Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Andersson, Pher
    et al.
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Bäckvall, Jan-E.
    Synthesis of Furanoid Terpenes via an Efficient Palladium-Catalyzed Cyclization of 4,6-Dienols1991In: J. Org. Chem., Vol. 56, no 18, p. 5349-5353Article in journal (Refereed)
  • 2. Bäckvall, Jan-E.
    et al.
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Stereocontrolled Oxaspirocyclization of Conjugated Dienes via Palladium Catalysis1991In: J. Org. Chem. Soc, Vol. 56, no 7, p. 2274-2276Article in journal (Refereed)
  • 3.
    Bäckvall, Jan-Erling
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Andersson, Pher
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Stone, Guy
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Gogoll, Adolf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry, Organic Chemistry.
    Syntheses of (±)-α- and (±)- γ- Lycorane via a Stereocontrolled Organopalladium Route1991In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 56, no 9, p. 2988-2993Article in journal (Refereed)
    Abstract [en]

    Total syntheses of (+/-)-alpha-and (+/-)-gamma-lycorane are described. The key steps in the syntheses are the stereocontrolled palladium-catalyzed intramolecular 1,4-chloroamidation of 12 to 13 and the subsequent anti-stereoselective copper-catalyzed S(N)2' reaction of allylic chloride 13 with [3,4-(methylenedioxy)phenyl]magnesium bromide to give 14. Hexahydroindole 14 has the required relative stereochemistry between carbons 3a, 7, and 7a for alpha-lycorane (1a) and was transformed to the latter via 15 and 16. The epimeric gamma-lycorane (2) was obtained by performing the Bischler-Napieralski cyclization on 14, which led to a highly stereoselective isomerization to give exclusively 17. Compound 17 was subsequently transformed to 2. The overall yield from ester 8 to (+/-)-alpha- and (+/-)-gamma-lycorane was 40 and 36%, respectively.

  • 4.
    Eriksson, Lennart
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    A strategy for ranking environmentally occuring chemicals1991Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A systematic methodology for quantitative structure-activity relationship (QSAR) development in environmental toxicology is provided. The methodology is summarized in a strategy with six sequential steps.

    The strategy rests on two cornerstones, namely (1) the use of statistical design to select a series of representative compounds (the so-called training set) on which to base a QSAR, and (2) the multivariate modelling of the relationship between physicochemical and biological properties of the training set compounds.

    The first step of the strategy is the division of chemicals into classes of structurally similar compounds. Briefly, steps 2 to 6 are: (2) physico-chemical and structural characterization of the compounds in a class, (3) selection of a training set of representative compounds, (4) biological testing of the selected training set, (5) QSAR model development, and (6) experimental validation of the QSAR and predictions for non-tested compounds.

    The thesis summarizes the results obtained from the application of the strategy to the class of halogenated aliphatic compounds. Biological measurements were made in four biological test systems, reflecting acute toxicity, mutagenicity, relative cytotoxicity and genotoxicity. QSARs were developed relating each biological endpoint to the structural descriptors of the compounds. Multivariate PLS modelling was used in the data analysis. The developed QSARs were used for predicting the biological activity pattern of the non-tested compounds in the class. These predictions may be used as a starting point for a priority ranking for further biological testing of these compounds.

    The strategy has not been developed solely for establishing QSARs for the halogenated aliphatics class. On the contrary, this work is intended to demonstrate a generally applicable QSAR methodology.

  • 5. Holmberg, E.
    et al.
    Holmquist, M.
    Hedenstrom, E.
    Berglund, P.
    Mid Sweden University.
    Norin, T.
    Hogberg, H. -E
    Hult, K.
    Reaction conditions for the resolution of 2-methylalkanoic acids in esterification and hydrolysis with lipase from Candida cylindracea1991In: Applied Microbiology and Biotechnology, ISSN 01757598 (ISSN), Vol. 35, no 5, p. 572-578Article in journal (Refereed)
    Abstract [en]

    We have demonstrated resolution of 2-methylalkanoic acids using lipase from Candida cylindracea as a catalyst. The resolution of 2-methyldecanoic acid was more successful than that of 2-methylbutyric acid both by esterification and hydrolysis. This indicates that the resolution of the acid is dependent on the chain length of the acid moiety. The chain length of the alcohol moiety of the ester affected the resolution of the long-chain acid only. Using esterification, (R)-2-methyldecanoic acid was produced in an enantiomeric excess (e.e.) of 95% (E = 40). If the enantiomeric ratio is low (E = 3.6), as in the resolution of 2-methylbutyric acid, esterification combined with a high equilibrium conversion could be used to yield the remaining acid in a high e.e. In the hydrolytic reactions, the e.e. and the equilibrium conversion were dependent on the pH and the presence of CaCl2. When octyl 2-methyldecanoate was hydrolysed at pH 8.0 in the presence of CaCl2, the (S)-acid was formed with an e.e. of 80% (E = 9), but when the hydrolysis was carried out at pH 7.5 without CaCl2, a very low e.e. and a low equilibrium conversion were observed. The latter conditions allowed the esterification of 2-methyldecanoic acid with 1-octanol even in aqueous medium.

  • 6.
    Lazzaroni, R.
    et al.
    Service de Chimie des Matériaux Nouveaux, Département des Matériaux et Procédés, Université de Mons-Hainaut, Belgium.
    Brédas, J. L.
    Service de Chimie des Matériaux Nouveaux, Département des Matériaux et Procédés, Université de Mons-Hainaut, Belgium.
    Dannetun, Per
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Lögdlund, Michael
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Salaneck, William R
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Electronic structure of the aluminum/polythiophene interface: A joint experimental and theoretical study1991In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 43, no 1-2, p. 3323-3328Article in journal (Refereed)
    Abstract [en]

    Not Available.

  • 7. Murakami, Masahiro
    et al.
    Andersson, Pher
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Chemistry. Department of Biochemistry and Organic Chemistry, Organic Chemistry I.
    Suginome, Michinori
    Ito, Yoshihiko
    Intramolecular Bis-Silylation of Carbon -Carbon Double Bonds Leading to Stereoselective Synthesis of 1,2,4-Triols1991In: J. Am. Chem. Soc, no 113, p. 3987-3988Article in journal (Refereed)
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf