Ändra sökning
Avgränsa sökresultatet
1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Blomberg, Margareta R. A.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism?2017Ingår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 56, nr 1, s. 120-131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As part of microbial denitrification, NO is reduced to N2O in the membrane bound enzyme nitric oxide reductase, NOR The N N coupling occurs in the diiron binuclear active site, BNC, and different mechanisms for this reaction step have been suggested. Computational studies have supported a so-called cis:b(3)-mechanism, in which the hyponitrite product of the reductive N N bond formation coordinates with one nitrogen to the heme iron and with both oxygens to the non-heme iron in the BNC. In contrast, experimental results have been interpreted to support a so-called trans-mechanism, in which the hyponitrite intermediate coordinates with one nitrogen atom to each of the two iron ions. Hybrid density functional theory is used here to perform an extensive search for possible intermediates of the NO reduction in the cNOR enzyme. It is found that hyponitrite structures coordinating with their negatively charged oxygens to the positively charged iron ions are the most stable ones. The hyponitrite intermediate involved in the suggested trans-mechanism, which only coordinates with the nitrogens to the iron ions, is found to be prohibitively high in energy, leading to a too slow reaction, which should rule out this mechanism. Furthermore, intermediates binding one NO molecule to each iron ion in the BNC, which have been suggested to initiate the trans-mechanism, are found to be too high in energy to be observable, indicating that the experimentally observed electron paramagnetic resonance signals, taken to support such an iron-nitrosyl dimer intermediate, should be reinterpreted.

  • 2.
    Blomberg, Margareta R. A.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Siegbahn, Per E. M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?2013Ingår i: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1827, nr 7, s. 826-833Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The membrane-bound enzyme cNOR (cytochrome c dependent nitric oxide reductase) catalyzes the reduction of NO in a non-electrogenic process. This is in contrast to the reduction of O-2 in cytochrome c oxidase (CcO), the other member of the heme-copper oxidase family, which stores energy by the generation of a membrane gradient. This difference between the two enzymes has not been understood, but it has been speculated to be of kinetic origin, since per electron the NO reduction is more exergonic than the O-2 reduction, and the energy should thus be enough for an electrogenic process. However, it has not been clear how and why electrogenicity, which mainly affects the thermodynamics, would slow down the very exergonic NO reduction. Quantum chemical calculations are used to construct a free energy profile for the catalytic reduction of NO in the active site of cNOR. The energy profile shows that the reduction of the NO molecules by the enzyme and the formation of N2O are very exergonic steps, making the rereduction of the enzyme endergonic and rate-limiting for the entire catalytic cycle. Therefore the NO reduction cannot be electrogenic, i.e. cannot take electrons and protons from the opposite sides of the membrane, since it would increase the endergonicity of the rereduction when the gradient is present, thereby increasing the rate-limiting barrier, and the reaction would become too slow. It also means that proton pumping coupled to electron transfer is not possible in cNOR In CcO the corresponding rereduction of the enzyme is very exergonic.

  • 3.
    Covarrubias, Adrian Suarez
    et al.
    Department of Cell and Molecular Biology, Uppsala University, Sweden.
    Högbom, Martin
    Department of Cell and Molecular Biology, Uppsala University, Sweden.
    Bergfors, Terese
    Department of Cell and Molecular Biology, Uppsala University, Sweden.
    Carroll, Paul
    Institute for Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London.
    Mannerstedt, Karin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Oscarson, Stefan
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Parish, Tanya
    Institute for Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London.
    Jones, T Alwyn
    Department of Cell and Molecular Biology, Uppsala University, Sweden.
    Mowbray, Sherry L
    Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden.
    Structural, biochemical, and in vivo investigations of the threonine synthase from Mycobacterium tuberculosis.2008Ingår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 381, nr 3, s. 622-33Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Threonine biosynthesis is a general feature of prokaryotes, eukaryotic microorganisms, and higher plants. Since mammals lack the appropriate synthetic machinery, instead obtaining the amino acid through their diet, the pathway is a potential focus for the development of novel antibiotics, antifungal agents, and herbicides. Threonine synthase (TS), a pyridoxal-5-phosphate-dependent enzyme, catalyzes the final step in the pathway, in which L-homoserine phosphate and water are converted into threonine and inorganic phosphate. In the present publication, we report structural and functional studies of Mycobacterium tuberculosis TS, the product of the rv1295 (thrC) gene. The structure gives new insights into the catalytic mechanism of TSs in general, specifically by suggesting the direct involvement of the phosphate moiety of the cofactor, rather than the inorganic phosphate product, in transferring a proton from C4' to C(gamma) in the formation of the alphabeta-unsaturated aldimine. It further provides a basis for understanding why this enzyme has a higher pH optimum than has been reported elsewhere for TSs and gives rise to the prediction that the equivalent enzyme from Thermus thermophilus will exhibit similar behavior. A deletion of the relevant gene generated a strain of M. tuberculosis that requires threonine for growth; such auxotrophic strains are frequently attenuated in vivo, indicating that TS is a potential drug target in this organism.

  • 4. Ertem, Mehmed Z.
    et al.
    Cramer, Christopher J.
    Himo, Fahmi
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Siegbahn, Per E. M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    N-O bond cleavage mechanism(s) in nitrous oxide reductase2012Ingår i: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 17, nr 5, s. 687-698Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quantum chemical calculations of active-site models of nitrous oxide reductase (N2OR) have been undertaken to elucidate the mechanism of N-O bond cleavage mediated by the supported tetranuclear Cu4S core (Cu-Z) found in the enzymatic active site. Using either a minimal model previously employed by Gorelsky et al. (J. Am. Chem. Soc. 128:278-290, 2006) or a more extended model including key residue side chains in the active-site second shell, we found two distinct mechanisms. In the first model, N2O binds to the fully reduced Cu-Z in a bent mu-(1,3)-O,N bridging fashion between the Cu-I and Cu-IV centers and subsequently extrudes N-2 while generating the corresponding bridged mu-oxo species. In the second model, substrate N2O binds loosely to one of the coppers of Cu-Z in a terminal fashion, i.e., using only the oxygen atom; loss of N-2 generates the same mu-oxo copper core. The free energies of activation predicted for these two alternative pathways are sufficiently close to one another that theory does not provide decisive support for one over the other, posing an interesting problem with respect to experiments that might be designed to distinguish between the two. Effects of nearby residues and active-site water molecules are also explored.

  • 5.
    Fontana, Carolina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Conde-Alvarez, Raquel
    Ståhle, Jonas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Holst, Otto
    Iriarte, Maite
    Zhao, Yun
    Arce-Gorvel, Vilma
    Hanniffy, Sean
    Gorvel, Jean-Pierre
    Moriyon, Ignacio
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence2016Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, nr 14, s. 7727-7741Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structures of the lipooligosaccharides from Brucella melitensis mutants affected in the WbkD and ManB(core) proteins have been fully characterized using NMR spectroscopy. The results revealed that disruption of wbkD gives rise to a rough lipopolysaccharide (R-LPS) with a complete core structure (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)[beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5)]-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P), in addition to components lacking one of the terminal beta-D-GlcpN and/or the beta-D-Glcp residues (48 and 17%, respectively). These structures were identical to those of the R-LPS from B. melitensis EP, a strain simultaneously expressing both smooth and R-LPS, also studied herein. In contrast, disruption of man-B-core gives rise to a deep-rough pentasaccharide core (beta-D-Glcp-(1 -> 4)-alpha-Kdop-(2 -> 4)-alpha-Kdop-(2 -> 6)-beta-D-GlcpN3N4P-(1 -> 6)-alpha-D-GlcpN3N1P) as the major component (63%), as well as a minor tetrasaccharide component lacking the terminal beta-D-Glcp residue (37%). These results are in agreement with the predicted functions of the WbkD (glycosyltransferase involved in the biosynthesis of the O-antigen) and ManB(core) proteins (phosphomannomutase involved in the biosynthesis of a mannosyl precursor needed for the biosynthesis of the core and O-antigen). We also report that deletion of B. melitensis wadC removes the core oligosaccharide branch not linked to the O-antigen causing an increase in overall negative charge of the remaining LPS inner section. This is in agreement with the mannosyltransferase role predicted for WadC and the lack of GlcpN residues in the defective core oligosaccharide. Despite carrying the O-antigen essential in B. melitensis virulence, the core deficiency in the wadC mutant structure resulted in a more efficient detection by innate immunity and attenuation, proving the role of the beta-D-GlcpN-(1 -> 6)-beta-D-GlcpN-(1 -> 4)[beta-D-GlcpN-(1 -> 6)]-beta-D-GlcpN-(1 -> 3)-alpha-D-Manp-(1 -> 5) structure in virulence.

  • 6.
    Fontana, Carolina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Kovacs, Helena
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    NMR structure analysis of uniformly 13C-labeled carbohydrates2014Ingår i: Journal of Biomolecular NMR, ISSN 0925-2738, E-ISSN 1573-5001, Vol. 59, nr 2, s. 95-110Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of C-13-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly C-13-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-C-13)-sucrose, 342 Da] and one compound of medium molecular weight (C-13-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, similar to 10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The C-13 resonances are traced using C-13-C-13 correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the C-13 resonances, the H-1 chemical shifts are derived in a straightforward manner using one-bond H-1-C-13 correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J (CC) splitting of the C-13 resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either C-13 or H-1 detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T-2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the H-1-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the C-13-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with N-15 at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and C-13-detected (H)CACO spectra.

  • 7.
    Fontana, Carolina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Lundborg, Magnus
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Weintraub, Andrej
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Structural studies and biosynthetic aspects of the o antigen polysaccharide from Escherichia coli o1742012Ingår i: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 354, s. 102-105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structure of the repeating unit of the O-antigenic polysaccharide (PS) from Escherichia coli O174 has been determined. Component analysis together with H-1 and C-13 NMR spectroscopy experiments were employed to elucidate the structure. Inter-residue correlations were determined by H-1, C-13-heteronuclear multiple-bond correlation and H-1, H-1-NOESY experiments. The PS is composed of tetrasaccharide repeating units with the following structure: -> 4)-beta-D-GlcpA-(1 -> 3)-beta-D-Galp-(1 -> 3)-beta-D-GalpNAc-(1 -> vertical bar beta-D-GlcpNAc-(1 -> 2) Cross-peaks of low intensity were present in the NMR spectra consistent with a beta-D-GlcpNAc-(1 -> 2)-beta-D-GlcpA(1 -> structural element at the terminal part of the polysaccharide, which on average is composed of similar to 15 repeating units. Consequently the biological repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.

  • 8.
    Landström, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Persson, Karina
    Rademacher, Christoph
    Lundborg, Magnus
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Wakarchuk, Warren
    Peters, Thomas
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Small molecules containing hetero-bicyclic ring systems compete with UDP-Glc for binding to WaaG glycosyltransferase2012Ingår i: Glycoconjugate Journal, ISSN 0282-0080, E-ISSN 1573-4986, Vol. 29, nr 7, s. 491-502Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The alpha-1,3-glucosyltransferase WaaG is involved in the synthesis of the core region of lipopolysaccharides in E. coli. A fragment-based screening for inhibitors of the WaaG glycosyltrasferase donor site has been performed using NMR spectroscopy. Docking simulations were performed for three of the compounds of the fragment library that had shown binding activity towards WaaG and yielded 3D models for the respective complexes. The three ligands share a hetero-bicyclic ring system as a common structural motif and they compete with UDP-Glc for binding. Interestingly, one of the compounds promoted binding of uridine to WaaG, as seen from STD NMR titrations, suggesting a different binding mode for this ligand. We propose these compounds as scaffolds for the design of selective high-affinity inhibitors of WaaG. Binding of natural substrates, enzymatic activity and donor substrate selectivity were also investigated by NMR spectroscopy. Molecular dynamics simulations of WaaG were carried out with and without bound UDP and revealed structural changes compared to the crystal structure and also variations in flexibility for some amino acid residues between the two WaaG systems studied.

  • 9.
    Larsson Birgander, Pernilla
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
    Bug, Stefanie
    Sjöberg, Britt-Marie
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
    Gordon, Euan
    Dahlroth, Sue-Li
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Kasrayan, Alex
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Westman, MariAnn
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
    Euan, Gordon
    Sjöberg, Britt-Marie
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för molekylärbiologi och funktionsgenomik.
    Nucleotide-dependent formation of catalytically competent dimers from engineered monomeric ribonucleotide reductase protein R12005Ingår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 280, nr 15, s. 14997-15003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Each catalytic turnover by aerobic ribonucleotide reductase requires the assembly of the two proteins, R1 (α2) and R2 (β2), to produce deoxyribonucleotides for DNA synthesis. The R2 protein forms a tight dimer, whereas the strength of the R1 dimer differs between organisms, being monomeric in mouse R1 and dimeric in Escherichia coli. We have used the known E. coli R1 structure as a framework for design of eight different mutations that affect the helices and proximal loops that comprise the dimer interaction area. Mutations in loop residues did not affect dimerization, whereas mutations in the helices had very drastic effects on the interaction resulting in monomeric proteins with very low or no activity. The monomeric N238A protein formed an interesting exception, because it unexpectedly was able to reduce ribonucleotides with a comparatively high capacity. Gel filtration studies revealed that N238A was able to dimerize when bound by both substrate and effector, a result in accordance with the monomeric R1 protein from mouse. The effects of the N238A mutation, fit well with the notion that E. coli protein R1 has a comparatively small dimer interaction surface in relation to its size, and the results illustrate the stabilization effects of substrates and effectors in the dimerization process. The identification of key residues in the dimerization process and the fact that there is little sequence identity between the interaction areas of the mammalian and the prokaryotic enzymes may be of importance in drug design, similar to the strategy used in treatment of HSV infection.

  • 10.
    Liao, Rong-Zhen
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi. Huazhong University of Science & Technology, People's Republic of China.
    Siegbahn, Per E. M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Mechanism for O-O bond formation in a biomimetic tetranuclear manganese cluster - A density functional theory study2015Ingår i: Journal of Photochemistry and Photobiology. B: Biology, ISSN 1011-1344, E-ISSN 1873-2682, Vol. 152, nr Part A, s. 162-172Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Density functional theory calculations have been used to study the reaction mechanism of water oxidation catalyzed by a tetranuclear Mn-oxo cluster Mn4O4L6 (L = (C6H4)(2)PO4-). It is proposed that the O-O bond formation mechanism is different in the gas phase and in a water solution. In the gas phase, upon phosphate ligand dissociation triggered by light absorption, the O-O bond formation starting with both the Mn-4(III,III,IV,IV) and Mn-4(III,IV,IV,IV) oxidation states has to take place via direct coupling of two bridging oxo groups. The calculated barriers are 42.3 and 37.1 kcal/mol, respectively, and there is an endergonicity of more than 10 kcal/mol. Additional photons are needed to overcome these large barriers. In water solution, water binding to the two vacant sites of the Mn ions, again after phosphate dissociation triggered by light absorption, is thermodynamically and kinetically very favorable. The catalytic cycle is suggested to start from the Mn-4(III,III,III,IV) oxidation state. The removal of three electrons and three protons leads to the formation of a Mn-4(III,IV,IV,IV)-oxyl radical complex. The O-O bond formation then proceeds via a nucleophilic attack of water on the Mn-IV-oxyl radical assisted by a Mn-bound hydroxide that abstracts a proton during the attack. This step was calculated to be rate-limiting with a total barrier of 29.2 kcal/mol. This is followed by proton-coupled electron transfer, O-2 release, and water binding to start the next catalytic cycle.

  • 11.
    Lundborg, Magnus
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Fontana, Carolina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy2011Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, nr 11, s. 3851-3855Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structural analysis of polysaccharides requires that the sugar components and their absolute configurations are determined. We here show that this can be performed based on NMR spectroscopy by utilizing butanolysis with (+)- and (-)-2-butanol that gives the corresponding 2-butyl glycosides with characteristic 1H and 13C NMR chemical shifts. The subsequent computer-assisted structural determination by CASPER can then be based solely on NMR data in a fully automatic way as shown and implemented herein. The method is additionally advantageous in that reference data only have to be prepared once and from a user's point of view only the unknown sample has to be derivatized for use in CASPER.

  • 12. Mally, Manuela
    et al.
    Fontana, Carolina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    LeibundGut-Landmann, Salome
    Laacisse, Lamia
    Fan, Yao-Yun
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Aebi, Markus
    Glycoengineering of host mimicking type-2 LacNAc polymersand Lewis X antigens on bacterial cell surfaces2013Ingår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 87, nr 1, s. 112-131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bacterial carbohydrate structures play a central role in mediating a variety of host-pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram-negative bacteria, is composed of a lipid A-core and the O-antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Gal beta 1-4(Fuc alpha 1-3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram-negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O-antigen. A ubiquitous building block in mammalian N-linked protein glycans is Gal beta 1-4GlcNAc, referred to as a type-2 N-acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A-cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly-LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI-TOF and NMR analysis. Glycoengineered LOS induced pro-inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.

  • 13.
    Muheim, Claudio
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Bakali, Amin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Engström, Olof
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Wieslander, Åke
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Daley, Daniel O.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Widmalm, Göran
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Identification of a Fragment-Based Scaffold that Inhibits the Glycosyltransferase WaaG from Escherichia coli2016Ingår i: Antibiotics, ISSN 0066-4774, E-ISSN 2079-6382, Vol. 5, nr 1Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    WaaG is a glycosyltransferase that is involved in the biosynthesis of lipopolysaccharide in Gram-negative bacteria. Inhibitors of WaaG are highly sought after as they could be used to inhibit the biosynthesis of the core region of lipopolysaccharide, which would improve the uptake of antibiotics. Herein, we establish an activity assay for WaaG using C-14-labeled UDP-glucose and LPS purified from a increment waaG strain of Escherichia coli. We noted that addition of the lipids phosphatidylglycerol (PG) and cardiolipin (CL), as well as the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) increased activity. We then use the assay to determine if three molecular scaffolds, which bind to WaaG, could inhibit its activity in vitro. We show that 4-(2-amino-1,3-thiazol-4-yl)phenol inhibits WaaG (IC50 1.0 mM), but that the other scaffolds do not. This study represents an important step towards an inhibitor of WaaG by fragment-based lead discovery.

  • 14. Patton, Gregory C.
    et al.
    Stenmark, Pål
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Gollapalli, Deviprasad R.
    Sevastik, Robin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Kursula, Petri
    Flodin, Susanne
    Schuler, Herwig
    Swales, Colin T.
    Eklund, Hans
    Himo, Fahmi
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Nordlund, Par
    Hedstrom, Lizbeth
    Cofactor mobility determines reaction outcome in the IMPDH and GMPR (beta-alpha)(8) barrel enzymes2011Ingår i: Nature Chemical Biology, ISSN 1552-4450, E-ISSN 1552-4469, Vol. 7, nr 12, s. 950-958Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP(star) as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 angstrom from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.

  • 15.
    Siegbahn, Per E. M.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Blomberg, Margareta R. A.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Mutations in the D-channel of cytochrome c oxidase causes leakage of the proton pump2014Ingår i: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 588, nr 4, s. 545-548Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    It has experimentally been found that certain mutations close to the entry point of the proton transfer channel in cytochrome c oxidase stop proton translocation but not the oxygen reduction chemistry. This effect is termed uncoupling. Since the mutations are 20 angstrom away from the catalytic center, this is very surprising. A new explanation for this phenomenon is suggested here, involving a local effect at the entry point of the proton channel, rather than the long range effects suggested earlier. (C) 2013 Federation of European Biochemical Societies.

  • 16.
    Slättegård, Rikard
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Teodorović, Peter
    Hadgu Kinfe, Henok
    Ravenscroft, Neil
    Gammon, David W.
    Oscarson, Stefan
    Synthesis of Structures Corresponding to the Capsular Polysaccharide of Neisseria meningitidis Group A2005Ingår i: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 3, nr 20Artikel i tidskrift (Refereegranskat)
    Abstract [en]

     

     

     

     

    Four differently substituted trimers of the CPS repeating unit have been synthesised in order to investigate the

    dependence on oligosaccharide size, acetylation and mode of phosphorylation of glycoconjugate vaccines against

    Neisseria meningitidis

     

    group A. A spacer-containing starting monomer, a H-phosphonate elongating monomer and a

    6-

     

    O

    -phosphorylated H-phosphonate cap monomer have been synthesised and coupled together to afford, after

    deprotection, the target trimer structures differing in their acetylation and phosphorylation substitution

    pattern.

  • 17. Wangsell, Fredrik
    et al.
    Nordeman, Patrik
    Savmarker, Jonas
    Emanuelsson, Rikard
    Jansson, Katarina
    Lindberg, Jimmy
    Rosenquist, Asa
    Samuelsson, Bertil
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi.
    Larhed, Mats
    Investigation of alpha-phenylnorstatine and alpha-benzylnorstatine as transition state isostere motifs in the search for new BACE-1 inhibitors2011Ingår i: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 19, nr 1, s. 145-155Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inhibition of the BACE-1 protease enzyme has over the recent decade developed into a promising drug strategy for Alzheimer therapy. In this report, more than 20 new BACE-1 protease inhibitors based on alpha-phenylnorstatine, alpha-benzylnorstatine, iso-serine, and beta-alanine moieties have been prepared. The inhibitors were synthesized by applying Fmoc solid phase methodology and evaluated for their inhibitory properties. The most potent inhibitor, tert-alcohol containing (R)-12 (IC(50) = 0.19 mu M) was co-crystallized in the active site of the BACE-1 protease, furnishing a novel binding mode in which the N-terminal amine makes a hydrogen bond to one of the catalytic aspartic acids.

1 - 17 av 17
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf