above mentioned Pd-catalyzed reactions) homoallylic alcohols and amines with adjacent tertiary and quaternary centers could be obtained with high selectivity. Interestingly, both the ketones and the imines reacted with anti-stereoselectivity. This was surprising for the imines. Our mechanistic study has shown that the acyclic aldimines undergo cis/trans isomerization prior to the allylation reaction.

  • 3.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Arindam
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective allylboration of imines and indoles under mild conditions. An in situ E/Z isomerization of imines by allylboroxines2014In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 5, no 7, p. 2732-2738Article in journal (Refereed)
    Abstract [en]

    Direct allylboration of various acyclic and cyclic aldimine, ketimine and indole substrates was performed using allylboronic acids. The reaction proceeds with very high anti-stereoselectivity for both E and Z imines. The allylboroxines formed by dehydration of allylboronic acids have a dual effect: promoting E/Z isomerization of aldimines and triggering the allylation by efficient electron withdrawal from the imine substrate.

  • 4.
    Alamsetti, Santosh Kumar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Andreas K. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 5, p. 1434-1437Article in journal (Refereed)
    Abstract [en]

    An efficient and simple methodology was developed for the synthesis of oxazolidinones, oxazolidinthiones, imidazolidinthiones, and imidazolidinones from the corresponding propargylic starting materials using Pd(OAc)(2) and n-Bu4NOAc as catalysts in DCE at room temperature.

  • 5.
    Algarra, Andres G.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Aullon, Gabriel
    Bemhardt, Paul V.
    Martinez, Manuel
    Computational Insights on the Geometrical Arrangements of Cu(II) with a Mixed-Donor N3S3 Macrobicyclic Ligand2014In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 53, no 1, p. 512-521Article in journal (Refereed)
    Abstract [en]

    The macrobicyclic mixed-donor N3S3 cage ligand AMME-N(3)S(3)sar (1-methyl-8-amino-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]eicosane) can form complexes with Cu(II) in which it acts as hexadentate (N3S3) or tetradentate (N2S2) donor. These two complexes are in equilibrium that is strongly influenced by the presence of halide ions (Br- and Cl-) and the nature of the solvent (DMSO, MeCN, and H2O). In the absence of halides the hexadentate coordination mode of the ligand is preferred and the encapsulated complex (Cu-in(2+)) is formed. Addition of halide ions in organic solvents (DMSO or MeCN) leads to the tetradentate complex (Cu-out(+)) in a polyphasic kinetic process, but no Cu-out(+) complex is formed when the reaction is performed in water. Here we applied density functional theory calculations to study the mechanism of this interconversion as well as to understand the changes in the reactivity associated with the presence of water. Calculations were performed at the B3LYP/(SDD,6-31G**) level, in combination with continuum (MeCN) or discrete-continuum (H2O) solvent models. Our results show that formation of Cu-out(+) in organic media is exergonic and involves sequential halide-catalyzed inversion of the configuration of a N-donor of the macrocycle, rapid halide coordination, and inversion of the configuration of a S-donor. In aqueous solution the solvent is found to have an effect on both the thermodynamics and the kinetics of the reaction. Thermodynamically, the process becomes endergonic mainly due to the preferential solvation of halide ions by water, while the kinetics is influenced by formation of a network of H-bonded water molecules that surrounds the complex.

  • 6. Anderson, Mattias
    et al.
    Afewerki, Samson
    Berglund, Per
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Mid Sweden University, Sweden.
    Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 9, p. 2113-2118Article in journal (Refereed)
    Abstract [en]

    The total synthesis of capsaicin analogues was performed in one pot, starting from compounds that can be derived from lignin. Heterogeneous palladium nanoparticles were used to oxidise alcohols to aldehydes, which were further converted to amines by an enzyme cascade system, including an amine transaminase. It was shown that the palladium catalyst and the enzyme cascade system could be successfully combined in the same pot for conversion of alcohols to amines without any purification of intermediates. The intermediate vanillyl-amine, prepared with the enzyme cascade system, could be further converted to capsaicin analogues without any purification using either fatty acids and a lipase, or Schotten-Baumann conditions, in the same pot. An aldol compound (a simple lignin model) could also be used as starting material for the synthesis of capsaicin analogues. Using l-alanine as organocatalyst, vanillin could be obtained by a retro-aldol reaction. This could be combined with the enzyme cascade system to convert the aldol compound to vanillylamine in a one-step one-pot reaction.

  • 7.
    Arafa, Wael A. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Berends, Hans-Martin
    Messinger, Johannes
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity2014In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 24, p. 11950-11964Article in journal (Refereed)
    Abstract [en]

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O-2 and solar fuels, such as H-2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn-2 (II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.

  • 8.
    Bartholomeyzik, Teresa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium(II)-Catalyzed Oxidative Carbocyclization/Functionalization of Allenynes2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The selective formation of carbon-carbon bonds constitutes a key transformation in organic synthesis with useful applications in pharmaceutical or material industry. A particularly versatile tool for carbon-carbon as well as carbon-heteroatom bond formation is palladium catalysis, which allows for mild and selective routes even towards complex structures.

    The work in this thesis describes the development and the mechanistic investigation of a palladium(II)-catalyzed oxidative carbocyclization/functionalization methodology, which converts 1,5-allenynes into either arylated or borylated carbocycles. To this end, either boronic acids or B2pin2 are employed and 1,4-benzoquinone serves as the stoichiometric oxidant. These protocols provide access to two products, a cyclic triene and a cyclic vinylallene. Their formation is dependent on the substrate structure as the latter product requires a propargylic C–H bond to be present in the substrate. Based on kinetic isotope effects, mechanisms involving either an initial allenic or propargylic C–H abstraction, respectively, were proposed. Full control of product selectivity to give either trienes or vinylallenes was achieved by modifying the reaction conditions with additives. Using substoichiometric amounts of BF3·OEt2 leads selectively to borylated or arylated vinylallenes. Under arylating conditions the reaction is zero order in allenyne and oxidant, and first order in phenylboronic acid. Transmetalation and, to some extent, propargylic C–H cleavage were found to be turnover-limiting. The selective reaction towards functionalized trienes was achieved by addition of either substoichiometric LiOAc·2H2O (borylation) or excess amounts of H2O (arylation). For the latter case, a kinetic study revealed an unusually slow catalyst activation. Lower concentrations of H2O gave product mixtures, and it was shown that vinylallenes are formed with either boronic acid or boroxine, whereas the formation of trienes requires boronic acid.

  • 9.
    Bartholomeyzik, Teresa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mazuela, Javier
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Pendrill, Robert
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Deng, Youqian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-Catalyzed Oxidative Arylating Carbocyclization of Allenynes: Control of Selectivity and Role of H2O2014In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 53, no 33, p. 8696-8699Article in journal (Refereed)
    Abstract [en]

    Highly selective protocols for the carbocyclization/arylation of allenynes using arylboronic acids are reported. Arylated vinylallenes are obtained with the use of BF3 center dot Et2O as an additive, whereas addition of water leads to arylated trienes. These conditions provide the respective products with excellent selectivities (generally > 97:3) for a range of boronic acids and different allenynes. It has been revealed that water plays a crucial role for the product distribution.

  • 10.
    Bermejo Gomez, Antonio
    et al.