Change search
Refine search result
1234567 1 - 50 of 777
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Acharya, Parag
    Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Faculty of Science and Technology, Biology, Department of Bioorganic Chemistry.
    Studies on the Non-covalent Interactions (Stereoelectronics, Stacking and Hydrogen Bonding) in the Self-assembly of DNA and RNA2003Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is based on ten publications (Papers I-X). The phosphodiester backbone makes DNA or RNA to behave as polyelectrolyte, the pentose sugar gives the flexibility, and the aglycones promote the self-assembly or the ligand-binding process. The hydrogen bonding, stacking, stereoelectronics and hydration are few of the important non-covalent forces dictating the self-assembly of DNA/RNA. The pH-dependent thermodynamics clearly show (Papers I and II) that a change of the electronic character of aglycone modulates the conformation of the sugar moiety by the tunable interplay of stereoelectronic anomeric and gauche effects, which are further transmitted to steer the sugar-phosphate backbone conformation in a cooperative manner. 3'-anthraniloyl adenosine (a mimic of 3'-teminal CCAOH of the aminoacyl-tRNAPhe) binds to EF-Tu*GTP in preference over 2'-anthraniloyl adenosine, thereby showing (Paper III) that the 2’-endo sugar conformation is a more suitable mimic of the transition state geometry than the 3’-endo conformation in discriminating between correctly and incorrectly charged aminoacyl-tRNAPhe by EF-Tu during protein synthesis. The presence of 2'-OH in RNA distinguishes it from DNA both functionally as well as structurally. This work (Paper IV) provides straightforward NMR evidence to show that the 2'-OH is intramolecularly hydrogen bonded with the vicinal 3'-oxygen, and the exposure of the 3'-phosphate of the ribonucleotides to the bulk water determines the availability of the bound water around the vicinal 2'-OH, which then can play various functional role through inter- or intramolecular interactions. The pH-dependent 1H NMR study with nicotinamide derivatives demonstrates (Paper V) that the cascade of intramolecular cation (pyridinium)-π(phenyl)-CH(methyl) interaction in edge-to-face geometry is responsible for perturbing the pKa of the pyridine-nitrogen as well as for the modulation of the aromatic character of the neighboring phenyl moiety, which is also supported by the T1 relaxation studies and ab initio calculations. It has been found (Papers VI-IX) that the variable intramolecular electrostatic interaction between electronically coupled nearest neighbor nucleobases (steered by their respective microenvironments) can modulate their respective pseudoaromatic characters. The net result of this pseudoaromatic cross-modulation is the creation of a unique set of aglycones in an oligo or polynucleotide, whose physico-chemical properties are completely dependent upon the propensity and geometry of the nearest neighbor interactions (extended genetic code). The propagation of the interplay of these electrostatic interactions across the hexameric ssDNA chain is considerably less favoured (effectively up to the fourth nucleobase) compared to that of the isosequential ssRNA (up to the sixth nucleobase). The dissection of the relative strength of basepairing and stacking in a duplex shows that stability of DNA-DNA duplex weakens over the corresponding RNA-RNA duplexes with the increasing content of A-T/U base pairs, while the strength of stacking of A-T rich DNA-DNA duplex increases in comparison with A-U rich sequence in RNA-RNA duplexes (Paper X).

  • 2.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed epoxidation of alkenes2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 37-84Chapter in book (Other academic)
  • 3.
    Adrian Meredith, Jenny
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Inhibitors Targeting the Aspartic Proteases HIV-1 PR and BACE-12009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the synthesis of molecules designed for inhibition of two aspartic proteases, viral HIV-1 PR and human BACE-1. It also reports on the structure activity relationships of the targeted enzyme inhibitors.

    It is estimated that currently 33 million people are infected with HIV, the causative agent of AIDS. The virus targets T-lymphocytes and macrophages of the human immune system. The HIV-1 PR plays an important role in the viral replication, and by inhibiting the enzyme the disease progression can be slowed down or even halted.

    Herein is reported the design and synthesis of a series of HIV-1 PR inhibitors with novel P2 substituents of which several inhibit the enzyme in the nanomolar range. The aim of the second work was to further develop the inhibitors by the introduction of fluorine. Several attempts were performed to fluorinate different P2-substituents.

    Alzheimer’s disease (AD) is neurodegenerative, progressive and fatal disorder of the brain. It is associated with accumulation of plaques and tangles that cause impairment and functional decline of brain tissue which result in loss of memory and cognition. The plaques are mainly constituted of amyloid-β peptides that are generated in two steps from the amyloid precursor protein (APP). The cleavage sequence is initiated by the aspartic protease BACE-1, which makes the enzyme a key target in the effort of finding a therapy that aim to slow down the progression of AD.

    Herein are enclosed the development of two series of potent BACE-1 inhibitors. In the first work a synthetic strategy was developed to truncate a previously reported hydroxyethylene core structure in order to generate more drug-like inhibitors. This generated a series of truncated inhibitors where two amide bonds have been replaced with an ether - or alternatively a secondary amine linkage. A number of these inhibitors show potency against BACE-1. In the second part of the work the aim was investigate the effect of alterations in the P1 position. Five scaffolds with new P1 substituents were designed, synthesized and coupled with two different P2-P3 substituents. This resulted in a series of potent inhibitors that inhibit BACE-1 in the nanomolar range.

  • 4. Aeluri, Madhu
    et al.
    Pramanik, Chinmoy
    Chetia, Lakshindra
    Mallurwar, Naveen Kumar
    Balasubramanian, Sridhar
    Chandrasekar, Gayathri
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies.
    Kitambi, Satish Srinivas
    Södertörn University, School of Natural Sciences, Technology and Environmental Studies. Karolinska Institute.
    Arya, Prabhat
    14-Membered Macrocyclic Ring-Derived Toolbox: The Identification of Small Molecule Inhibitors of Angiogenesis and Early Embryo Development in Zebrafish Assay2013In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 15, no 3, p. 436-439Article in journal (Other academic)
    Abstract [en]

    A highly practical and modular synthesis to obtain a diverse 14-membered ring-based macrocyclic toolbox is achieved. These compounds were further tested in zebrafish assays related to early embryonic development, angiogenesis, and neurogenesis, respectively. 1.4c was Identified as an antiangiogenesis agent.

  • 5.
    Agnemo, Roland
    Umeå University, Faculty of Science and Technology.
    Ligniners reaktioner med alkalisk väteperoxid1981Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Under alkaline conditions hydrogen peroxide can be used either as a 1ignin-degrading or a 1ignin-preserving bleaching agent. If heavy metal ions are present and/or silicate is absent in the reaction medium, hydrogen peroxide decomposes via hydroxyl radicals and superoxide ions to oxygen and water. These decomposition products are able to react for example with phenolic lignin structures and thereby cause a partial degradation of lignin. In such a system peroxide could act as a bleaching and delignifying agent at the same time and these properties can be utilized for the bleaching of chemical pulps.In order to elucidate the factors which influence the degradation of phenolic structures by oxidation with alkaline hydrogen peroxide the lignin model compounds-methylsyringyl alcohol was studied.By determining the first order reaction rate constants for the oxidation, the main results which were obtained indicate that phenolic lignin structures can be efficiently degraded especially if:A. The pH in the bleaching liquor is close to the pK -valueàfor hydrogen peroxide.B. The ionic strength in the bleaching medium is as high as possible.C. A fixed amount of heavy metal ions (manganese) is added to the bleaching liquor.In the presence of silicate and diethylentriaminepenta-acetic acid (DTPA) hydrogen peroxide is stabilized against decomposition. Under these conditions alkaline hydrogen peroxide is able to react only with lignin units containing conjugated carbonyl groups such as quinone, aryl-oe-carbonyl and cinnamaldehyd structures, leading to an elimination of the chromophoric structures without any substantial dissolution of lignin. In this part of work we have elucidated the kinetic behavior and the reaction products from lignin model compounds of the aryl-of- carbonyl and cinnamaldehyde types.1,2-Diarylpropan-1,3,-diol structures constitute an important building unit in native lignins. We have demonstrated that under hydrogen peroxide bleaching conditions the model compound 2,3--bis(4-hydroxy-3-methoxyphenyl)-3-ethoxy-propanol was converted to stilbenes, ûe. structures which when present in pulps may contribute to a rapid yellowing. The results obtained with model compounds under simulated lignin retaining bleaching conditions demonstrate that there are possibilities to improve the bleaching of mechanical pulps with hydrogen peroxide if:A. The remaining heavy metal ions complexed with DTPA are present in their lowest valence states.B. The concentration of hydroperoxy ions can be maintained at a high level at the lowest possible pH-value.

  • 6.
    Ahlford, Katrin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric transfer hydrogenation of ketones: Catalyst development and mechanistic investigation2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of ligands derived from natural amino acids for asymmetric transfer hydrogenation (ATH) of prochiral ketones is described herein. In the first part, reductions performed in alcoholic media are examined, where it is found that amino acid-derived hydroxamic acids and thioamides, respectively, are simple and versatile ligands that in combination with [RhCp*Cl2]2 efficiently catalyze this particular transformation. Selectivities up to 97% ee of the corresponding secondary alcohols are obtained, and it is furthermore observed that the two different ligand classes, albeit based on the same amino acid scaffold, give rise to products of opposite configuration.

    The highly interesting enantioswitchable nature of the two abovementioned catalysts is studied in detail by mechanistic investigations. A structure/activity correlation analysis is performed, which reveals that the diverse behavior of the catalysts arise from different interactions between the ligands and the metal. Kinetic studies furthermore stress the catalyst divergence, since a difference in the rate determining step is established from initial rate measurements. In addition, rate constants are determined for each step of the overall reduction process.

    In the last part, catalyst development for ATH executed in water is discussed. The applicability of hydroxamic acid ligands is further extended, and catalysts based on these compounds are found to be efficient and compatible with aqueous conditions. The structurally even simpler amino acid amide is also evaluated as a ligand, and selectivities up to 90% ee are obtained in the reduction of a number of aryl alkyl ketones. The very challenging reduction of dialkyl ketones is moreover examined in the Rh-catalyzed aqueous ATH, where a modified surfactant-resembling sulfonylated diamine is used as ligand, and the reaction is carried out in the presence of SDS-micelles. A positive effect is to some extent found on the catalyst performance upon addition of phase-transfer components, especially regarding the catalytic activity in the reduction of more hydrophobic substrates.

  • 7.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordin, Mikael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic investigation of enantioswitchable catalysts for asymmetric transfer hydrogenation2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco , CA, United States, March 21-25, 2010, Washington: American Chemical Society , 2010Conference paper (Other academic)
  • 8.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed enol formation from allylic alcohols: Isomerisation, C−C and C−F bond formations 2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the isomerisation of allylic alcohols into enols and enolates catalysed by transition metal complexes. The transformation has been used to prepare both unsubstituted and α-substituted carbonyl compounds. Significant attention has been given to the mechanistic aspects of the reactions.

    In the first part of this thesis, an environmentally benign procedure for the redox isomerisation of allylic alcohols into ketones is described. The reaction takes place in water and at room temperature using a cationic rhodium complex in combination with water-soluble phosphines. A variety of allylic alcohols could be isomerised in high yields using this procedure.

    The second part describes the combination of an allylic alcohol isomerisation with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosyl imines forming aldol and Mannich-type products. In addition, homoallylic and bishomoallylic alcohols were for the first time isomerised into the corresponding enolates and coupled using this methodology.

    In the third part of this thesis, the isomerisation of allylic alcohols was coupled with a C−F bond formation using an iridium complex and electrophilic fluorinating reagents. This novel transformation was used to convert allylic alcohols into single regioisomers of α-fluoroketones. The reaction is tolerant to air and water and takes place at room temperature.

    All of the reactions described take place under mild conditions, are operationally simple, and utilise catalysts formed in situ from commercially available metal complexes and ligands.

  • 9.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed isomerisation of allylic alcohols: Applications to C−C, C−F and C−Cl bond formation2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The focus of this thesis has been to develop selective and atom-economical methods for carbon-carbon and carbon-heteroatom bond formation, and to some extent improve on existing findings in this area. More specifically, methods for the catalytic generation of enolates from allylic alcohols and their in situ functionalisation with electrophilic reagents are described.  

    In the first part of this thesis, a method for the Rh-catalysed redox-isomerisation of allylic alcohols into carbonyl compounds under environmentally benign conditions is described. The reaction takes place at room temperature, in the absence of acids or bases, using water as the only solvent, and it is applicable to both primary and secondary allylic alcohols.

    The second part describes the combination of an isomerisation reaction of allylic alcohols with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosylimines to give aldol and Mannich-type products. In addition to allylic alcohols, homoallylic and bishomoallylic alcohols could be used as enolate precursors, and this is the first report where the latter two substrate types have been used in such a reaction.       

    In the remaining parts of the thesis, an iridium-catalysed isomerisation of allylic alcohols has been combined with an electrophilic halogenation step to provide a conceptually new method for the synthesis of α-halogenated carbonyl compounds. In this way, α-fluoro and α-chloroketones have been synthesised as single constitutional isomers, with the regiochemistry of the final products determined by the position of the double bond in the allylic alcohols. The reactions are tolerant to air, run in water-organic solvent mixtures, and proceed at room temperature.

  • 10.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of α-chlorinated ketones and aldehydes: Iridium-catalyzed tandem 1,3-H shift/chlorination of allylic alcoholsManuscript (preprint) (Other academic)
  • 11.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010, American Chemical Society , 2010Conference paper (Other academic)
  • 12.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Regio- and Stereoselective Reactions for the Synthesis of Allylic and Homoallylic Compounds2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on two main areas of organic synthesis, palladium-catalyzed functionalization of alkenes and allylic alcohols, as well as development of new allylboration reactions.

    We have developed a palladium-catalyzed selective allylic trifluoroacetoxylation reaction based on C−H functionalization. Allylic trifluoroacetates were synthesized from functionalized olefins under oxidative conditions. The reactions proceed under mild conditions with a high level of diastereoselectivity. Mechanistic studies of the allylic C−H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium(IV) intermediate.

    Palladium-catalyzed regio- and stereoselective synthesis of allylboronic acids from allylic alcohols has been demonstrated. Diboronic acid B2(OH)4 was used as the boron source in this process.

    The reactivity of the allylboronic acids were studied in three types of allylboration reactions: allylboration of ketones, imines and acyl hydrazones. All three processes are conducted under mild conditions without any additives. The reactions proceeded with remarkably high regio- and stereoselectivity.

    An asymmetric version of the allylboration of ketones was also developed. In this process chiral BINOL derivatives were used as catalysts. The reaction using γ-disubstituted allylboronic acids and various aromatic and aliphatic ketones afforded homoallylic alcohols bearing two adjacent quaternary stereocenters with excellent regio-, diastereo- and enantioselectivity (up to 97:3 er) in high yield. The stereoselectivity in the allylboration reactions could be rationalized on the basis of the Zimmerman-Traxler TS model.

  • 13.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-catalyzed Allylic C-H and C-OH Functionalization. Reactions of the Obtained Allylboronic Acids2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    This thesis is focused on the studies of two major transformations. The first transformation deals with the development of palladium-catalyzed selective allylic trifluoroacetoxylation reactions based on C-H functionalization, whereas the second comprises the synthesis and isolation of allylboronic acids using diboronic acid B2(OH)4 as boron source. Both reactions proceed with a very high regio- and stereoselectivity. The mechanistic studies of the allylic C-H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium intermediate.

    The reactivity of the allylboronic acids was studied with ketone and imine substrates. Unlikeother boronates (such as allyl-Bpin derivatives), allylboronic acids react with ketones and imines without any additives under neutral and mild conditions (typically at room temperature). The regio- and stereoselectivity of this reaction is remarkably high. Using functionalized allylboronic acids (prepared in the above mentioned Pd-catalyzed reactions) homoallylic alcohols and amines with adjacent tertiary and quaternary centers could be obtained with high selectivity. Interestingly, both the ketones and the imines reacted with anti-stereoselectivity. This was surprising for the imines. Our mechanistic study has shown that the acyclic aldimines undergo cis/trans isomerization prior to the allylation reaction.

  • 14.
    Albers, Michael Franz
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis and investigation of bacterial effector molecules2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    During infections, bacterial microorganisms initiate profound interactions with mammalian host cells. Usually defense mechanisms of the host destroy intruding bacteria in rapid manner. However, many bacterial pathogens have evolved in a way to avoid these mechanisms. By use of effector molecules, which can be small organic molecules or proteins with enzymatic activity, the host is manipulated on a molecular level. Effectors mediating post-translational modifications (PTMs) are employed by many pathogens to influence the biological activity of host proteins. In the presented thesis, two related PTMs are investigated in detail: Adenylylation, the covalent transfer of an adenosine monophosphate group from adenosine triphosphate onto proteins, and phosphocholination, the covalent transfer of a phosphocholine moiety onto proteins. Over the past years, enzymes mediating these modifications have been discovered in several pathogens, especially as a mechanism to influence the signaling of eukaryotic cells by adenylylating or phosphocholinating small GTPases. However, the development of reliable methods for the isolation and identification of adenylylated and phosphocholinated proteins remains a vehement challenge in this field of research. This thesis presents general procedures for the synthesis of peptides carrying adenylylated or phosphocholinated tyrosine, threonine and serine residues. From the resulting peptides, mono-selective polyclonal antibodies against adenylylated tyrosine and threonine have been raised. The antibodies were used as tools for proteomic research to isolate unknown substrates of adenylyl transferases from eukaryotic cells. Mass spectrometric fragmentation techniques have been investigated to ease the identification of adenylylated proteins. Furthermore, this work presents a new strategy to identify adenylylated proteins. Additionally, small effector molecules are involved in the regulation of infection mechanisms. In this work, the small molecule LAI-1 (Legionella autoinducer 1) from the pathogen Legionella pneumophila, the causative agent of the Legionnaire’s disease, was synthesised together with its amino-derivatives. LAI-1 showed are a clear pharmacological effect on the regulation of the life cycle of L. pneumophila, initiating transmissive traits like motility and virulence. Furthermore, LAI-1 was shown to have an effect on eukaryotic cells as well. Directed motility of the eukaryotic cells was significantly reduced and the cytoskeletal architecture was reorganised, probably by interfering with the small GTPase Cdc42.

  • 15.
    Ali, Tara
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Structural Studies of O-Polysaccharides from Diarrhoeal Escherichia coli2007Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis describes the structural analysis of O-polysaccharides from the Gram-negative bacterium Escherichia coli that is a diarrhoeal pathogen. The Escherichia coli serotypes investigated were O178, O171, O166 and O128. The methods used in these studies were nuclear magnetic resonance spectroscopy and component analysis.

    All analysed serotypes had pentasaccharide repeating units. E. coli strain O128 and O166 was shown to have the topology of four carbohydrate residues in the backbone while the 5-residue backbone is found in E. coli O178 and O171.

    The biological repeating units have been determined for the analysed polysaccharides and it was shown that all of the serotypes studied had a 3-substituted N-acetylgalactosamine residue at the reducing end. From this it was deduced that the terminal end of E. coli O171 and O128 have sialic acid and blood type antigens, respectively. This should make E. coli O171 and O128 less recognizable to the immune system as a foreign invader. This can result in that E. coli O171 and O128 may evade the immune system more easily.

  • 16.
    Alpe, Marianne
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of oligosaccharides related to the capsular polysaccharides of Streptococcus pneumoniae serotype 9 and of Cryptococcus neoformans2003Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the present investigation, synthesis of oligosaccharides corresponding to structural elements present in the capsular polysaccharides of Streptococcus pneumoniae and Cryptococcus neoformans has been achieved. The first two sections describe the synthesis of spacer-equipped oligosaccharides corresponding to structures from the CPS of Streptococcus pneumoniae serotypes 9N, 9A and 9L, the production of which involved synthetic challenges such as the construction of β-ManNAc and α-GlcA linkages. The former challenge was met by employing azide displacement of a 2-O-triflate substituent on a β-glucoside, whereas the latter task was accomplished utilizing thioethyl glucuronic acid donors in the presence of various promoters. The pentasaccharide product obtained correspond to the complete repeating unit of the CPS of serotype 9A.

    The last two sections of this thesis describe the construction of thioglycoside di- and trisaccharide building blocks containing α-Man, β-Xyl, β-GlcA and 6-O-acetyl motifs, as well as subsequent assembly of these building blocks into oligosaccharides corresponding to the repeating units of the capsular polysaccharide of the yeast Cryptococcus neoformans. The GlcA moiety was introduced via trichloroacetimidate coupling involving the peracetylated glucuronic acid methyl ester donor, after which the subsequent necessary benzylation was performed with the di- and trisaccharides. All of the target oligosaccharides were synthesized as amino-spacer glycosides in order to make conjugation to a carrier protein possible.

  • 17.
    Alvi, Muhammad Rouf
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Low-coordinate Organosilicon Chemistry: Fundamentals, Excursions Outside the Field, and Potential Applications2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis reports on unsaturated silicon compounds, as well as excursions from these into germanium chemistry, single molecule electronics, and silyl protective group chemistry. Both experimental and computational investigations were performed.

    Potassium germenolates were synthesized through reactions of tris(timethylsilyl) substituted acyl- and carbamylgermanes with potassium tert-butoxide. The potassium germenolates calculated by density functional theory have pyramidal structures at the Ge atoms, similar to the Si in the corresponding potassium silenolates, indicating negative charge on germanium rather than on oxygen. Germenolates also display germyl anion-like reactivity instead of germene-like reactivity as they are alkylated at Ge and initiate anionic polymerization of dienes rather than form [4+2] cycloadducts. The NMR chemical shifts reveal more negative charge at Ge in germenolates than at Si in analogous silenolates.

    Computations indicate that silabenzenes and silapyridines are reachable via [1,3]-silyl shifts from cyclic conjugated acylsilanes. Differently sized substituents were considered to prevent dimerizations, and 1-triisopropylsilyl-2-triisopropylsiloxy-6-tert-butylsilabenzene is a good synthetic target. Computations also show that silaphenolates are species with negative charge primarily localized at oxygen atom. Their planar structures, bond lengths, and NICS values reveal significant influence of aromaticity. Electrostatic repulsion should increase their stability, however, steric bulk is also important.

    Furthermore, it was found computationally that [1,3]-silyl shift from an acylsilane to a silene can function as a molecular switch reaction. Conductance calculations support this proposition.  

    Finally, tris(trimethylsilyl)silylmethaneamide (hypersilylamide) together with catalytic amounts of triflic acid were found to be efficient for protection of a range of alkyl and aryl alcohols and thiols in good to excellent yields. The protocol can be used to protect the less hindered OH group of a diol and has a broad functional group tolerance. A catalytic cycle is proposed. Hypersilyl protected alcohols and thiols are deprotected efficiently under photolytic conditions.

  • 18.
    Alvi, Muhammad Rouf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Anas, Saithalavi
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Emanuelsson, Rikard
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Lozinski, Kaitlin
    Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC) and Department of Chemistry, University of Richmond, UR 1099, 28 Westhampton Way, VA 23173, USA.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Scope and Limitations of an Acid Catalyzed Protocol for Hypersilyl Protection of Alcohols Manuscript (preprint) (Other academic)
    Abstract [en]

    A highly efficient and convenient triflic acid (TfOH) catalyzed protocol for the protection of various functionalized alcohols in CH2Cl2 at ambient temperature using tris(trimethylsilyl)silyl-N,N-dimethyl-methaneamide (hypersilylamide) 1 as the protecting reagent is developed. Herein, results on the scope and limitations of this protocol for a number of functionalized alcohols are presented. This method was found to be effective for the selective protection of less hindered OH groups in different classes of diols containing both pri/tert, sec/tert, or aromatic/aliphatic hydroxyl groups. In general, our protocol exhibited excellent functional group tolerance in the protection of alcohols containing alkoxy, keto, amino, as well as halo substituents in good to excellent yields.

  • 19.
    Alvi, Muhammad Rouf
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Jahn, Burkhard O.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Tibbelin, Julius
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Baumgartner, Judith
    Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria.
    Gómez, Cesar Pay
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
    Highly Efficient and Convenient Acid Catalyzed Hypersilyl Protection of Alcohols and Thiols by Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide2012Article in journal (Other academic)
    Abstract [en]

    Tris(trimethylsilyl)silyl-N,N-dimethylmethaneamide, herein named hypersilylamide, is a convenient and efficient source of the hypersilyl group in the first widely applicable acid catalyzed protocol for silyl group protection of primary, secondary, tertiary alkyl as well as aryl alcohols and thiols in high yields. The sole by-product is N,N-dimethylformamide (DMF) and a range of solvents can be used, including DMF. A high selectivity in the protection of diols can be achieved, also for diols with very small differences in the steric demands at the two hydroxyl groups. Moreover, in the protection of equivalent alcohol and thiol sites the protection of the alcohol is faster, allowing for selective protection in high yields. Quantum chemical calculations at the M062X hybrid meta density functional theory level give insights on the mechanism for the catalytic process. Finally, the hypersilyl group is easily removed from all protected alcohols and thiols examined herein by irradiation at 254 nm.

  • 20.
    Anderlund, Magnus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear Manganese Complexes for Artificial Photosynthesis: Synthesis and Properties2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II.

    The redox properties of these complexes have been investigated with electro chemical methods and the structure of the complexes has been investigated with different X-ray techniques. Structural aspects and the effect of water on the redox properties have been shown.

    One of the manganese complexes has been covalently linked in a triad donor-photosensitizer-acceptor (D–P–A) system. The kinetics of this triad has been investigated in detail after photo excitation with both optical and EPR spectroscopy. The formed charge separated state (D–P–A+) showed an unusual long lifetime for triad based on ruthenium photosensitizers.

    The thesis also includes a study of manganese-salen epoxidation reactions that we believe can give an insight in the oxygen transfer mechanism in the water oxidising complex in photosystem II.

  • 21.
    Anderson, Mattias
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Afewerki, Samson
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Córdova, Armando
    Chemoenzymatic amination of alcohols by combining oxidation catalysts with transaminases in one potManuscript (preprint) (Other academic)
    Abstract [en]

    Chemoenzymatic methods for the amination of alcohols have been developed. The reactions were performed in a one-pot two-step fashion, where the alcohol starting material was first oxidized to the corresponding carbonyl compound and then subsequently converted to the amine product with an enzymatic system based on an amine transaminase. The enzyme system was able to operate in a water/organic solvent two-phase system in the presence of either a heterogeneous palladium(0) catalyst or a homogeneous copper(I) catalyst. High conversions to the product amines were achieved for a range of substituted benzyl alcohols and similar compounds, but unfortunately the use of aliphatic alcohols resulted in lower conversions and secondary alcohols could not be converted to the corresponding amines with this methodology.

  • 22.
    Andersson, Barbro
    Umeå University, Faculty of Science and Technology.
    Analysis of plant growth regulating substances1982Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Natural plant growth regulators (phytohormones) are a group of organic compounds which, in very small amounts, act as regulators of physiological processes in plants.Methods were developed for the analysis of phytohormones in samples from Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris (L.) Karst»). Identification of abscisic acid, 3-indoleacetic acid, gibbe-rellin Ag and the conjugate N-(3-indoleacetyl)aspartic acid was performed by GC-MS as their methyl esters. A quantitative determination of abscisic acid was made by GC-ECD and this method was also applied to anther samples of Anemone canadensis. 3-Indole-acetic acid and N-(3-indoleacetyl)aspartic acid were quantified by reversed-phase HPLC and spectrofluorimetric detection. Dichlorophene, used as a growth regulator in containerized seedlings of pine and spruce, was analysed by GC-MID in peat and paper.

  • 23.
    Andersson, Claes-Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
      Appendix: Experimental details for tricarbonyl chromium complexes2011Other (Other academic)
  • 24.
    Andersson, Claes-Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Chemistry of Carbon Nanostructures: Functionalization of Carbon Nanotubes and Synthesis of Organometallic Fullerene Derivatives2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is based on two main parts. The first part concerns purification and functionalization of carbon nanotubes (papers I-III), and the second part is related to the synthesis of organometallic fullerene derivatives (papers IV-VII):

    Two oxidative methods involving aqueous nitric acid were compared with respect to their capability to introduce carboxylic groups into single walled carbon nanotubes, and several literature methods for esterification and amidation of these groups have been evaluated with focus on efficiency and reproducibility in forming covalently functionalized products soluble in organic media. Amidation proceeding via a SWNT-(COCl)n intermediate yielded the expected covalent product, whereas carboxylate salt formation dominated with other attempted methods. Esterification was achieved via the acyl chloride method and via alkylation of SWNT-(COO)n, the latter being the more efficient method.

    A new, reagent-free method for purification of single- and multi walled carbon nanotubes has been developed. Microwave treatment dissociates non-nanotube carbon and disperses it into an organic solvent, resulting in very pure carbon nanotubes within a few minutes of heating, without the involvement of acidic/oxidative reagents. According to thermogravimetric analysis, Raman and IR spectroscopy, as well as SEM, the process yields nanotubes with a low degree of defects.

    A non-covalent approach has been employed to prepare nanotubes functionalized with glycosides. Derivatives of galactose and lactose were covalently linked to a pyrene moiety and the thus formed pyrene-glycosides were non-covalently attached to single- and multi walled carbon nanotubes by π-π interactions. Fluorescence titrations have been used to quantify the formed supramolecular assemblies, which for SWNTs exhibits increased water solubility.

    A fulleropyrrolidine-(tricarbonyl)chromium complex was synthesized and fully characterized. IR spectroelectrochemistry was used to probe the redox state of the fullerene and provided evidence for electronic communication between the two electroacive moieties. A C60-ferrocene-C60 triad system was synthesized and characterized. Cyclic voltammetry and fluorescence studies suggested electronic communication between ferrocene and the two fullerenes. Finally, the synthesis and initial characterization of short fullerene-ferrocene oligomers are presented.

  • 25.
    Andersson, Claes-Henrik
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Grennberg, Helena
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Physical Organic Chemistry.
    Short ferrocene-[60]fulleropyrrolidine oligomers. A preliminary account on synthetic studiesManuscript (preprint) (Other academic)
    Abstract [en]

    A synthetic strategy towards short fullerene based organometallic oligomers is reported. The synthetic approach is based on the secondary functionalization of N-unsubstituted fulleropyrrolidines with ferrocene dicarboxylic acid chloride. Preliminary characterization by mass spectrometry, UV/Vis and NMR suggest a trimer or tetramer structure.

  • 26.
    Andersson, Hans
    Umeå University, Faculty of Science and Technology, Chemistry.
    Reaction Between Grignard reagents and Heterocyclic N-oxides: Synthesis of Substituted Pyridines, Piperidines and Piperazines2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the development of new synthetic methodologies for preparation of bioactive interesting compounds, e.g. substituted pyridines, piperidines or piparazines. Thesecompounds are synthesized from commercially available, cheap and easily prepared reagents, videlicet the reaction between Grignard reagents and heterocyclic N-oxides.

     The first part of this thesis deals with an improvement for synthesis of dienal-oximes and substituted pyridines. This was accomplished by a rapid addition of Grignard reagents to pyridine N-oxides at rt. yielding a diverse set of substituted dienal-oximes. During these studies, it was observed that the obtained dienal-oxmies are prone to ring-close upon heating. By taking advantage of this, a practical synthesis of substituted pyridines was developed.

    In the second part, an ortho-metalation of pyridine N-oxides using Grignard reagents is discussed. The method can be used for incorporation of a range of different electrophiles, including aldehydes, ketones and halogens. Furthermore, the importance for incorporation of halogens are exemplified through a Suzuki–Miyaura coupling reaction of 2-iodo pyridine N-oxides and different boronic acids. Later it was discovered that if the reaction temperature is kept below -20 °C, the undesired ringopening can be avoided. Thus, the synthesis of 2,3-dihydropyridine N-oxide, by reacting Grignard reagents with pyridine N-oxides at -40 °C followed by sequential addition of aldehyde or ketone, was accomplished. The reaction provides complete regio- and stereoselectivity yielding trans-2,3-dihydropyridine N-oxides in good yields. These intermediate products could then be used for synthesis of either substituted piperidines, by reduction, or reacted in a Diels–Alder cycloaddtion to give the aza-bicyclo compound.

    In the last part of this thesis, the discovered reactivity for pyridine N-oxides, is applied on pyrazine N-oxides in effort to synthesize substituted piperazines. These substances are obtained by the reaction of Grignard reagents and pyrazine N-oxides at -78 °C followed by reduction and protection, using a one-pot procedure. The product, a protected piperazine, that easily can be orthogonally deprotected, allowing synthetic modifications at either nitrogens in a fast and step efficient manner. Finally, an enantioselective procedure using a combination of PhMgCl and (-)-sparteine is discussed, giving opportunity for a stereoselective synthesis of substituted piperazines.

  • 27.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Nicholls, Ian A.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    The development of molecular imprinting2000Other (Other academic)
  • 28.
    Andersson, Håkan S.
    et al.
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Ramström, Olof
    Lund University.
    Crown ethers as a tool for the preparation of molecularly imprinted polymers1997Conference paper (Other academic)
  • 29.
    Andersson, Ida E.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Modified Glycopeptides Targeting Rheumatoid Arthritis: Exploring molecular interactions in class II MHC/glycopeptide/T-cell receptor complexes2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to degradation of cartilage and bone mainly in peripheral joints. In collagen-induced arthritis (CIA), a mouse model for RA, activation of autoimmune CD4+ T cells depends on a molecular recognition system where T-cell receptors (TCRs) recognize a complex between the class II MHC Aq protein and CII259-273, a glycopeptide epitope from type II collagen (CII). Interestingly, vaccination with the Aq/CII259-273 complex can relieve symptoms and cause disease regression in mice. This thesis describes the use of modified glycopeptides to explore interactions important for binding to the Aq protein and recognition by autoimmune T-cell hybridomas obtained from mice with CIA.

    The CII259-273 glycopeptide was modified by replacement of backbone amides with different amide bond isosteres, as well as substitution of two residues that anchor the glycopeptide in prominent pockets in the Aq binding site. A three-dimensional structure of the Aq/glycopeptide complex was modeled to provide a structural basis for interpretation of the modified glycopeptide’s immunological activities. Overall, it was found that the amide bond isosteres affected Aq binding more than could be explained by the static model of the Aq/glycopeptide complex. Molecular dynamics (MD) simulations, however, revealed that the introduced amide bond isosteres substantially altered the hydrogen-bonding network formed between the N-terminal 259-265 backbone sequence of CII259-273 and Aq. These results indicated that the N-terminal hydrogen-bonding interactions follow a cooperative model, where the strength and presence of individual hydrogen bonds depended on the neighboring interactions.

    The two important anchor residues Ile260 and Phe263 were investigated using a designed library of CII259-273 based glycopeptides with substitutions by different (non-)natural amino acids at positions 260 and 263. Evaluation of binding to the Aq protein showed that there was scope for improvement in position 263 while Ile was preferred in position 260. The obtained SAR understanding provided a valuable basis for future development of modified glycopeptides with improved Aq binding. Furthermore, the modified glycopeptides elicited varying T-cell responses that generally could be correlated to their ability to bind to Aq. However, in several cases, there was a lack of correlation between Aq binding and T-cell recognition, which indicated that the interactions with the TCRs were determined by other factors, such as presentation of altered epitopes and changes in the kinetics of the TCR’s interaction with the Aq/glycopeptide complex.

    Several of the modified glycopeptides were also found to bind well to the human RA-associated DR4 protein and elicit strong responses with T-cell hybridomas obtained from transgenic mice expressing DR4 and the human CD4 co-receptor. This encourages future investigations of modified glycopeptides that can be used to further probe the MHC/glycopeptide/TCR recognition system and that also constitute potential therapeutic vaccines for treatment of RA. As a step towards this goal, three modified glycopeptides presented in this thesis have been identified as candidates for vaccination studies using the CIA mouse model.

  • 30. Andersson, L I
    et al.
    Nicholls, Ian Alan
    University of Kalmar, School of Pure and Applied Natural Sciences.
    Mosbach, K
    Immunoassays using molecularly imprinted polymers1995In: Immunoanalysis of agrochemicals: emerging technologies / [ed] Judd O. Nelson, Alexander E. Karu and Rosie B. Wong, American Chemical Society (ACS), 1995, p. 89-97Conference paper (Other academic)
  • 31.
    Andersson, Linnéa
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry. Oorganisk kemi.
    Exploring expandable microspheres as a novel pore former in gel-cast macroporous alumina2008Licentiate thesis, monograph (Other academic)
    Abstract [en]

    Expandable microspheres have been explored as sacrificial templates for the production of macroporous ceramics. Concentrated alumina powder suspensions that contain expandable microspheres have been consolidated by gel-casting. The temperature range for the setting of the monomers and cross-linkers in the gel-casting system was tailored to allow the gas-filled polymer spheres to expand before the surrounding powder body became rigid. It has been demonstrated that it is possible to tune and tailor the porosity up to 86 % and the pore size distribution from 15 up to 150 micrometers by controlling the amount and size of the expandable microspheres. Scanning electron microscopy showed that the porosity became more and more open as the total porosity increased. This was corroborated by a preliminary study by X-ray µ Computed Tomography, which showed a very high connectivity between the pores, in a macroporous alumina body with a high porosity. The connectivity was reduced when alumina particles were deposited as a homogenous coating of on the expandable microspheres by a layer-by-layer coating process. The expandable microspheres has the advantage that a relatively low amount of organic material results in a large pore volume, which allow rapid and facile burn-out. It was demonstrated that the temperature induced expansion of the microspheres, and the associated increase of the suspension volume could be used as a novel casting method to yield macroporous alumina bodies with complex shapes. Ceramics produced with this method could find application ranging from bone scaffolds to low mass kiln furniture.

  • 32.
    Andersson, Nina
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Mesostructured materials: Synthesis towards applications2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    A new class of materials with well-defined structures on mesoscopic (2-50 nm) length scales has attracted considerable interest during the last decade. These mesostructured mataterials are formed from the self-assembly of amphiphillic molecules and inorganic precursors. The aim of this thesis has been to develop preparation methods that are scalable, and at the same time allow for efficient structural control coupled with possibility to incorporate different functionalities.

    Two different industrial processes for production of particles with spherical morphology were successfully tailored for synthesis of well-ordered mesostructured particles. An existing spray drying method for a fast and continuous production was further developed, and for the first time, an emulsion-based method was implemented. The latter method resulted in superior control of both particle size and internal mesostructure.

    Mesostructured photochromic pigments were synthesised by incorporating photochromic dyes in the organic domains of the surfactant templated inorganic/organic mesostructured silica particles. The pigments were produced using a one-pot synthesis method employing an aerosol reactor, allowing control over both the internal mesostructure and the dye content. We show that transparent photochromic films can be prepared using latex binders and conventional coating technology.

    Mesoporous magnetic carrier materials were prepared by adding iron oxide nanoparticles during either the emulsion- or aerosol processing. The surfactant templated silica matrix displayed well-ordered internal pore architecture with limited pore blocking caused by the incorporated iron oxide nanoparticles. The iron oxide content was precisely controlled, and the magnetic properties were preserved during the processing. Finally we demonstrate that these materials can be used to magnetically separate water-soluble dyes from solution.

  • 33.
    Andersson, Samir
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    An efficient water oxidation system based on supramolecular assembly of molecular catalyst and cucurbit[7]urilManuscript (preprint) (Other academic)
  • 34.
    Angelin, Marcus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Discovery-Oriented Screening of Dynamic Systems: Combinatorial and Synthetic Applications2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is divided into six parts, all centered around the development of dynamic (i.e., reversibly interacting) systems of molecules and their applications in dynamic combinatorial chemistry (DCC) and organic synthesis.

    Part one offers a general introduction, as well as a more detailed description of DCC, being the central concept of this thesis. Part two explores the potential of the nitroaldol reaction as a tool for constructing dynamic systems, employing benzaldehyde derivatives and nitroalkanes. This reaction is then applied in part three where a dynamic nitroaldol system is resolved by lipase-catalyzed transacylation, selecting two out of 16 components.

    In part four, reaction and crystallization driven DCC protocols are developed and demonstrated. The discovery of unexpected crystalline properties of certain pyridine β-nitroalcohols is used to resolve a dynamic system and further expanded into asynthetic procedure. Furthermore, a previously unexplored tandem nitroaldol-iminolactone rearrangement reaction between 2-cyanobenzaldehyde and primarynitroalkanes is used for the resolution of dynamic systems. It is also coupled with diastereoselective crystallization to demonstrate the possibility to combine several selection processes. The mechanism of this reaction is investigated and a synthetic protocol is developed for asymmetric synthesis of 3-substituted isoindolinones.

    Part five continues the exploration of tandem reactions by combining dynamic hemithioacetal or cyanohydrin formation with intramolecular cyclization to synthesize a wide range of 3-functionalized phthalides.

    Finally, part six deals with the construction of a laboratory experiment to facilitate the introduction of DCC in undergraduate chemistry education. The experiment is based on previous work in our group and features an acetylcholinesterase-catalyzed resolution of a dynamic transthioacylation system.

  • 35.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Assembling and Unraveling Carbohydrates Structures: Conformational analysis of synthesized branched oligosaccharides2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Advances in the elaboration of vaccines and enzyme inhibitors rely on acquiring more knowledge about protein-carbohydrate binding events. Furthermore, the relationships between biological function and the three-dimensional properties of large glycans can be studied by focusing on the structural components they contained, namely, by scaling down the system under analysis. Chemical methods are useful assets as they allow the isolation and determination of epitopes; these small and recognizable fragments that lead to very specific interactions. In this thesis, biologically relevant saccharides were obtained using recently developed concepts in carbohydrate synthesis and NMR spectroscopy was used to unravel their conformational preferences.

    In paper I, the convergent synthesis of the tetrasaccharide found in the natural product solaradixine is described. Reactivity enhanced disaccharide glycosyl donors were coupled to a disaccharide acceptor in a 2 + 2 fashion. The computer program CASPER was subsequently used to verify the synthesized structure.

    The conformation arming concept employed in paper I was further investigated in paper II. An NMR-based methodology enabled the determination of the ring conformations of a set of donors. Subsequently, glycosylation reactions were performed and yields were correlated to donors ring shapes. Perturbations in the rings shape caused by bulky silyl ether protective groups were sufficient to boost the potency of several donors. As a matter of fact, complex branched oligosaccharides could be obtained in good to excellent yields.

    In paper III, NMR spectroscopy observables were measured to elucidate the ring shape, the mutual orientation of the rings across the glycosidic bond and the positions of the side chains of 5 trisaccharides found in larger structures. With the aid of molecular dynamics simulations, their overall conformational propensities were revealed.

    Finally, the software CASPER prediction skills were improved by adding, inter alia, NMR information of synthesized mono- and disaccharides to its database. Unassigned chemical shifts from polysaccharides served as input to challenge its ability to solve large carbohydrate structures.

  • 36.
    Angles d'Ortoli, Thibault
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ståhle, Jonas
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hamark, Christoffer
    Fontana, Carolina
    Engström, Olof
    Apostolica, Patricia
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Complete 1H and 13C NMR chemical shift assignments of mono- to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPERManuscript (preprint) (Other academic)
  • 37.
    Arefalk, Anna
    Uppsala University, Medicinska vetenskapsområdet, Faculty of Pharmacy, Department of Medicinal Chemistry.
    New Methods for the Synthesis of 3-Substituted 1-Indanones: A Palladium-Catalyzed Approach2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In medicinal chemistry, there is a constant need for new preparative methods, both to make the synthesis process more effective, and to increase the accessibility to a wide variety of compounds. A number of different approaches can be used to attain these goals. Transition metal catalysis is generally performed under mild conditions, providing both regio- and chemoselective reactions. Thus, it offers an attractive means of preparation of complex drug candidates. Two additional methodologies used to increase the preparative efficiency are one-pot protocols and controlled microwave heating. One-pot and multi-component reactions are less time consuming than step-by-step reactions, and microwave heating has been used to considerably shorten the reaction times.

    This thesis describes a new palladium-catalyzed, one-pot reaction producing racemic acetal-protected 3-hydroxy-1-indanones from ethylene glycol vinyl ether and triflates of salicylic aldehydes. The triflates were prepared using controlled microwave heating. The reaction sequence starts with a regioselective internal Heck coupling, followed by an annulation cascade. By including secondary amines in the reaction mixture, the reaction was further developed into a three-component reaction delivering racemic acetal-protected 3-amino-1-indanones. This new method was utilized for the synthesis of primary, secondary and tertiary aminoindanones. Finally, by using enantiopure t-butyl sulfinyl imines, derived from salicylic aldehyde triflates and ethylene glycol vinyl ether as starting materials in a closely related type of palladium coupling–annulation sequence, a stereoselective protocol providing enantiomerically pure 3-amino-1-indanones was developed. To demonstrate an application in medicinal chemistry, the enantiopure 3-amino-1-indanones were incorporated as P2 and/or P2´ substituents into active HIV-1 protease inhibitors.

  • 38.
    Arkhypchuk, Anna
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Novel Approaches to Phosphorus-containing Heterocycles and Cumulenes2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Fast development in all areas of life and science over the last 50 years demands versatile, energy efficient and cheap materials with specific but easily tuneable properties which can be used for example in organic light emitting diodes (OLEDs), thin-film transistors, photovoltaic cells, etc. This thesis is devoted to the development of novel synthetic approaches to molecules with potential applications in the field of molecular electronics.  The acquisition of a detailed mechanistic understanding of the newly developed reactions is central to the work presented in this thesis.

    The first chapter is dedicated to the development of a new procedure for the preparation of phospha-Wittig-Horner (pWH) reagents, i.e. a reagents that has been known to convert carbonyl compounds into compounds with P=C double bonds. Each step of the synthetic sequence, i.e. preparation of the starting P,P-dichlorophosphines, their phosphorylation using the Michaelis-Arbuzov protocol, coordination to the metal centre and final hydrolysis, are presented in detail. A possible route to uncoordinated pWH reagents is also discussed.

    The second chapter focuses on the reactivity of the pWH reagents with acetone under different reaction conditions. The results show how changes in the ratio of starting material vs. base as well as reaction time or structure of the pWH reagent can influence the reaction outcome and the stability of the obtained products. The possibility to prepare unusual phosphaalkenes with unsaturated P-substituents is presented.

    The third chapter of the thesis is dedicated to the reactivity of pWH reagents towards symmetric and asymmetric ketones which contain one or two acetylene units. The proposed mechanisms of the reactions are studied by means of in situ FTIR spectroscopy as well as theoretical calculations. Physical-chemical properties of oxaphospholes, cumulenes and bisphospholes are presented.

    The last chapter is dedicated to reactivity studies of pWH reagents towards ketenes, and the exploration of a reliable route to 1-phosphaallenes. Detailed mechanistic studies of the pWH reaction that are based on the isolation and crystallographic characterization of unique reaction intermediates are presented. The reactivity of phosphaallenes towards nucleophiles such as water and methanol are examined.

    In summary, this thesis presents synthetic routes to novel phosphorus-containing molecules, together with detailed studies of the reaction mechanisms of the observed transformations.

  • 39.
    Arkhypchuk, Anna
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Mihali, Viorica Alina
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Orthaber, Andreas
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Ehlers, Andreas
    VU University Amsterdam.
    Lammertsma, Koop
    VU University Amsterdam.
    Ott, Sascha
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
    Phosphorus Heterocylces from Phosphinophosphonates and α,β-Unsaturated KetonesManuscript (preprint) (Other academic)
  • 40.
    Ashkan, Fardost
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Skillinghaug, Bobo
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Fredrik, Svensson
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Prasad, Wakchaure
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Matyas, Wejdemar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Mats, Larhed
    Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Christian, Sköld
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
    Experimental and Theoretical Investigation of Palladium(II)-Catalyzed Decarboxylative Synthesis of Electron-Rich Styrenes and 1,1-DiarylethenesManuscript (preprint) (Other academic)
  • 41.
    Axelsson, Karolin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Chemical signals in interactions between Hylobius abietis and associated bacteria2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The pine weevil (Hylobius abietis L.) is one of the two topmost economically important insect pests in Swedish conifer forests. The damage increase in areas were the silvicultural practice is to use clear cuttings were the insects gather and breed. During egglaying the female protects her offspring by creating a cave in roots and stumps were she puts her egg and covers it with frass, a mixture of weevil feces and chewed bark. Adult pine weevils have been observed to feed on the other side of the egg laying site and antifeedant substance has been discovered in the feces of the pine weevil. We think it is possible that microorganisms present in the frass contribute with antifeedant/repellent substances. Little is known about the pine weevils associated bacteria community and their symbiotic functions. In this thesis the bacterial community is characterized in gut and frass both from pine weevils in different populations across Europe as well as after a 28 day long diet regime on Scots pine, silver birch or bilberry. Volatile substances produced by isolated bacteria as well as from a consortium of microorganisms were collected with solid phase micro extraction (SPME) and analyzed with GC-MS. The main volatiles were tested against pine weevils using a two-choice test. Wolbachia, Rahnella aquatilis, Serratia and Pseudomonas syringae was commonly associated with the pine weevil. 2-Methoxyphenol, 2-phenylethanol, 3-methyl-1-butanol were found in the headspace from Rahnella aquatilis when grown in substrate containing pine bark. 2-Methoxyphenol and 3-methyl-1-butanol, phenol and methyl salicylate were found in pine feces. Birch and bilberry feces emitted mainly linalool oxides and bilberry emitted also small amounts of 2-phenylethanol.

    A second part of the thesis discusses the role of fungi in forest insect interactions and the production of oxygenated monoterpenes as possible antifeedants. Spruce bark beetles (Ips typhographus L.) aggregate with the help of pheromones and with collected forces they kill weakened adult trees as a result of associated fungi growth and larval development. A fungi associated with the bark beetle, Grosmannia europhoides, was shown to produce de novo 2-methyl-3-buten-2-ol, the major component of the spruce bark beetle aggregation pheromone. Chemical defense responses against Endoconidiophora polonica and Heterobasidion parviporum were investigated using four clones of Norway spruce with different susceptibility to Heterobasidion sp. Clone specific differences were found in induced mono-, sesqui and diterpenes. A number of oxygenated monoterpenes which are known antifeedants for the pine weevil were produced in the infested areas.

  • 42.
    Axelsson, Karolin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Konstanzer, Vera
    Kuttuva Rajarao, Guna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Terenius, Olle
    Dep of Ecology, SLU.
    Seriot, Lisa
    Nordenhem, Henrik
    Dep. of Ecology, SLU.
    Nordlander, Göran
    Dep. of Ecology, SLU.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Antifeedants produced by bacteria associated to the gut of the pine weevil (Hylobius abietis)Manuscript (preprint) (Other academic)
  • 43.
    Axelsson, Karolin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Nilsson, Louise
    Nordlander, Göran
    Dep. of Ecology, SLU.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Terenius, Olle
    Dep of Ecology, SLU.
    Do pine weevil microbiota and corresponding volatiles change due to selective feeding?Manuscript (preprint) (Other academic)
  • 44.
    Axelsson, Karolin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zendegi-Shiraz, Amene
    Swedjemark, Gunilla
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhao, Tao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Clone specific chemical defense responses in Norway spruce to infestations by two pathogenic fungi2016In: Forest Pathology, ISSN 1437-4781, E-ISSN 1439-0329Article in journal (Other academic)
    Abstract [en]

    Heterobasidion parviporum (Hp) were investigated using four clones of Norway spruce (Picea abies) with different susceptibility to Heterobasidion sp. Eight year old trees were inoculated with Ep and Hp to minimize the variation due to environment. After three weeks the bark tissue at the upper border of the inoculation hole were extracted with hexane and analyzed by GC-MS. Both treatment and clonal differences were found based on induced mono-, sesqui- and diterpenes. In addition, the Hp produced toxin, fomanoxin, was identified in lowest amount in the most Hp susceptible clone. The clonal trees seem to use different defense strategies towards the two fungi. One of the clones was able to induce strong chemical defense against both fungi, one clone induced chemical defense only against Ep and the most susceptible clone exhibited the least capacity to produce an effective defense against Ep and Hp. Two diterpenes were found to be distinctly different between clones with different susceptibilities, which can be used as chemical indication of Norway spruce resistance against fungi.

  • 45.
    Axelsson, Linda
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Development of HIV-1 Protease Inhibitors and Palladium-Catalyzed Synthesis of Aryl Ketones and N-Allylbenzamides2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of palladium-catalyzed reactions to introduce new carbon-carbon bonds is a fundamental synthetic strategy that has been widely embraced due to its high chemo- and regioselectivity and functional group tolerance. In this context, Pd(0)-catalyzed aminocarbonylations using Mo(CO)6 instead of toxic and gaseous CO and with allylamine as the nucleophile were investigated. The aminocarbonylated product dominated over the Mizoroki-Heck product, and (hetero)aryl iodides, bromides and chlorides gave N-allylbenzamides in good yields.

    In this thesis improvements to an existing protocol for the Pd(II)-catalyzed synthesis of aryl ketones from five benzoic acids and a variety of nitriles are also presented. Addition of TFA improved the yields and employing THF as solvent enabled the use of solid nitriles, and the aryl ketones were isolated in good yields.

    The pandemic of HIV infection is one of the greatest public health issues of our time and approximately 35.3 million people worldwide are living with HIV. There are currently many drugs on the market targeting various parts of the viral reproduction cycle, but the problems of resistance warrant the search for new drugs. HIV-1 protease makes the virus mature into infectious particles. In this thesis a new type of HIV-1 protease inhibitor (PI) is presented, based on two of the PIs on the market, atazanavir and indinavir, but it has a tertiary alcohol, as well as a two-carbon tether between the quaternary carbon and the hydrazide β-nitrogen. A total of 25 new inhibitors were designed, synthesized and biologically evaluated, the best compound had an EC50 value of 3 nM.

    Based on this series a project aimed at synthesizing macrocycles spanning the P1-P3 area was initiated. Macrocycles often tend to have an improved affinity and metabolic profile compared to their linear analogs. Introduction of a handle in the para position of the P1 benzyl group proved difficult, despite efforts to synthesize intermediates containing either a bromo-, hydroxy-, methoxy-, silyl-group protected hydroxy- or an alkyne-group. The lactone intermediate was abandoned in favor of an alternative synthetic route and initial studies were found to be promising. This new approach requires further investigation before the target macrocycles can be synthesized. 

  • 46.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Enantioselective palladium pincer complex catalyzed carbon carbon coupling reactions between tosylimines and various nucleophiles2008In: Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008, Washington, DC: American Chemical Society , 2008Conference paper (Other academic)
  • 47.
    Aydin, Juhanes
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic considerations for the enantioselective palladium pincer complex catalyzed carbon-carbon coupling reactions2008In: Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008, Washington, DC: American Chemical Society , 2008Conference paper (Other academic)
  • 48.
    Ayesa Alvarez, Susana
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Amine Building Blocks and Protease Inhibitors2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The first part of this thesis addresses the design and synthesis of amine building blocks accomplished by applying two different synthetic procedures, both of which were developed using solid-phase chemistry. Chapter 1 presents the first of these methods, entailing a practical solid-phase parallel synthesis route to N-monoalkylated aminopiperidines and aminopyrrolidines achieved by selective reductive alkylation of primary and/or secondary amines. Solid-phase NMR spectroscopy was used to monitor the reactions for which a new pulse sequence was developed. The second method, reported in Chapter 2, involves a novel approach to the synthesis of secondary amines starting from reactive alkyl halides and azides. The convenient solid-phase protocol that was devised made use of the Staudinger reaction in order to accomplish highly efficient alkylations of N-alkyl phosphimines or N-aryl phosphimines with reactive alkyl halides.

    The second part of the thesis describes the design and synthesis of three classes of protease inhibitors targeting the cysteine proteases cathepsins S and K, and the serine protease hepatitis C virus (HCV) NS3 protease. Chapter 4 covers the design, solid-phase synthesis, and structure-activity relationships of 4-amidofurane-3-one P1-containing inhibitors of cathepsin S and the effects of P3 sulfonamide groups on the potency and selectivity towards related cathepsin proteases. This work resulted in the discovery of highly potent and selective inhibitors of cathepsin S. Two parallel solid-phase approaches to the synthesis of a series of aminoethylamide inhibitors of cathepsin K are presented in Chapter 5. Finally, Chapter 6 reports peptide-based HCV NS3 protease inhibitors containing a non-electrophilic allylic alcohol moiety as P1 group and also outlines efforts to incorporate this new template into low-molecular-weight drug-like molecules.

  • 49.
    Ayub, Rabia
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
    Excited State Aromaticity and Antiaromaticity: Fundamental Studies and Applications2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The central theme of this thesis is the ability to tune various molecular properties by controlling and utilizing aromaticity and antiaromaticity in the lowest electronically excited states. This investigation is based on qualitative theory, quantum chemical (QC) calculations and experimental work.

    Baird's rule tells that the π-electron count for aromaticity and antiaromaticity is reversed in the ππ* triplet (T1) state when compared to Hückel's rule for the singlet ground state. The excited state aromatic character of [4n]annulenes is probed by usage of two structural moieties, the cyclopropyl (cPr) group and the silacyclobutene (SCB) ring. The results of QC calculations and photoreactivity experiments showed that the cPr group and the SCB ring remained closed when attached to or fused with [4n]annulenes so as to preserve T1 aromatic stabilization. In contrast, both moieties ring-opened when attached to or fused with [4n+2]annulenes as a means for alleviation of T1 antiaromaticity. These two structural moieties are shown to indicate T1 aromatic character of [4n]annulenes except in a limited number of cases.

    The T1 antiaromatic character of compounds with 4n+2 π-electrons was utilized for photo(hydro)silylations and photohydrogenations. QC calculations showed that due to T1 antiaromaticity, benzene is able to abstract hydrogen atoms from trialkylsilanes. The photoreactions occurred under mild conditions for benzene and certain polycyclic aromatic hydrocarbons. In contrast, COT was found to be unreactive under similar conditions.

    It is further revealed that various properties of molecules can be tailored by rational design using Baird’s rule. Three modes of connectivity (linear, bent, and cyclic) of polycyclic conjugated hydrocarbons (PCH) were explored by DFT calculations. When the PCHs contain a central [4n]unit and 4nπ-electron perimeter, bent isomers have lower triplet state energies than linear ones due to increased T1 aromaticity in the bent isomers. With regard to the cyclic connectivity, macrocyclic compounds are designed by modifying the C20 monocycle through incorporation of monocyclic units (all-carbon as well as heterocyclic) and the impact of macrocyclic T1 aromaticity upon insertion of different units is examined through QC calculations. The results provide insights on excited state aromaticity in macrocyclic systems.

  • 50.
    Ayub, Rabia
    et al.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Jorner, Kjell
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    Ottosson, Henrik
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström. Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
    The silacyclobutene ring: An indicator of triplet state Baird-aromaticityManuscript (preprint) (Other academic)
1234567 1 - 50 of 777
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf